Definition 0.1. Let I = [a, b] be a (bounded) closed interval of \mathbb{R} . We define $\mathcal{C}(\mathcal{I})$ to be the following two intervals:

$$\mathcal{C}(I) = \{ \left[a, a + \frac{b-a}{3} \right], \left[a + \frac{2(b-a)}{3}, b \right] \}$$

Definition 0.2. Define the sequence (\mathfrak{J}_n) of sets of (disjoint) intervals by:

$$\mathfrak{J}_0 = \{[0,1]\}$$

$$\mathfrak{J}_{n+1} = \bigcup_{I \in \mathfrak{J}_n} \mathcal{C}(I)$$

The ("ternary" or "middle thirds") Cantor set is then

$$\bigcap_{n=0}^{\infty} \left(\bigcup_{I \in \mathfrak{I}_n} I \right)$$