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Abstract. In this article we consider variable coefficient time dependent Schrödinger evo-
lutions in Rn. For this we use phase space methods to construct outgoing parametrices and
to prove global in time Strichartz type estimates. This is done in the context of C2 metrics
which satisfy a weak asymptotic flatness condition at infinity.

1. Introduction

Consider first solutions to the homogeneous Schroedinger equation in R× Rn

(i∂t −∆)u = 0 u(0) = u0

Their energy is preserved,

‖u(t)‖L2 = ‖u(0)‖L2 .

At the same time due to the dispersion of the waves there is uniform decay for spatially

localized initial data,

ccdisperse (1) ‖u(t)‖L∞ . t−
n
2 ‖u(0)‖L1

One way of thinking of this is as a straightforward consequence of uniform bounds for the

fundamental solution,

K(t, x) = cnt
−n

2 ei
x2

4
t

As a consequence of (
ccdisperse
1) one can also obtain time averaged decay estimates for merely L2

initial data. These are called Strichartz estimates, and have the form

jg (2) ‖u‖Lp(Lq) . ‖∇u0‖L2

This holds for all pairs (p, q) satisfying the relations 2 ≤ p ≤ ∞, 2 ≤ q ≤ ∞ and

pq (3)
2

p
+
n

q
≤ n

2

with the exception of the forbidden endpoint (2,∞) in dimension n = 2. In the sequel such

pairs are called Strichartz pairs.
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A straightforward consequence of (
jg
2) is an estimate for solutions to the inhomogeneous

problem

(i∂t −∆)u = f u(0) = 0 ut(0) = 0

namely

jga (4) ‖u‖Lp(Lq) . ‖f‖L1(L2)

The simplest case of (
jga
4) is the well-known energy estimate

jgb (5) ‖∇u‖L∞(L2) ≤ ‖f‖L1(L2)

However, there is a larger family of estimates for solutions to the inhomogeneous wave

equation where we also vary the norms in the right hand side,

jgc (6) ‖u‖Lp(0,T ;Lq) . ‖f‖
Lp′1 (Lq′1 )

This holds for all Strichartz pairs (p, q), (p1, q1). For more information we refer the reader

to the expository article
MR1151250
[9]. The endpoint estimate (p, q) = (2, 2n

n−2
) was obtained only later

in
MR1646048
[11] (n ≥ 3).

In this article we are interested in the variable coefficient case of these estimates, where

we replace −∆ by a second order elliptic operator of the form

A(t, x,D) = Dia
ij(t, x)Dj

Thus we consider evolutions of the form

maineq (7) Pu = f, u(0) = u0

where

P = Dt + A(t, x,D)

This is a considerably more delicate problem, which has several new features tied to the

nontrivial behaviour of its Hamilton flow.

The first of these is that dispersive estimates such as (
ccdisperse
1) do not hold in general, even if we

restrict ourselves to coefficients aij which are sufficiently small smooth compactly supported

perturbations of the identity. This is because even a small perturbation of the identity

suffices in order to refocus a group of Hamilton flow rays originating at the same point. This

produces some caustics-like concentration for the fundamental solution.

A second feature is related to the long time behavior of the bicharacteristics. In the flat

case all bicharacteristics are straight so they escape to infinity both forward and backward

in time. However, in the variable coefficient case it is possible to have trapped rays, which

are confined to a bounded spatial region. These correspond to singularities which are largely
2



confined to a bounded region, and destroy not only the dispersive estimates (
ccdisperse
1) but also the

Strichartz estimates in (
jg
2). On the positive side, the existence of trapped rays is a more

stable phenomena; in particular, it cannot happen for small perturbations of the identity.

The first work in this direction
MR1924470
[17] considers the case of a C2 compactly supported per-

turbation of the identity, subject to a nontrapping condition. Then Strichartz estimates are

proved locally in time. An essential part of the argument is to take advantage of the local

smoothing estimates for variable coefficient Schrödinger equations. These allow one to stably

split the estimates in two, one part which is localized to a compact set and another which

lives on a flat background. In the simplest form (see
MR1795567
[6]) they are stated as

‖〈x〉−
1
2
+ε〈D〉

1
2u‖L2([0,1]×Rn) . ‖u(0)‖L2

Hence they give a gain of 1/2 derivative within a compact spatial region. Heuristically this

is a reflection of the fact that waves with high frequency λ move at high speed O(λ) and

thus spend a short time O(λ−1) within a bounded spatial region. Square averaging in time

one then obtains the half derivative gain λ−
1
2 .

The results in
MR1924470
[17] are based on a phase space analysis of the spatially localized part of

the Schrödinger waves, following earlier work of Smith
MR1644105
[16] and the author

nlw
[18],

cs
[19] on the

similar problem for the wave equation.

In the meantime this type local analysis has been recast in a semiclassical language in
MR2058384
[3],

who further considered various properties of Schrödinger evolutions on compact manifolds.

Another partial result was obtained in
MR2066943
[2].

Simplified presentations of localized wave packet type parametrix constructions are now

available in
MR2094851
[12],

phasespace
[21]. These apply to evolutions of the form

(Dt + aw(t, x,D))u = 0, u(0) = u0

on the unit time scale, for symbols a which satisfy a partial S0
00 type condition

|∂αx∂βxa(t, x, ξ)| ≤ cαβ, |α|+ |β| ≥ 2

These parametrices are often useful in rescaled forms. However due to their finite time

horizon they cannot be directly applied to obtain optimal results for metrics which are not

compactly supported perturbations of the identity.

More recently, two versions of parametrix constructions have been obtained for metrics

which are asymptotically flat; both imply local in time Strichartz estimates.

Robbiano and Zuily
RZ
[13] consider smooth asymptotically flat metrics in Rn of the short

range type and which satisfy a nontrapping assumption. Their approach uses a parametrix
3



which is a Fourier integral operator with complex phase and relies considerably on Sjöstrand’s

theory of the FBI transform.

Hassell-Tao-Wunsch
MR2131050
[10] instead have a more direct parametrix construction emulating the

model of the constant coefficient fundamental solution. A sharper version of the localized

energy estimates is then used to control the errors. Their setup is of smooth asymptotically

conic manifolds with short range scattering metrics, extended shortly afterward to long range

scattering metrics.

In different directions, time independent compactly supported perturbations of the Lapla-

cian are considered globally in time in
RT
[14]. Also short time bounds for time independent

long range perturbations of the Laplacian outside compact sets are obtained in
BT
[1].

In the present article we consider global in time parametrices and Strichartz estimates for

metrics in Rn which are merely of class C2 and which are asymptotically flat only in a very

weak sense. Due to the global nature of the result it is convenient to consider scale invariant

assumptions on the coefficients. Such a scale invariant assumption is

|a− In|+ |a−1 − In|+ |x||∂xa(x, t)|+ |x|2(|∂2
xa(x, t)|+ |∂ta(x, t)|) ≤ C

If C is small this prevents trapping, but some heuristic computations seem to indicate that

the sharp pointwise decay of outgoing waves may fail because of repeated caustics formation

along geodesics. Thus it is conceivable that one might be able to construct solutions which

are localized along certain geodesics for a long time.

Thus we are led to introduce a slightly stronger assumption, namely

coeff (8)
∑
j∈Z

sup
Aj

|x|2(|∂2
xa(t, x)|+ |∂ta(x, t)|) + |x||∂xa(t, x)|+ |a(t, x)− In| ≤ ε

where Aj is the dyadic region

Aj = R× {2j ≤ |x| ≤ 2j+1}

If ε is small enough then this precludes the existence of trapped rays, while for arbitrary ε

it restricts the trapped rays to finitely many dyadic regions.

Because of the reduced coefficient regularity for small x, it seems virtually impossible to

control the Hamilton flow and to construct parametrices along incoming rays i.e. which

approach the origin. However, the situation improves considerably in the case of outgoing

rays. Thus the main part of the article is devoted to an outgoing parametrix construction.

This suffices in order to capture the full behaviour of the Schrödinger equation due to the

nontrapping assumption, which guarantees that each ray can be split into two parts, one of

which is outgoing forward in time while the other is outgoing backward in time.
4



Our parametrix construction is based on the use of a time dependent FBI transform.

However we do not use Sjöstrand’s theory
Sj1
[15]. Instead, we take advantage of the simpler

approach introduced by the author in
nlw
[18],

cs
[19],

MR1944027
[20],

phasespace
[21]; the latter is recommended to

the reader as a good starting point. In this analysis the FBI transform is used to turn the

equation into a degenerate parabolic evolution in the phase space. Bounds for this evolution

are then obtained using the maximum principle.

For more information about phase space transforms we refer to
MR92k:22017
[8] and

MR93i:35010
[5]. One of the

main starting points in the phase space analysis of pde’s is Fefferman’s article
MR85f:35001
[7].

Even though our parametrix is very precise, there are still errors which need to be con-

trolled and this is done using localized energy estimates, otherwise known as local smoothing

estimates. We prove such estimates in the case when the parameter ε in (
coeff
8) is sufficiently

small. If ε is large then nontrapping may fail, and thus the localized energy estimates may

fail. With a nontrapping assumption it is likely that the localized energy estimates hold

locally in time, but it is not clear what happens globally in time. To avoid being distracted

from the main purpose of this paper we have decided to brush aside this problem and simply

use the localized energy estimates as an assumption for large ε.

Scaling plays an essential role in our analysis. Modulo rescaling and Littlewood-Paley

theory all our analysis is reduced to waves which have fixed frequency of size O(1). Such

waves have a propagation speed of size O(1), therefore our study of outgiong waves can be

largely localized to cones of the form {|x| ≈ |t|}. Certainly the exact flow cannot have a

precise localization of this type due to the uncertainty principle. To compensate for this we

introduce an artificial damping term which produces rapid decay of waves which do not have

the above localization. This allows us to restrict our attention to the above cone modulo

rapidly decreasing errors.

Before we state our main results we need to introduce the function spaces for the localized

energy estimates. We consider a dyadic partition of unity in frequency,

1 =
∞∑

k=−∞

Sk(D)

and for each k ∈ Z we measure functions of frequency 2k using the norm

‖u‖Xk
= 2k‖u‖L2(A<−k) + 2

k
2 sup
j≥−k

‖(|x|+ 2−k)−
1
2u‖L2(Aj)

where

A<j = R× {|x| ≤ 2j}
5



To measure the regularity of solutions to the Schrodinger equation we use the global

localized energy space X defined by the norm

‖u‖2
X =

∞∑
k=−∞

‖Sku‖2
Xk

If n ≥ 3 then one can think of this as a space of distributions, and the following Hardy type

inequality holds:

(9) ‖|x|−1u‖L2 . ‖u‖X

This can be used to connect the present work with estimates proved for the flat Laplacian

with inverse square potentials, see
MR2106340
[4] and references therein.

On the other hand if n = 1, 2 one has a BMO type structure, i.e. X is a space of

distributions modulo time dependent constants.

For the inhomogeneous term in the equation, on the other hand, we use the dual space X ′

with norm

‖f‖2
X′ =

∞∑
k=−∞

‖Skf‖2
X′

k

Following the discussion above, if n ≥ 3 then X ′ is dense in S ′(Rn) and

‖u‖X′ . ‖xu‖L2

If n = 1, 2 then functions in X ′ must satisfy the cancellation condition∫ n

R
f(x)dx = 0

Definition 1. We say that the operator P satisfies the localized energy estimates if for each

initial data u0 ∈ L2 and each inhomogeneous term f ∈ L1L2 ∩ X ′ there exists an unique

solution u to (
maineq
7) which satisfies the bound

(10) ‖u‖L∞L2∩X . ‖u0‖L2 + ‖f‖L1L2+X′

The localized energy estimates hold under the assumption that the coefficients aij are a

small perturbation of the identity:

Theorem 2. Assume that the coefficients aij satisfy (
coeff
8) with an ε which is sufficiently small.

Then the operator P satisfies the localized energy estimates globally in time.l2

This leads to our main scale invariant Strichartz estimate:
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Theorem 3. Assume that the coefficients aij satisfy (
coeff
8) with an ε which is sufficiently small.

Let (p1, q1) and (p2, q2) be two Strichartz pairs. Then the solution u to (
maineq
7) satisfies

fse (11) ‖u‖Lp1 (Lq1 )∩X . ‖u0‖L2 + ‖f‖
Lp′2 (Lq′2 )+X′

tfse

If ε is large then any localized energy estimates require an additional nontrapping condi-

tion. Even then the nontrapping can at most guarantee local in time bounds. However, we

can still prove a conditional result:

Theorem 4. a) Let −∞ ≤ T− < T+ ≤ ∞. Assume that the coefficients aij satisfy (
coeff
8) in

(T−, T+). Then for every Strichartz pair (p, q) we have

xpq (12) ‖u‖LpLq . ‖u‖X + ‖Pu‖X′

In addition there is a parametrix K for P which satisfies

kxp (13) ‖Kf‖Lp1Lq1∩X + ‖(PK − I)f‖X′ . ‖f‖
Lp′2 (Lq′2 )

for any two Strichartz pairs (p1, q1) and (p2, q2).

b) Assume that in addition the operator P satisfies the localized energy estimates in

[T−, T+]. Then the solution u to (
maineq
7) satisfies the full Strichartz estimates in (

fse
11).tlargee

Finally, we comment on possible lower order terms in the equation. Suppose we add first

and zero order terms to P ,

P = Dt +Dia
ijDj + biDi + c

Consistent with (
coeff
8) we introduce the following condition on the coefficients b and c:

coeffb (14)
∑
j∈Z

sup
Aj

|x|2|∂xb(t, x)|+ |x||b(t, x)| ≤ ε

coeffc (15) sup
R×Rn

|x|2|c(t, x)| ≤ ε

Then we have

Remark 5. If n ≥ 3 and b, c satisfy (
coeffb
14), (

coeffc
15) then the following estimate holds:

bc (16) ‖(biDi + c)u‖X′ . ε‖u‖X

Consequently the results in Theorems
l2
2,
tfse
3,
tlargee
4 remain valid when such lower order terms are

added to P .
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If n = 1, 2 then (
bc
16) cannot hold for any nonzero b, c due to the BMO type structure of

X. One can still add lower order terms to the equation but these must have some decay in

time if one is to be able to take advantage of the dispersive estimates.

In applications one might be concerned that the condition (
coeff
8) imposes the nontrivial

restriction a(t, 0) = In. This is true, but it is needed only because we are allowing the

derivatives of the coefficients to be singular at 0. Otherwise, such a restriction is unnecessary:

Remark 6. Assume that the the condition (
coeff
8) on the coefficients aij is modified for |x| < 1

to

sup
|x|<1

(|∂2
xa(t, x)|+ |∂ta(x, t)|) + |∂xa(t, x)|+ |a(t, x)− In| ≤ ε

Assume also that for k > 0 the definition of the space Xk is changed to

‖u‖Xk
= 2

k
2 ‖u‖L2(A<−0) + 2

k
2 sup
j≥0

‖(|x|+ 2−k)−
1
2u‖L2(Aj)

Then the results in Theorems
l2
2,
tfse
3,
tlargee
4 remain valid. Their proofs are essentially identical with

only a few obvious changes.

The paper is structured as follows. After introducing some notations in the next section, in

Section
para
3 we consider the paradifferential calculus associated to our problem. More precisely,

we show that without any loss we are allowed to mollify the coefficients aij on a suitable x

dependent scale. We also prove the bound (
bc
16) for the lower order terms. This allows us to

reduce our analysis to problems which are frequency localized in dyadic regions.

Section
mora
4 contains the proof of the localized energy estimates in Theorem

l2
2. The main

step of the proof is carried out in a frequency localized context and involves a Morawetz type

mutiplier technique.

In Section
tts
5 we state our main result on the existence of frequency localized outgoing para-

metrices, namely Proposition
K0
10. Using this result we conclude the proof of Theorems

tfse
3,
tlargee
4.

The rest of the paper is devoted to the parametrix construction. In Section
pdo
6 we introduce

the pseudodifferential operators and the phase space transforms. An important role is played

by the results concerning the conjugation of pdo’s with respect to the phase space transform,

for which we use some results from
MR1944027
[20],

phasespace
[21]. The parametrix is first constructed in Section

modeleq
7

in the case of evolutions governed by a pseudodifferential operator aw whose symbol satisfies a

suitable smallness condition uniformly in x. This construction is then transferred in Section
oureq
8

to small perturbations of ∆ via conjugation with respect to the flat Schroedinger flow. Finally

to arrive at the desired setup we need to insure that the parametrix is localized in outgoing
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propagation cones. This is done in the last section by means of choosing a suitable damping

term in the equation.

2. Notations
notations

We consider a smooth spatial Littlewood-Paley decomposition

1 =
∞∑

j=−∞

χj(x) supp χj ⊂ {2j−1 < |x| < 2j+1}

We also set

χ<j =
∑
k<j

χk

Given ε as in (
coeff
8) we can find a sequence εj ∈ l1 so that

ej (17) sup
Aj

|x|2|∂2
xa(t, x)|+ |x||∂xa(t, x)|+ |a(t, x)− In| ≤ εj

and ∑
εj . ε

Without any restriction in generality we can assume that εj is slowly varying, say

| ln εj − ln εj−1| ≤ 2−10

We also choose a function ε with the property that

εj < ε(s) < 2εj 2j < s < 2j+1

and so that

ε′j(s) ≤ 2−5s−1εj(s)

This implies that ∫
R

ε(s)

s
≈ ε

We define the bounded function e(s) by

e(s) = ε−1

∫ s

−∞

ε(σ)

σ
dσ

We consider a frequency Littlewood-Paley decomposition

1 =
∞∑

j=−∞

Sj(D)

where

supp sj ⊂ {2j−1 < |ξ| < 2j+1}

We also use the related notations S<k, S>k, etc.
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We say that a function f is localized at frequency 2k if f̂ is supported in {2j−1 < |ξ| <
2j+1}. An operator K is localized at frequency 2k if for any f localized at frequency 2k its

image Kf is frequency localized in {2j−10 < |ξ| < 2j+10}.

3. The paradifferential calculus
para

In order to reduce the problem to a frequency localized context and to simplify the

parametrix construction it is convenient to localize the coefficients in frequency. This is

somewhat more complicated than usual because the frequency localization scale needs to

depend on the spatial scale.

Given a frequency scale k we define the regularized coefficients

aij(k) = +
∑
l<k−4

S<lχ<k−2lSla
ij

Correspondingly we define the mollified operators

A(k) = Dia
ij
(k)Dj

which are used on functions of frequency 2k. Roughly speaking, their coefficients are fre-

quency localized in the region

|ξ| � 2k(1 + 2k|x|)−
1
2

We also introduce a global mollified operator

Ã =
∞∑

k=−∞

A(k)Sk

Due to (
ej
17) and to the fact that the ej’s are slowly varying it follows that the dyadic parts

of the coefficients will satisfy the bounds

aijl (18) |Slaij(t, x)| .
{

2−2m−2lεm 2m < |x| < 2m+1, m+ l ≥ 0
ε−l |x| < 2−l

This also allows us to obtain bounds on the coefficients of A(k),

|∂αaij(k)(x)| ≤ cαε2
|α|k(1 + 2k|x|)−α |α| ≤ 2

|∂αaij(k)(x)| ≤ cαε2
|α|k(1 + 2k|x|)−1− |α|

2 |α| ≥ 2
coeffak (19)

The main result of this section shows that we can freely replace A by Ã in Theorems
l2
2,

tlargee
4(a). It also shows that at frequency 2k the operators Ã and A(k) are interchangeable.

Proposition 7. Assume that the coefficients aij satisfy (
coeff
8). Then the following estimates

hold:

amta (20) ‖(A− Ã)u‖X′ . ε‖u‖X
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tamak (21) ‖(Ã− A(k))Slu‖X′
k

. ε‖Slu‖Xk
, |l − k| ≤ 2

comak (22) ‖[A(k), Sk]u‖X′
k

. ε‖u‖Xk

Proof. To prove (
amta
20) we write the difference A− Ã in the form

A− Ã = Alow + Amid + Ahigh

where

Alow =
∞∑

k=−∞

Di

(∑
l<k−4

S<lχ>k−2lSla
ij

)
DjSk

Amid =
∞∑

k=−∞

k+4∑
l=k−4

Di(Sla
ij)DjSk

Ahigh =
∞∑

k=−∞

∑
l>k+4

Di(Sla
ij)DjSk

The operator Alow keeps the frequency localization, i.e. takes frequencies of size 2k into

frequencies of size 2k. The operators Di and Dj yield 2k factors, so we only need to show

that

dplow (23)

∥∥∥∥∥ ∑
l<k−4

S<lχ>k−2lSla
ijv

∥∥∥∥∥
X′

k

. ε2−2k‖v‖Xk

For the mollified cutoff we use the trivial bound

|S<lχ>k−2l(x)| ≤
{

24l−4k |x| < 2k−2l−2

1 |x| ≥ 2k−2l−2

Suppose that 2m < |x| < 2m+1. For m ≥ −k we combine this with (
aijl
18) to obtain∣∣∣∣∣ ∑

l<k−4

S<lχ>k−2lSla
ij

∣∣∣∣∣ .
−m−1∑
l=−∞

24l−4kε−l +

k−m
2
−1∑

l=−m

εm2−2m−2l24l−4k +
m−4∑
l= k−m

2

εm2−2m−2l

. 2−m−kεm

A similar argument (or the uncertainty principle) shows also that∣∣∣∣∣ ∑
l<k−4

S<lχ>k−2lSla
ij

∣∣∣∣∣ . ε−k |x| < 2−k

Together the last two bounds imply (
dplow
23).

In the case of Amid we can have output at all frequencies less than or equal to 2k. To

simplify the notations we take l = k. Then it suffices to obtain the off-diagonal decay

‖SlDi(Ska
ijDjSkv)‖X′

l
. ε2

l−k
2 ‖v‖Xk

, l ≤ k + 2
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which reduces to

‖Sl(Skaijv)‖X′
l
. 2−

l
2
− 3k

2 ε‖v‖Xk

We make a dyadic decomposition with respect to the spatial variable,

Sl(Ska
ijv) = Sl(χ<−kSka

ijv) +
∞∑

m=−k

Sl(χmSka
ijv)

Then it suffices to prove that for m > −k we have

‖Sl(χmSkaij)v)‖X′
l
. 2−

l
2
− 3k

2 εm‖v‖Xk

with the obvious modification when m = k. We freeze the weights using (
aijl
18) and the

definition of Xk. Then the above bound reduces to

lmk (24) ‖Sl(χmv)‖X′
l
. 2−

l
2
+k+ 3m

2 ‖v‖L2

For this we consider two cases. If m+ l ≥ 0 then

‖Sl(χmv)‖L2 . ‖v‖L2 , ‖xSl(χmv)‖L2 . 2m‖v‖L2

Hence interpolating

fs (25) ‖Sl(χmv)‖X′
l
. 2

m−l
2

which suffices for (
lmk
24) since

m− l

2
≤ − l

2
+ k +

3m

2
In the second case m+ l < 0 we have a better L2 bound

‖Sl(χmv)‖L2 . 2
n(m+l)

2 ‖v‖L2 , ‖xSl(χmv)‖L2 . 2−l2
n(m+l)

2 ‖v‖L2

Interpolating and taking the worst dimension n = 1 we obtain again (
fs
25) and conclude as

before.

Finally we consider the contribution of Ahigh, for which we obtain again an off-diagonal

decay

‖SlDi(Sla
ijDjSkv)‖X′

l
. ε2

k−l
2 ‖v‖Xk

We can replace Di and Dj with factors of 2l, respectively 2k and then drop the multipliers

to reduce this to

‖Slaijv‖X′
l
. ε2−

k
2
− 3l

2 ‖v‖Xk

Localizing to dyadic spatial regions this follows from

‖χmSlaij‖L∞ . εm2−m2−l m ≥ −l

and

‖χ<−lSlaij‖L∞ . ε−l
12



which are in turn consequences of (
aijl
18). This concludes the proof of (

amta
20).

The proof of (
tamak
21) is similar but simpler, as only terms as in Alow can occur. Finally, for

(
comak
22) we can factor out the derivatives and reduce it to

‖[Sk, aij(k)]v‖X′
k

. ε2−2k‖v‖Xk

Then this follows directly from (
coeffak
19) with α = 1.

�

In a similar manner we prove the bound (
bc
16) which shows that in high dimension we can

completely dispense with lower order terms.

Proof of (
bc
16). As a consequence of (

coeffb
14), (

coeffc
15) we note the following bounds on dyadic pieces

of the coefficients:

|Skb(x)| . 2−kε(2−k + |x|)(2−k + |x|)−2, |S<kb(x)| . 2−kε(2−k + |x|)(2−k + |x|)−2

|Skc(x)| . (2−k + |x|)−2, |S<kc(x)| . (2−k + |x|)−2
dyadiccoeff (26)

To prove (
bc
16) we first do a dyadic decomposition of the two factors,

(bi∂i + c)u =
∑
k>j+4

(Skb
i∂i + Skc)Sju+

∑
|k−j|≤4

(Skb
i∂i + Skc)Sju+

∑
j

(S<j−4b
i∂i + S<j−4c)Sju

We consider the three cases. Begin with the high-low interactions in the first sum. The

output is at frequency 2k so we measure it in X ′
k. The derivative yelds at most a 2k factor.

Using also (
dyadiccoeff
26) we compute

‖(Skbi∂i + Skc)Sju‖X′
k

. ‖(2−k + |x|)−2Sju‖X′
k

. ‖χ>−j(2−j + |x|)−2Sju‖X′
k
+ ‖χ≤j(2−k + |x|)−2Sju‖X′

k

. 2
j−k
2 ‖Sju‖Xj

+ ‖χ≤j(2−k + |x|)−2‖X′
k
‖Sju‖L∞(A<j)

. ‖Sju‖Xj
(2

j−k
2 + 2

(n−2)j
2 ‖χ≤j(2−k + |x|)−2‖X′

k
)

The outcome of the last computation depends on the dimension. If n > 3 then we get the

constant 2
j−k
2 which decays away from the diagonal so it suffices for the summation with

respect to j, k. If n = 3 we have an additional logarithmic loss so we obtain the slightly

weaker constant |k − j|2 j−k
2 .

The second case corresponds to high-high frequency interactions, and the output must be

at the same frequency or lower. This is dual to the first case.

Finally we consider the last case, of low-high interactions. Here the output is at frequency

2j, therefore the square summability of the sum with respect to j is inherited from Sju.
13



Hence it suffices to estimate

‖(S<j−4b
i∂i + S<j−4c)Sju‖X′

j
. ‖(2−j + |x|)−2Sju‖X′

j
. ‖Sju‖Xj

�

4. Localized energy estimates
mora

Here we prove Theorem
l2
2. This is done via a positive commutator method. Let (αm)m∈Z

be a positive slowly varying sequence with
∑
αk = 1. Correspondingly we define the space

Xk,α with norm

‖u‖2
Xk,α

=
∑
j>−k

αj‖(|x|+ 2−k)−
1
2u‖L2(Aj)

and the dual space

‖u‖2
Xk,α

=
∑
j>−k

α−1
j ‖(|x|+ 2−k)

1
2u‖L2(Aj)

The key step in the proof of Theorem
l2
2 is the following frequency localized estimate:

Proposition 8. Assume that ε is sufficiently small. Then the bound

locl2 (27) ‖u‖L∞L2∩Xk,α
. ‖u(0)‖L2 + ‖(Dt + A(k))u‖L1L2+X′

k,α

holds for all functions u ∈ L∞L2 ∩ Xk,α localized at frequency 2k uniformly with respect to

all slowly varying sequences (αm) with

suma (28)
∞∑

k=−∞

αm = 1

l2loc

Proof. Let Q be an L2 bounded selfadjoint operator in Rn. Then the operator

C = i[A(k), Q]

is also selfadjoint and we have

2Im〈A(k)u,Qu〉 = 〈Cu, u〉.

For the Schrodinger equation we obtain

d

dt
〈u,Qu〉 = −2=〈(Dt + A(k))u,Qu〉+ 〈Cu, u〉

When Q = I this gives the energy estimate

d

dt
‖u‖2

L2 = −2=〈(Dt + A(k))u, u〉

If δ is a small parameter then the modified energy

E(u) = ‖u‖2
L2 − δ〈u,Qu〉
14



is positive definite and satisfies

d

dt
E(u) = 2=〈(Dt + A(k))u, (1− δQ)u〉 − δ〈Cu, u〉

Integrating in time we obtain

‖u‖2
L∞L2 + δ〈Cu, u〉 . ‖u(0)‖2

L2 + ‖(Dt + A(k))u‖L1L2+X′
k,α
‖(1− δQ)u‖L∞L2∩Xk,α

Then the conclusion of the proposition follows from the Cauchy-Schwartz inequality and the

next lemma:

Lemma 9. For each k ∈ Z and each slowly varying sequence (αm) satisfying (
suma
28) there exist

an L2 bounded selfadjoint operator Q so that

(29) 〈Cu, u〉 & ‖u‖2
Xk,α

(30) ‖Qu‖Xk,α
. ‖u‖Xk,α

for all functions u localized at frequency 2k.

We now prove the lemma. By rescaling we can assume that k = 0. Let δ be a small

parameter which will be chosen later. We increase the sequence (αm) so that it remains

slowly varying and the following properties hold:

aam (31)


αm = 1 for m ≤ 0∑
m>0

αm ≈ 1

εm ≤ δαm+log2 δ

The last property requires ε < δ, and (after δ is fixed) determines the allowable range for

the parameter ε in Theorem
l2
2. To the sequence αm we associate a slowly varying function

α with the property that

α(s) ≈ αm, s ≈ 2m

With this notation the last part of (
aam
31) can be rewritten in the form

ed (32) ε(s) . δα(δs)

We consider an even function φ with the following properties:

(i) φ(s) ≈ (1 + s)−1 for s > 0.

(ii) φ(s) + sφ′(s) ≈ α(s) for s > 0.

(iii) φ(|x|) is localized at frequency at most O(1).
15



The construction of r satisfying (i) and (ii) is easy and is left to the reader. The condition

(iii) is obtained simply by truncating the function φ(|x|) in frequency on a sufficiently large

scale so that the first two properties are not affected.

The operator Q is the differential operator

Q(x,D) = δ(Dxφ(δ|x|) + φ(δ|x|)xD)

The choice of the function φ insures that Q is L2 bounded at frequency 1,

‖QS0‖L2→L2 . 1, |k| ≤ 4

Since the weight describing the Xk,α norm is slowly varying on the unit spatial scale, we also

obtain the boundedness

‖QS0‖X0,α→X0,α . 1, |k| ≤ 4

It remains to compute the commutator

C = i[A(1), Q]

We have

i[A(0), Q] = 4δDiφ(δ|x|)aij(0)Dj + 2δ(Dxδxi|x|−1φ′(δ|x|)aij(0)Dj +Diδx
j|x|−1φ′(δ|x|)aij(0)xD)

+ δDiφ(δ|x|)(xk∂kaij(0))Dj + ∂i(a
ij
(0)(∂j∂(δxφ(δ|x|))))

Given the regularity of the coefficients aij, the last two terms are small on frequency 1

functions. Precisely,

|δφ(δ|x|)(xk∂kaij(0))| .
δ2α(δ|x|)
1 + δ|x|

and

|∂i(aij(0)(∂j∂(δxφ(δ|x|)))| . δ3

(1 + δ|x|)3

therefore for functions u localized at frequency 1 we have the bounds

〈δDiφ(δ|x|)(xk∂kaij(0))Dju, u〉 . δ〈δα(δ|x|)
1 + δ|x|

u, u〉

respectively

〈∂i(aij(0)(∂j∂δxφ(δ|x|))u, u〉 . δ〈δα(δ|x|)
1 + δ|x|

u, u〉

It remains to show that the contribution of the first two terms is large. By (
ed
32) we can

replace the matrix aij by In at the expense of an error similar to the last right hand side

above. Then we are left with the expression

C0 = 4δDiφ(δ|x|)Di + 4δD
x

|x|
δ|x|φ′(δ|x|) x

|x|
D

16



which satisfies

〈C0u, u〉 ≥ 4δ〈(φ(δ|x|) + δ|x|φ′(δ|x|))∇u,∇u〉 ≈ 〈δα(δ|x|)
1 + δ|x|

u, u〉

for all u localized at frequency 1. If δ is small enough this dominates all the error terms,

therefore we obtain

〈Cu, u〉 & 〈δα(δ|x|)
1 + δ|x|

u, u〉

This concludes the proof of the lemma, and also the proof of Proposition
l2loc
8. �

We conclude now the proof of Theorem
l2
2. Let (βm) be another slowly varying sequence

with ∑
m

βm = 1

Applying Proposition
l2loc
8 with αm replaced by αm + βm we obtain the bound

‖u‖L∞L2∩Xk,α+β
. ‖u(0)‖L2 + ‖(Dt + A(k))u‖L1L2+X′

k,α+β

for all u localized at frequency 2k. This implies the weaker estimate

‖u‖L∞L2∩Xk,α
. ‖u(0)‖L2 + ‖(Dt + A(k))u‖L1L2+X′

k,β

Since any l1 sequence is dominated by a slowly varying l1 sequence, we can drop the assump-

tion that α and β are slowly varying. Then we maximize the left hand side with respect to

α ∈ l1 and minimize the right hand side with respect to β ∈ l1. This yields

xkloc (33) ‖u‖L∞L2∩Xk
. ‖u(0)‖L2 + ‖(Dt + A(k))u‖X′

k+L1L2

For an arbitrary function u ∈ X ′ we apply this bound to Sku. We have

(Dt + A(k))Sku = Sk(Dt + Ã)u+ [A(k), Sk]u+ Sk(A(k) − Ã)

The last two terms are frequency localized and can be estimated by (
tamak
21) and (

comak
22),

‖[A(k), Sk]u+ Sk(A(k) − Ã)u‖X′
k

. ε
∑

|k−l|≤2

‖Slu‖Xl

17



Then after summation we obtain

‖u‖2
L∞L2∩X .

∑
k

‖Sku‖2
L∞L2∩Xk

.
∑
k

‖Dt + A(k))Sku‖2
L1L2+X′

k
+ ‖Sku(0)‖2

L2

. ‖u(0)‖2
L2 +

∑
k

‖Sk(Dt + Ã)u‖2
L1L2+X′

k
+ ‖[A(k), Sk]u+ Sk(A(k) − Ã)u‖2

X′
k

. ‖u(0)‖2
L2 + ‖(Dt + Ã)u‖2

L1L2+X′ + ε‖u‖2
X

. ‖u(0)‖2
L2 + ‖(Dt + A)u‖2

L1L2+X′ + ε‖u‖2
X

For small ε we can neglect the last right hand side term to obtain

dualbd (34) ‖u‖2
L∞L2∩X . ‖u(0)‖L2 + ‖(Dt + A)u‖2

L1L2+X′

which holds in any time interval containing 0.

Since the operator Dt +A is selfadjoint, by duality this shows that for any f ∈ L1L2 +X ′

there is a solution v to

(Dt + A)v = f, v(0) = v0

with

‖v‖X∩L∞L2 . ‖f‖L1L2+X′ + ‖v(0)‖L2

By (
dualbd
34) this solution is unique. The proof of Theorem

l2
2 is concluded.

5. Parametrices and Strichartz estimates
tts

Here we reduce the proof of Theorem
tfse
3 to the construction of a suitable parametrix for

Dt + A(0). Our main result concerning parametrices is

Proposition 10. Assume that ε is sufficiently small. Then there is a parametrix K0 for

Dt + A(0) which is localized at frequency 1 and has the following properties:

(i) L2 bound:

ees (35) ‖K0(t, s)‖L2→L2 . 1

(ii) Error estimate:

l2error (36) ‖(1 + |x|)N(Dt + A(0))K0(t, s)‖L2→L2 . (1 + |t− s|)−N

(iii) Jump condition: K0(s+0, s) and K0(s−0, s) are S0
1,0 type pseudodifferential operators

satisfying

(K0(s+ 0, s)−K0(s− 0, s))S0 = S0

18



(iv) Outgoing parametrix:

outl2 (37) ‖1{|x|<2−10|t−s|}K0(t, s)‖L2→L2 . (1 + |t− s|)−N

(v) Pointwise decay:

(38) ‖K0(t, s)‖L1→L∞ . (1 + |t− s|)−
n
2

K0

We leave the proof of this result for later sections, and we show that it implies Theo-

rems
tfse
3,
tlargee
4. As an intermediate step we prove the following localized Strichartz estimates for

the parametrix:

Proposition 11. The parametrix K0 given by Proposition
K0
10 has the following properties:

(i) (regularity) For any Strichartz pairs (p1, q1) respectively (p2, q2) with q1 ≤ q2 we have

lpbd (39) ‖K0f‖Lp1Lq1∩X0 . ‖f‖
Lp′2Lq′2

(ii) (error estimate) For any Strichartz pair (p, q) we have

lperror (40) ‖[(Dt + A(0))K0 − 1]f‖X′
0

. ‖f‖Lp′Lq′

k0lp

Proof. By interpolation we obtain the bound

‖K0(t, s)‖Lq′→Lq . (1 + |t− s|)−
n
q , 2 ≤ q ≤ ∞

By the Hardy-Littlewood-Sobolev inequality this implies that

ppp (41) ‖K0‖Lp′Lq′→LpLq . 1

for all Strichartz pairs (p, q) with q > 2. The case q = 2 is handled as in
MR1646048
[11].

We obtain the similar estimate with different Strichartz pairs (p1, q1) respectively (p2, q2)

by interpolating with Lp
′
Lq

′ → L2 bounds, namely

lp2 (42) ‖K0(t, ·)‖Lp′Lq′→L2 . 1

By the TT ∗ argument this is equivalent to

‖K∗
0(·, t)K0(t, ·)‖Lp′Lq′→LpLq . 1

This follows from (
ppp
41), Sobolev embeddings and the following Lemma:

Lemma 12. The parametrix K0 given by Proposition
K0
10 satisfies

‖K∗
0(s1, t)K0(t, s2)−K∗

0(s1 + 0, s1)K0(s1, s2)‖L2→L2 . (1 + |s1 − s2|)−N t > s1 > s2
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Proof. Compute

Dt(K
∗
0(s1, t)K0(t, s2)) = −[(Dt + A(0))K0(t, s1)]

∗K0(t, s2) +K∗
0(s1, t)[(Dt + A(0))K0(t, s2)]

In the first term we use (
l2error
36) for the first factor and the energy estimate (

ees
35) combined with

(
outl2
37) for the second to obtain

‖[(Dt + A(0))K0(t, s1)]
∗K0(t, s2)‖L2→L2 .‖(1 + |x|)N(Dt + A(0))K0(t, s1)‖L2→L2

‖(1 + |x|)−NK0(t, s2)‖L2→L2

.(1 + |t− s1|)−N(1 + |t− s2|)−N

The second term is estimated in a similar manner. Hence we obtain

‖Dt(K0(s1, t)
∗K0(t, s2))‖L2→L2 . (1 + |t− s1|)−N(1 + |t− s2|)−N

We integrate this relation between s1 and t to obtain the conclusion of the Lemma. �

The Lp
′
Lq

′ → X0 bound can be rewritten in the form

‖1{|x|<R}K0‖Lp′Lq′→L2 . |R|
1
2

To prove this we split

K0(t, s) = 1{|t−s|<210R}K0(t, s) + 1{|t−s|>210R}K0(t, s)

For the first part we use (
lp2
42) and Holder’s inequality, while for the second part we use the

rapid decay in (
outl2
37) combined with Sobolev embeddings.

Finally, the error estimates in (
lperror
40) follow easily from the ones in (

l2error
36).

�

Proposition
k0lp
11 is useful only if ε is small. However, we can prove a similar result even if ε

is not small:

Proposition 13. Assume that the coefficients aij satisfy (
coeff
8) in a time interval [T−, T+].

Then there is a parametrix K0 for A(0) localized at frequency 1 and which satisfies

(i) (regularity) For any Strichartz pairs (p1, q1) respectively (p2, q2) with q1 ≤ q2 we have

lpbdl (43) ‖K0f‖Lp1Lq1∩X0 . ‖f‖
Lp′2Lq′2

(ii) (error estimate) For any Strichartz pair (p, q) we have

lperrorl (44) ‖[(Dt + A(0))K0 − 1]f‖X′
0

. ‖f‖Lp′Lq′

k0lplarge
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Proof. If either T− or T+ is finite then we extend the coefficients to all of R × Rn. This

can be done for instance using reflections in time. Hence in what follows we assume that

T− = −∞, T+ = ∞.

Let δ be a small constant chosen so that Proposition
K0
10 applies for ε . δ. We consider

the slowly varying sequence εj attached to (
coeff
8) as in (

ej
17). Since in A(0) the coefficients are

truncated at frequency less than 1, we only need the εj’s for j ≥ 0. We partition the set N
of indices into intervals

N =
⋃
j∈J

Ij

so that for each k either of the following two properties holds:

(a) (intervals of first kind)

(45)
∑
k∈Ij

εk . δ

(b) (intervals of the second kind)

|Ij| = 1

We only need finitely many such intervals,

|J | . ε

δ

Given an interval I = [j, k] ⊂ N we denote Ĩ = [j− 2, k+ 2]. We also define an associated

dyadic cutoff function

χI(x) =
∑
i∈I

χi(x)

In order to keep the frequency localization we assume that these cutoff functions are fre-

quency localized at frequency � 1. Hence they will have some tails in other dyadic regions.

However, these tails are rapidly decreasing away from the initial support. Thus they are

harmless, and will be neglected in the sequel.

We seek the parametrix K0 of the form

K0 =
∑
j∈J

χĨjK
IjχIj

where each of the terms is essentially localized to Ĩj. Since the above sum has finitely many

terms, it suffices to construct the KI ’s so that each of these terms satisfies the estimates

lpii (46) ‖χĨjK
IjχIj‖Lp1Lq1∩X0 . ‖f‖

Lp′2Lq′2

respectively

eele (47) ‖((Dt + A(0))χĨjK
IjχIj − χIj)f‖X′

0
. ‖f‖Lp′Lq′
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We consider the two cases as above. The index j for the interval is ommited in the sequel.

a) Suppose I is an interval of the first kind. We restrict the coefficients a of A to the

annulus {|x| ∈ 2Ĩ}. Then we consider an extension aI to R × Rn which satisfies (
coeff
8) with

ε . δ.

For this extension we let KI be the parametrix given by Proposition
K0
10. By Proposition

k0lp
11

we can estimate

‖χĨjK
IjχIjf‖Lp1Lq1∩X0 . ‖KIjχIjf‖Lp1Lq1∩X0 . ‖χIjf‖Lp′2Lq′2

. ‖f‖
Lp′2Lq′2

which gives the corresponding part of (
lpbdl
43).

For the error estimate (
eele
47) we write

(Dt +A(0))χĨK
IχI − χI = χĨ((Dt +AI(0))K

I − 1)χI + (A(0) −AI(0))χĨK
IχI + [AI(0), χĨ ]K

IχI

The first term is bounded directly using (
lperror
40) for KI . For the second we can neglect the

derivatives due to the frequency 1 localization. If it were not for the frequency localization,

the functions a−aI and χĨ would have supports with dyadic separation. Given the frequency

localization, there is minimal overlapping,

|∂α(a(0) − aI(0))∂
βχĨ | . (1 + |x|)−N

This combined with the X0 bound in (
lpbd
39) gives the estimate for the second term. Finally,

for the third term we use again (
lpbd
39); then it remains to prove the commutator estimate

‖[AI(0), χĨ ]v‖X′
0

. ‖v‖X0

where v is localized at frequency 1. But this is simply a consequence of the fact that the

derivatives of χĨ are essentially concentrated in two dyadic spatial regions and satisfy the

bound

|∇χĨ(x)| . (1 + |x|)−1

b) Suppose that I is an interval of the second kind. To fix the notations assume that in

{|x| ∈ 2Ĩ} we have |x| ≈ R and

|∂αa| . MR−α, |α| = 1, 2

Denote

r = δM−1R

We partition the spacetime set R× {|x| ∈ 2Ĩ} into cubes of size r,

{|x| ∈ 2Ĩ} ⊂
⋃
Q∈Q

Q
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To this we associate a local partition of unit

χĨ =
∑
Q∈Q

χQχĨ , supp χQ ⊂ 2Q

and also cutoff functions χ̃Q with slightly larger support in 4Q. The center of a cube Q is

denoted by (tQ, xQ). We restrict the coefficients a to 5Q and then reextend them to aQ so

that they are constant and equal to (tQ, xQ) outside 6Q. This can be done in such a way

that the following bounds hold:

aq (48) |aQ − aQ(tQ, xQ)|+ r|∂xaQ|+ r2(|∂2
xa

Q|+ |∂taQ|) . δ

For each Q we choose new affine coordinates in Rn in which

6Q ⊂ {|x| ≈ r}, aQ(tQ, xQ) = In

Then the coefficients aQ satisfy (
coeff
8) with ε = δ therefore we can find a parametrix KQ as in

Proposition
k0lp
11. Consequently we define the parametrix KI as

KI =
∑
Q∈Q

χ̃QK
QχQ

Now the bounds (
lpii
46) and (

eele
47) follow as in case (a) from (

lpbd
39) and (

lperror
40) for KQ.

We note that this second part of the parametrix construction is not new. If we rescale Q

to a cube of size r−1 × 1n then we match the setup considered in
MR1924470
[17],

MR2058384
[3]. Rescaling Q to

a cube of size 1 × (
√
r)n we match the parametrix constructions in

phasespace
[21],

MR2094851
[12]. All of these

results employ a time independent scale for the parametrix. The only reason we prefer here

to use the stronger result in Proposition
k0lp
11 is to make this article self contained.

�

Proof of Theorems
tfse
3,

tlargee
4. In what follows we work in a time interval [T−, T+], possibly infinite.

By (
tamak
21) we can replace the operator Ã(0) by Ã in Propositions

k0lp
11,

k0lplarge
13. Rescaling this result we

obtain similar parametrices Kj at any dyadic frequency 2j. We first assemble these dyadic

parametrices and set

K =
∞∑

K=−∞

KjSj

The properties of K are summarized in the next lemma.

Lemma 14. The parametrix K for Dt + A has the following properties:

(i) (regularity) For any Strichartz pairs (p1, q1) respectively (p2, q2) with q1 ≤ q2 we have

kf (49) ‖Kf‖Lp1Lq1∩X . ‖f‖
Lp′2Lq′2
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(ii) (error estimate) For any Strichartz pair (p, q) we have

lperror2b (50) ‖((Dt + A)K − I)f‖X′ . ‖f‖Lp′Lq′

k

Part (i) follows directly from the Littlewood-Paley theory. Similarly we get part (ii) but

with Ã instead of A. However, by (
amta
20) we can freely interchange A and Ã.

A second step is to use duality to establish an L2 → LpLq bound.

Lemma 15. If there is a parametrix K for Dt+A as in Lemma
k
14 and (p, q) is a Strichartz

pair then

xxp (51) ‖u‖LpLq . ‖u‖L∞L2∩X + ‖(Dt + A)u‖X′

Proof. Without any restriction in generality we assume that T− and T+ are finite but prove

the bound with constants which are independent of T+ and T−. For f ∈ Lp
′
Lq

′
we use

integration by parts and the fact that A is selfadjoint to write

〈u, f〉 = 〈(Dt + A)u,Kf〉 − 〈u, [(Dt + A)K − 1]f〉+ i〈u(t), Kf(t)〉|T+

T−

Then by (
kf
49) and (

lperror
40) we obtain

|〈u, f〉| . ‖f‖Lp′Lq′ (‖u‖L∞L2∩X + ‖(Dt + A)u‖X′)

The conclusion follows. �

Now we prove (
fse
11). Without any restriction in generality we assume that q1 ≤ q2; the

opposite case follows by duality. If

(Dt + A)u = f + g, f ∈ Lp′2Lq′2 , g ∈ X ′

then we write

u = Kf + v,

We use (
kf
49) to bound Kf in Lp1Lq1 ∩X. It remains to bound v, which solves

(Dt + A)v = (1− (Dt + A)K)f + g

In the case of Theorem
tfse
3 we use succesively (

xxp
51) and Theorem

l2
2 we obtain

‖v‖Lp1Lq1 . ‖v‖L∞L2∩X + ‖(Dt + A)v‖X′

. ‖v(0)‖L2 + ‖(Dt + A)v‖X′

. ‖u(0)‖L2 + ‖Kf‖L∞L2 + ‖(1− (Dt + A)K)f‖X′ + ‖g‖X′

. ‖u(0)‖L2 + ‖f‖
Lp′2Lq′2

+ ‖g‖X′

Then (
fse
11) follows.
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In the case of Theorem
tlargee
4 the argment is similar, but instead of using Theorem

l2
2 we assume

that the localized energy estimates hold.

�

6. Pseudodifferential operators and phase space transforms
pdo

In preparation for the outgoing parametrix construction in the following sections we in-

troduce here the required microlocal analysis setup.

The simplest class of pseudodifferential operators which we use is S0
00 and some variations

of it S
0(k)
00 defined by

a ∈ S0,(k)
00 ≡ |∂αx∂

β
ξ a(x, ξ)| ≤ cαβ |α|+ |β| ≥ k

These correspond to the euclidean metric in R2n,

g = dx2 + dξ2

The indices 0 and 00 are not useful here so we simply drop them, and use instead the shorter

notation S(k). In the sequel k will take only the values 0, 1 and 2.

In our analysis we have to work on a varying time dependent scale. Thus for t > 0 we

introduce the classes S
(k)
t defined by

a ∈ S(k)
t ≡ |∂αx∂

β
ξ a(x, ξ)| ≤ cαβt

|β|−|α|
2 |α|+ |β| ≥ k

These are obtained from S(k) by rescaling, so all the results we need are quickly transferred

from S(k) to S
(k)
t . The correspond to the metric

gt = t−1dx2 + tdξ2

The distance with respect to this metric is denoted by dt.

Finally we also use time dependent pseudodifferential operators in R × T ∗Rn, with the

corresponding symbol classes

(52) a ∈ l1S(k) ⇐⇒
∑
j

2j(1+
|α|−|β|

2
)‖∂αx∂

β
ξ a(t, x, ξ)‖L∞({t≈2j}) ≤ cαβ, |α|+ |β| ≥ k

We note that these symbol classes are invariant with respect to the parabolic scaling

a(t, x, ξ) → λ2a(λ2t, λx, λ−1t)

A special role in our analysis is played by the class l1S
(2)

. In this context we introduce

a notion of smallness. Precisely, for a small parameter ε > 0 we define l1S
(2)
ε to consist of
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those l1S
(2)

symbols for which

se2 (53)
∑
j

2j(1+
|α|−|β|

2
)‖∂αx∂

β
ξ a(t, x, ξ)‖L∞({t≈2j}) ≤ ε, |α|+ |β| = 2

We can bound the terms in the above sum by a slowly varying sequence εj as in Section
notations
2

and we construct the corresponding functions ε(t) and e(t) for t > 0. Then (
se2
53) can be

rewritten as

abbd (54) |∂αx∂
β
ξ a(t, x, ξ)| .

ε(t)

t
t
|β|−|α|

2 |α|+ |β| = 2

Given a large index N we can assume that there is a similar bound for the higher derivatives

abbd1 (55) |∂αx∂
β
ξ a(t, x, ξ)| . ε−1 ε(t)

t
t
|β|−|α|

2 3 ≤ |α|+ |β| ≤ N

perhaps for a modified choice of the sequence εj. The large index N will be neglected in

what follows, and we will argue as if N = ∞, keeping in mind that each of the results we

prove requires only finitely many seminorms.

To study the microlocal regularity of solutions to Schrödinger type equations we use phase

space transforms. Corresponding to the unit scale we have the Bargmann transform

Tu(x, ξ) = cn

∫
e−

(x−y)2

2 eiξ(x−y)u(y)dy

The value Tu(x, ξ) roughly measures how much of the function u is concentrated near position

x and frequency ξ on the unit scale. This is an isometry from L2(Rn) into L2(R2n), which

implies the inversion formula

T ∗T = I

However T is not onto; its range consists of those L2 functions which satisfy a Cauchy-

Riemann type equation,

i∂ξT = (∂x − iξ)T

The corresponding transform on the gt scale is obtained by rescaling, and is sometimes called

the FBI transform:

T 1
t
u(x, ξ) = cnt

−n
4

∫
e−

(x−y)2

2t eiξ(x−y)u(u)dy

The Cauchy-Riemann type equation has now the form

cr (56)
i

t
∂ξT 1

t
= (∂x − iξ)T 1

t

The main idea in our approach to long time dynamics for Schrödinger type evolutions is to

use a time dependent phase space transform to turn the equation into an evolution equation

in the phase space. This requires results on conjugating pseudodifferential operators with

respect to phase space transforms. Such results were first proved in
nlw
[18],

cs
[19],

MR1944027
[20]. However,
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for what is needed here we refer the reader to the expository paper
phasespace
[21]. For convenience the

results below are stated including the parameter t. However, by rescaling they all reduce to

the case when t = 1.

Given a pseudodifferential operator in the Weyl calculus aw ∈ OPS(k)
t we define its phase

space image

Ã = T 1
t
awT ∗1

t

The kernel of Ã is called the phase space kernel of aw. We begin our discussion with the

case k = 0.

Proposition 16. a) Let A : S(Rn) → S∗(Rn). Then A ∈ OPS(0)
t iff its phase space kernel

K is rapidly decreasing away from the diagonal,

rapiddecay (57) |K(x1, ξ1;x2, ξ2)| ≤ cN(1 + dt((x1, ξ1), (x2, ξ2)))
−N

b) Let a ∈ S(0)
t be a symbol supported in a set D. Then its phase space kernel K satisfies

the stronger bound

rapiddecayd (58) |K(x1, ξ1;x2, ξ2)| ≤ cN(1 + dt((x1, ξ1), (x2, ξ2)) + dt((x1, ξ1), D)−N

k=0

Part (a) is proved in
phasespace
[21]. Part (b) is an easy variation on the same theme which is left for

the reader. As a consequence of part (a) one obtains that OPS
(0)
t operators are L2 bounded,

which is the Calderon-Vaillancourt theorem.

For OPS
(1)
t the L2 boundedness is lost. However the next result asserts that modulo

OPS
(0)
t such operators can be replaced with the multiplication by their symbol in the phase

space.

Proposition 17. a) Let a ∈ S(1)
t . Then we have the conjugation result

(59) T 1
t
aw = (a+ E)T 1

t

where the kernel Ke of E satisfies (
rapiddecay
57).

b) Assume in addition that a is supported in a set D. Then its phase space kernel K

satisfies

(60) |K(x1, ξ1;x2, ξ2)| ≤ cN(|a(x1, ξ1)|+ (1 + dt((x1, ξ1), D)−N)(1 + dt((x1, ξ1), (x2, ξ2)))
−N

k=1
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If D = R2n then part (b) follows from part (a) which is proved in
phasespace
[21]. Otherwise it is

again a fairly straightforward variation on the same theme. A direct consequence of part (a)

is the sharp Garding inequality,

Corollary 18. Let a ∈ S(1)
t be a real nonnegative symbol. Then

(61) 〈awu, u〉 ≥ −C‖u‖2
L2

garding

Finally in the case k = 2 we have (see
phasespace
[21]):

Proposition 19. a) Let a ∈ S(2)
t . Then we have the conjugation result

(62) T 1
t
aw = (a+ i(aξ(∂x − iξ)− ax∂ξ) + E)T 1

t

where the kernel Ke of E satisfies (
rapiddecay
57).k=2

Last but not least we consider an evolution equation which is a good model for short time

Schrödinger dynamics,

pdoev (63) (Dt + aw(t, x,D))u = 0, u(0) = u0

where a is a real symbol in S(2), uniformly in t ∈ [0, 1]. For the next results we refer the

reader to
phasespace
[21] and also

MR2094851
[12] to some extent. We begin with the corresponding Hamilton flow,{

ẋ = aξ(t, x, ξ)

ξ̇ = −ax(t, x, ξ)
We denote the time evolution maps by χ(t, s). These are characterized by

Proposition 20. Assume that a is a real symbol in S(2), uniformly in t ∈ [0, 1]. Then χ(t, s)

are bilipschitz symplectic maps.

Now we turn our attention to the evolution (
pdoev
63).

Proposition 21. Assume that a is a real symbol in S(2), uniformly in t ∈ [0, 1]. Then (
pdoev
63)

is L2 well-posed forward and backward in time.

We denote by S(t, s) the corresponding evolution operators. These are characterized using

the Bargmann transform as follows:

Proposition 22. Assume that a is a real symbol in S(2), uniformly in t ∈ [0, 1]. Then the

phase space kernels K(t, s) of S(t, s) satisfy

|K(t, x, ξ, s, y, η)| ≤ cN(1 + |(x, ξ)− χ(t, s)(y, η)|)−N

flatphase
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In the terminology of
phasespace
[21] we say that S(t, s) is an S(0) type FIO associated to the can-

nonical transformation χ(t, s). We also have a corresponding Egorov theorem. Given a pdo

qw(0) at the initial time we define its conjugates along the flow by

qw(t) = S(t, 0)qw(0)S(0, t)

Then

Proposition 23. Assume that a is a real symbol in S(2), uniformly in t ∈ [0, 1].

a) Let q(0) ∈ S(0). Then q(t) ∈ S(0) uniformly in t.

b) Let q(0) ∈ S(1). Then q(t) ∈ S(1) uniformly in t, and

q(t, x, ξ)− q(0) ◦ χ(0, t) ∈ S(0)

conj01

We need to improve this result in a special case. This is not considered in
phasespace
[21], so we will

prove it here.

Proposition 24. Assume that a(t, x, ξ) = ξ2. Let q(0) ∈ S(2). Then q(t) ∈ S(0) uniformly

in t and

q(t, x, ξ)− q(0) ◦ χ(0, t) ∈ S(0)

conj02

Proof. We compute directly

χ(t, s)(x, ξ) = (x+ 2(t− s)ξ, ξ)

Then we want to show that

rw(t, x,D) = e−itD
2

qw(x,D)eitD
2 − qw(x+ 2tD,D) ∈ OPS(0)

uniformly in t. Compute

d

dt
e−itD

2

rw(t, x,D)eitD
2

= e−itD
2

rw1 (t, x,D)eitD
2

where

rw1 (s, x,D) = [iD2, qw(x+ 2sD,D)]− d

ds
qw(x+ 2sD,D)

Then using the Weyl calculus we get

r1(s, x, ξ) = i∆xq(x+ 2sξ, ξ) ∈ S(0)

By Proposition
conj01
23 conjugation by e±itD

2
leaves the S(0) class unchanged so the conclusion

follows. �
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7. A long time phase space parametrix
modeleq

In this section we construct global in time parametrices for a class of equations governed

by pseudodifferential operators aw(t, x,D) satisfying a smallness condition,

a ∈ l1S(2)
ε , ε� 1

This class does not include the operator A(0) which we are interested in. However, it does

include the operator −∆− A(0) in the phase space region

{|ξ| ≈ 1, |x| ≈ |t|, t ≥ 1}

This will allow us in the next section to make the transition to A(0) via a conjugation with

respect to the flat Schrödinger flow.

In our analysis we add a damping term to the L2 conservative equation. Its role will

ultimately be to kill all the waves which stray away from the above phase space region.

Thus we consider the forward evolution equation

abevl (64) (Dt + aw(t, x,D)− ibw(t, x,D) + cw(t, x,D))u = 0, t > 0

where a ∈ l1S
(2)
ε respectively b ∈ l1S

(1)
are real symbols with b ≥ 0 while c ∈ l1S

(0)
is a

complex symbol. We think of aw as the operator driving the evolution while bw is a damping

term and cw is a negligible error. As discussed in the previous section, we can assume that

a satisfies (
abbd
54), (

abbd1
55) with ε(t) as in Section

notations
2. Without any restriction on generality we can

also assume that b and c satisfy (
abbd
54) for |α|+ |β| ≥ 1, respectively |α|+ |β| ≥ 0.

It is fairly easy to study this evolution in L2:

Proposition 25. Assume that a ∈ εl1S(2)
and b ∈ εl1S(1)

are real symbols with b ≥ 0, while

c ∈ εl1S. Then the equation (
abevl
64) is forward well-posed in L2(Rn), and the corresponding

evolution operators satisfy

‖S(t, s)‖L2→L2 . 1, 0 < s < t

Proof. To establish energy estimates for solutions u to (
abevl
64) it suffices to compute

d

dt
‖u(t)‖2

L2 = −〈bw(t, x,D)u(t), u(t)〉 − =〈cw(t, x,D)u(t), u(t)〉

Garding’s inequality in Corollary
garding
18 applied to b yields

〈bw(t, x,D)u(t), u(t)〉 ≥ −Cε−1 ε(t)

t
‖u‖2

L2

while for cw we have L2 bounds

‖cw(t, x,D)u‖L2 ≤ Cε−1 ε(t)

t
‖u‖L2
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Hence by Gronwall’s inequality we get

‖u(t)‖2
L2 ≤ e2C(e(t)−e(s))‖u(s)‖2

L2 , t > s

�

We are interested in obtaining much more precise bounds on the phase space localization

of the solutions. The phase space image of the evolution S(t, s) is the family of evolution

operators

S̃(t, s) = T 1
t
S(t, s)T ∗1

s

Our goal is to obtain precise bounds on the phase space kernels of S̃(t, s). These are described

in terms of two geometric quantities:

(i) The Hamilton flow of Dt + aw. This is described by the ode’s{
ẋ = aξ(t, x, ξ)

ξ̇ = −ax(t, x, ξ)
We denote the trajectories of the Hamilton flow by

t→ (xt, ξt)

and the flow map by χ(t, s). The regularity of the flow is computed using the linearized

equations:

Proposition 26. If a ∈ l1S(2)
ε and t > s then the Hamilton flow has the Lipschitz regularity

(65)
∂(xt, ξt)

∂(xs, ξs)
=

(
In + εO( t

s
) εO(1

s
)

εO(t) In + εO(1)

)
respectively

(66)
∂(xs, ξs)

∂(xt, ξt)
=

(
1 + εO(1) εO(1

s
)

εO(t) In + εO( t
s
)

)
flowreg

We note that if ε is small and s < t then for fixed xt the map ξs → ξt is a diffeomorphism.

Then it is more convenient to parametrize the graph of χ(t, s) using the variables (xt, ξs).

This choice of independent variables yields the better relation

xsxt (67)
∂(xt, ξs)

∂(xs, ξt)
=

(
In + εO(1) εO(1

s
)

εO(t) In + εO(1)

)
(ii) The exponential decay along the flow determined by the damping.

Along each trajectory (xt, ξt) we define the weight function

ψ(t, xt, ξt) =

∫ t

1

b(s, xs, ξs)ds
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Heuristically we expect e−ψ(t,xt,ξt) to describe the behavior of the energy along the flow. The

lower limit of integration is set arbitrarily to 1. In our analysis we only care about the

differences

ψ(xt, ξt)− ψ(xs, ξs)

Their Lipschitz dependence on the (xs, ξt) variables is described in the following

Proposition 27. If a ∈ l1S(2)
ε with ε small, b ∈ l1S(1)

and t > s then

psir (68)
∂(ψ(xt, ξt)− ψ(xs, ξs))

∂(xs, ξt)
= (O(s−

1
2 ), O(t

1
2 ))

psireg

The proof uses again the linearization of the Hamilton flow. The argument is routine and

is left for the reader.

The main result of this section is a sharp pointwise bound on the kernel of the phase space

operator S̃(t, s).

Theorem 28. Let a ∈ l1S(2)
ε , b ∈ l1S(1)

be real symbols with b ≥ 0 and c ∈ l1S(0)
. Then for

s < t the kernel K of the operator S̃(t, s) satisfies the bound

kbd (69) |K(t, x, ξt, s, xs, ξ)| . t−
n
4 s

n
4

(
1 + (ψ(xs, ξs)− ψ(xt, ξt))

2 +
(x− xt)

2

t
+ s(ξ − ξs)

2

)−N
lt1

Proof. If u is the forward solution to (
abevl
64) with initial data

u(s, y) = cns
− 1

4 e−
(y−xs)2

2s eiξ(y−xs)

then the kernel K is given by

K(t, x, ξt, s, xs, ξ) = (T 1
t
u(t))(x, ξt)

At time t = s a direct computation gives an initial data for K,

K(s, x, ξs, s, xs, ξ) = cne
− (x−xs)2

4s e−
(ξ−ξs)2

4s ei
1
2
(x−xs)(ξ+ξs)

From (
abevl
64) we have

0 = T 1
t
(∂t + iaw(t, x,D) + bw(t, x, ξ) + icw(t, x,D))u

To obtain an equation for K we need to conjugate the above pseudodifferential operators

with respect to the phase space transform T 1
t
.

For the time derivative a direct computation yields

∂tT 1
t

= (− n

4t
− 1

2t2
∂2
ξ )T 1

t
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Using the Cauchy-Riemann type equation (
cr
56) this can be rewritten in the form

∂tT 1
t

=

(
n

4t
+

1

2
(∂x − iξ)2

)
T 1

t

For the pseudodifferential operators aw,bw and cw we use the conjugation results in Propo-

sitions
k=0
16,

k=1
17,

k=2
19. Adding the pieces together we can write an equation for the phase space

function K(t) = T 1
t
u(t):(

∂t + ia+ b(t, x, ξ)− ax∂ξ + aξ(∂x − iξ)− n

4t
− 1

2
(∂x − iξ)2 + E

)
K(t, x, ξ) = 0

where E stands for an error term with good kernel bounds,

|E(t, x1, ξ1, x2, ξ2)| .
ε(t)

tε
(1 + t−1(x− x1)

2)−N(1 + t(ξ − ξ1)
2)−N

We prove the bound for K using the maximum principle for the function |K|. Compute

∂t|K| = |K|−1<(KtK̄)

≤ (ax∂ξ − aξ∂x − b+
n

4t
)|K|+ |K|−1 1

2
<(∂x − iξ)2KK̄ + E|K|

With Z = Ke−ixξ we write the second order term as

<(∂x − iξ)2KK̄ = <∂2
xZZ̄

=
1

2
∂2
x|Z|2 − |∇Z|2

= |Z|∂2
x|Z|+ |∇|Z||2 − |∇Z|2

. |K|∂2
x|K|

This leads to

ksub (70) L|K| ≤ E|K|, L = ∂t + b− n

4t
+ aξ∂x − ax∂ξ −

1

2
∂2
x

Since L is a degenerate parabolic operator, it satisfies the maximum principle. Hence in

order to obtain bounds for |K| it suffices to construct an appropriate positive supersolution.

To better motivate the construction we do this in several steps.

We begin with the case when a = 0, b = 0 when we can use the fundamental solution to

the heat equation,

W0(t, x) = t−
n
2 φ0

(
x2

2t

)
, φ0(s) = e−s

In order to allow for a and b we need to replace this exact solution with a more robust

supersolution. Precisely, for a large constant C we define

W1(t, x) = eCe(t)(t+ ε−1tε(t))−
n
2 φ0

(
x2

2(t+ ε−1tε(t))

)
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For this we compute

(∂t −
1

2
∆x)W1(t, x) = (Ce′(t) + ε−1 ε(t) + tε′(t)

t+ ε−1tε(t)

(
−n

2
+

x2

2(t+ tε(t))

)
W1(t, x)

≈ ε−1 ε(t)

t

(
C +

x2

2t

)
W1(x, t)

gauss (71)

This allows us to construct suitable supersolutions for the operator L.

Lemma 29. Given (s, xs, ξ) we define the function

Ws,xs,ξ(t, x, ξt) = s
1
4 t

1
4 (1 + s(ξ − ξs)

2)−Ne−(ψ(t,xt,ξt)−ψ(s,xs,ξs))W1(t, x− xt), t ≥ s

Then

LWs,xs,ξ > 0

noe

Proof. Since xs is fixed, it follows that xt and ξs are functions of ξt and t. The transport

equation for ψ shows that

(∂t − ax(t, xt, ξt)∂ξt)ψ(t, xt, ξt) = b(t, xt, ξt)

Hence for the exponential we obtain

(∂t + b(t, x, ξt) + aξ(t, x, ξt)∂x − ax(t, x, ξt)∂ξt)e
−ψ(t,xt,ξt) =

[b(t, x, ξt)− b(t, xt, ξt) + (ax(t, x, ξt)− ax(t, xt, ξt))∂ξtψ(t, xt, ξt)]e
−ψ(t,xt,ξt)

which by (
psir
68) for ψ, and (

abbd
54) for both a and b yields the bound

w1 (72) (∂t + b(t, x, ξt) + aξ(t, x, ξt)∂x − ax(t, x, ξt)∂ξt)e
−ψ(t,xt,ξt) = O

(
ε(t)

tε

)
|x− xt|
t

1
2

e−ψ(t,xt,ξt)

A similar computation applies for the first factor, namely

(∂t + aξ(t, x, ξt)∂x − ax(t, x, ξt)∂ξt)(1 + s(ξ − ξs)
2)−N =

(ax(x, ξt)− ax(xt, ξt))∂ξt(1 + s(ξ − ξs)
2)−N

By (
xsxt
67), ξs is a Lipschitz function of ξt. Hence for t > s we obtain

(∂t + aξ(t, x, ξt)∂x − ax(t, x, ξt)∂ξt)(1 + s(ξ − ξs)
2)−N

= O

(
ε(t)

t

)
|x− xt|
t

1
2

(1 + s(ξ − ξs)
2)−N

w2 (73)

Finally for the W1 component we need to use the Hamilton flow equations to obtain

∂txt = aξ(t, xt, ξt)− ax(t, xt, ξt)∂ξtxt
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Then we can compute

(∂t + aξ(t, x, ξt)∂x − ax(t, x, ξt)∂ξt −
1

2
∆x)W1(t, x− xt)

=[(∂t −
1

2
∆x)W1](t, x− xt)− (∂txt − aξ(t, x, ξt) + ax(t, x, ξt)∂ξtxt)[∂xW1](t, x− xt)

=[(∂t −
1

2
∆x)W1](t, x− xt)

+(aξ(t, x, ξt)− aξ(t, xt, ξt)− (ax(t, x, ξt)− ax(t, xt, ξt))∂ξtxt)[∂xW1](t, x− xt)

By (
xsxt
67) we have |∂ξtxt| . t. Using also (

abbd
54) for a we obtain

(∂t + aξ(t, x, ξt)∂x − ax(t, x, ξt)∂ξt −
1

2
∆x)W1(t, x− xt)

= [(∂t −
1

2
∆x)W1](t, x− xt) +O

(
ε(t)

t

)
(x− xt)

2

t
W1(t, x− xt)

w3 (74)

Putting together the results in (
w1
72), (

w2
73) and (

w3
74) we obtain

LWs,xs,ξ(t, x, ξt) =s
1
4 t

1
4 (1 + s(ξ − ξs)

2)−Ne−(ψ(t,xt,ξt)−ψ(s,xs,ξs))[(∂t −
1

2
∆x)W1](t, x− xt)

+O

(
ε(t)

tε

)(
|x− xt|
t

1
2

+ ε
(x− xt)

2

t

)
Ws,xs,ξ(t, x, ξt)

Then the conclusion of the lemma follows from (
gauss
71). �

To conclude the proof of the Theorem we need to also allow for the error term E. Since

the kernel of E is merely of rapid decrease at infinity, we expect E to replace the Gaussian

with a rapidly decreasing factor on the same scale. To achieve this we use the functions

Ws,xs,ξ(t, x, ξt) in a manner similar to the variation of the parameters formula.

This argument involves multiple bicharacteristic rays. Hence in order to avoid confusion

we introduce some new notations. Given a position x at time s and a frequency ξ at time

t > s we denote by

σ → (xσ(x, ξ), ξσ(x, ξ))

the bicharacteristic satisfying

xs(x, ξ) = x, ξt(x, ξ) = ξ

The variables s, t are ommitted from this notation, but they will always be clear from the

context.

For t ≥ s we define the modified function

(75) W̃s,xs,ξs(t, x, ξ) = t−
n
2Fs,t(x− xt(xs, ξ), ξs(xs, ξ)− ξs, ψ(xt(xs, ξ), ξ)− ψ(xs, ξs(xs, ξ)))
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where

Fs,t(y, η, ψ) =

(
1 +

y2

t

)−N0
(

1 + ψ2 +
y2

t

)−N1
(

1 + s

(
η2 +

y2

t2

))−N2

It is easy to see that

Ws,xs,ξs . W̃s,xs,ξs

Then the counterpart of Lemma
noe
29 is

Lemma 30. Assume that N0 >
n
2
, N1, N2 ≥ 0. Then there is a function Zs,xs,ξs satisfying

the bounds

zw0 (76) Zs,xs,ξs(s) ≈ W̃s,xs,ξs(s)

and

zw (77) Ws,xs,ξs(t) . Zs,xs,ξs(t) . W̃s,xs,ξs(t), t > s

and which is a strong supersolution for L, namely

supere (78) LZs,xs,ξs & EW̃s,xs,ξs

zl

Proof. We define the function Z in a manner inspired by the Duhamel formula,

Zs,xs,ξs(t, x, ξ) =

∫
R2n

Ws,y,η(t, x, ξ)W̃s,xs,ξs(s, y, η)dydηdσ

+ ε−1

∫ t

s

ε(σ)

σ

∫
R2n

Wσ,y,η(t, x, ξ)W̃s,xs,ξs(σ, y, η)dydηdσ

The initial data for Z is

Zs,xs,ξs(s, x, ξ) =

∫
R2n

Ws,y,η(s, x, ξ)W̃s,xs,ξs(s, y, η)dydηdσ

The kernel Ws,y,η(s, x, ξ) is rapidly decreasing on the s
1
2 × s− 1

2 scale away from the diagonal,

(i.e. it satisfies (
rapiddecay
57) with t = s). Since W is temperate on the gt scale, the bound (

zw0
76)

follows.

To verify (
supere
78) we use Lemma

noe
29 to compute

LZs,xs,ξs(t, x, ξ) & ε−1 ε(t)

t

∫
R2n

Wt,y,η(t, x, ξ)W̃s,xs,ξs(t, y, η)dydη

But Wt,y,η(t, x, ξ) is a rapidly decaying kernel on the t
1
2 × t−

1
2 scale,

|Wt,y,η(t, x, ξ)| . (1 + t−1(x− y)2 + t(ξ − η)2)−N
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while, by (
xsxt
67) and (

psir
68), W̃s,xs,ξs(t, y, η) is temperate on the same scale. Hence we obtain

LZs,xs,ξs(t, x, ξ) & ε−1 ε(t)

t
W̃s,xs,ξs(t, x, ξ) & EW̃s,xs,ξs(t, x, ξ)

Therefore to conclude the proof of the lemma it remains to prove the second part of (
zw
77),

i.e. that Z . W̃ . Since ∫
ε(t)

t
≈ ε

this reduces to the fixed time bound∫
R2n

Wσ,y,η(t, x, ξ)W̃s,xs,ξs(σ, y, η)dydη . W̃s,xs,ξs(t, x, ξ) s < σ < t

By rescaling we can take σ = 1. The powers of s and t cancel, so it remain to prove the

integral bound

iii (79) I . Fs,t(x− xt(xs, ξ), ξs(xs, ξ)− ξs, ψ(t, xt(xs, ξ), ξ)− ψ(s, xs, ξs(xs, ξ)))

where

I =

∫
R2n

e−
(x−xt(y,ξ))2

t (1 + (η − ξ1(y, ξ))
2)−Ne−ψ(t,xt(y,ξ),ξ)+ψ(1,y,ξ1(y,ξ))

Fs,1(y − x1(xs, η), ξs(xs, η)− ξs, ψ(1, x1(xs, η), η)− ψ(s, xs, ξs(xs, η)))dydη

Using the trivial bound

(1 + p2)−N1e−q . (1 + (p+ q)2)−N1

we include the second exponential in F ,

I .
∫

R2n

e−
(x−xt(y,ξ))2

t (1 + (η − ξ1(y, ξ))
2)−NFs,1(y − x1(xs, η), ξs(xs, η)− ξs, δψ(y, η))dydη

where

δψ(y, η) = −ψ(t, xt(y, ξ), ξ) + ψ(1, y, ξ1(y, ξ)− ψ(1, x1(xs, η), η) + ψ(s, xs, ξs(xs, η))

By Proposition
flowreg
26 the expressions x1(xs, η) and ξs(xs, η) are Lipschitz in η. By Proposition

psireg
27

the expression δψ(y, η) is also Lipschitz with respect to η. Hence for large enough N the

integration with respect to η is trivial, and we obtain

I ≈
∫

Rn

e−
(x−xt(y,ξ))2

t Fs,1(y − x1(xs, ξ1(y, ξ)), ξs(xs, ξ1(y, ξ))− ξs, δψ(y, ξ1(y, ξ)))dy

Denote

α = xt(xs, ξ)− xt(y, ξ)

Then repeatedly using Proposition
flowreg
26 we obtain

y − x1(xs, ξ1(y, ξ)) = (1 +O(ε))(xs(y, ξ)− xs) = (1 +O(ε))(xt(xs, ξ)− xt(y, ξ))
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namely

alpha1 (80) y − x1(xs, ξ1(y, ξ)) = (1 +O(ε))α

Similarly we obtain

ξs(xs, ξ1(y, ξ))− ξs(xs, ξ) = (1 +O(ε))(ξ1(y, ξ)− ξ1(xs, ξ)) = O(ε)(xt(y, ξ)− xt(xs, ξ))

i.e.

alpha2 (81) ξs(xs, ξ1(y, ξ))− ξs(xs, ξ) = O(ε)α

On the other hand by Proposition
psireg
27 the expression δψ(y, η) is Lipschitz in both arguments,

therefore

δψ(y, ξ1(y, ξ)) = δψ(x1(xs, ξ), ξ1(xs, ξ)) +O(|y − x1(xs, ξ)|+ |ξ1(y, ξ)− ξ1(xs, ξ)|)

= δψ(x1(xs, ξ), ξ1(xs, ξ)) +O(|α|)

The middle terms cancel in the expression for δψ(x1(xs, ξ), ξ1(xs, ξ)) and we obtain

alpha3 (82) δψ(y, ξ1(y, ξ)) = −ψ(x(xs, ξ), ξ) + ψ(xs, ξs(xs, ξ)) +O(|α|)

Using (
alpha1
80),(

alpha2
81) and (

alpha3
82) in the expression for Fs,1 yields

Fs,1(y − x1(xs, ξ1(y, ξ)), ξs(xs, ξ1(y, ξ))− ξs, δψ(y, ξ1(y, ξ))) ≈

Fs,1(α, ξs − ξs(xs, ξ), ψ(x(xs, ξ), ξ)− ψ(xs, ξs(xs, ξ)))

By Proposition
flowreg
26 there is a bilipschitz correspondence between y and α. Hence we can

change the variable of integration to α to obtain

I .
∫

Rn

e−
(x−xt(xs,ξ)−α)2

t Fs,1(α, ξs − ξs(xs, ξ), ψ(x(xs, ξ), ξ)− ψ(xs, ξs(xs, ξ)))dα

Then (
iii
79) reduces to

fstbd (83)

∫
Rn

e−
(x−α)2

t Fs,1(α, ξ, ψ)dα . Ψs,t(x, ξ, ψ), s ≤ 1 ≤ t.

Expanding this is written as∫
Rn

e−
(x−α)2

t (1 + α2)−N0(1 + α2 + ψ2)−N1(1 + s(ξ2 + α2))−N2dα .

(1 + t−1x2)−N0(1 + x2 + ψ2)−N1(1 + s(ξ2 + t−2x2))−N2

After a dyadic decomposition with respect to the size of |x− α| this is equivalent to∫
|x−α|<

√
t

(1 + α2)−N0(1 + α2 + ψ2)−N1(1 + s(ξ2 + α2))−N2dα .

(1 + t−1x2)−N0(1 + x2 + ψ2)−N1(1 + s(ξ2 + t−2x2))−N2
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We consider two cases. If |x| > 2
√
t then the integrand has constant size on the domain of

integration, so the integral has size

t
n
2 (1 + x2)−N0(1 + x2 + ψ2)−N1(1 + s(ξ2 + x2))−N2 ≤

t
n
2
−N1(1 + t−1x2)−N0(1 + t−1x2 + ψ2)−N1(1 + s(ξ2 + t−2x2))−N2

If on the other hand |x| ≤ 2
√
t then it suffices to bound the integral by∫

|α|<3
√
t

(1 + α2)−N0(1 + α2 + ψ2)−N1(1 + s(ξ2 + α2))−N2dα . (1 + ψ2)−N1(1 + sξ2)−N2

This concludes the proof of (
fstbd
83) and therefore the proof of the lemma. �

For the proof of Theorem
lt1
28 we need a slightly better control of the constants than in the

previous lemma:

Lemma 31. Let Zs,xs,ξs be as in Lemma
zl
30. Then for any M ≥ 2 we have

L(eMe(t)Zs,xs,ξs) & cN(lnM)NE(eMe(t)Zs,xs,ξs)

eme

Proof. We have

L(eMe(t)Zs,xs,ξs) = eMe(t)(Me′(t)Zs,xs,ξs + LZs,xs,ξs)

Using Lemma
zl
30 for the second term, it remains to prove that

Me′(t)Zs,xs,ξs + EW̃s,xs,ξs & (lnM)NEZs,xs,ξs

But W̃s,xs,ξs is gt temperate, therefore

EW̃s,xs,ξs ≈
ε(t)

tε
W̃s,xs,ξs

Elliminating the common factor ε(t)/tε the bound above reduces to

ezz (84) EtZs,xs,ξs . MZs,xs,ξs + (lnM)−NW̃s,xs,ξs

where Et is the convolution with the rapidly decreasing kernel (1 + t−1x2 + tξ2)−4N , with N

sufficiently large.

By rescaling we can take t = 1. To compare the averages of Z with its pointwise values

we need some control on its derivatives. We claim that for all R sufficiently large we have

dzbd (85) |∇Zs,xs,ξs(1, x, ξ)| ≤ RZs,xs,ξs(1, x, ξ) + Ce−
R2

3 W̃s,xs,ξs(1, x, ξ)

We first use this to prove (
ezz
84). Gronwall’s inequality together with the fact that W̃s,xs,ξs is

temperate yield

Zs,xs,ξs(1, x1, ξ1) . eRdZs,xs,ξs(1, x, ξ) + eRd−
R2

4 W̃s,xs,ξs(1, x, ξ) d = d(x, ξ, x1, ξ1)
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This is useful in a ball of radius R
8
. Outside we have the trivial bound Zs,xs,ξs . W̃s,xs,ξs ;

since W̃ is temperate, for large enough N we gain powers of R. Hence we obtain

E1Zs,xs,ξs(1, x, ξ) . e
R2

8 Zs,xs,ξs(1, x, ξ) +R−2NW̃s,xs,ξs(1, x, ξ)

which gives (
ezz
84) for M = e

R2

8 .

It remains to prove (
dzbd
85). For this we differentiate Ws,xs,ξ,

|∇x,ξtWs,xs,ξ(1, x, ξt)| ≤ (C + |x− xt|)Ws,xs,ξ(1, x, ξt)

For |x − xt| < R we bound this in terms of Ws,xs,ξ(1, x, ξt), otherwise we contend ourselves

with some rapid decay:

|∇x,ξtWs,xs,ξ(1, x, ξt)| ≤ (R+C)Ws,xs,ξ(1, x, ξt)+Ce
−R2

2 R2N(1+(x−xt)2)−N(1+s(ξ−ξs)2)−N

We use this in the expression for ∇Z and integrate. Observe that in (
fstbd
83) the exponential can

be harmlessly replaced by a sufficiently large polynomial decay, therefore the contribution

of the second term is still bounded by W̃ . This yields

|∇x,ξtWs,xs,ξ(1, x, ξt)| . (R + C)Ws,xs,ξ(1, x, ξt) + Ce−
R2

2 R2NW̃s,xs,ξ(1, x, ξt)

Redenoting R := R + C the bound (
dzbd
85) follows.

�

Now we can conclude the proof of Theorem
lt1
28 using the maximum principle for L−E. By

(
ksub
70) the function |K| is a subsolution for L−E, while by Lemma

eme
31 the function eMe(t)Zs,xs,ξs

is a supersolution for large enough M . Hence we obtain

|K(t, x, ξt)| . eMe(t)Zs,xs,ξs . W̃s,xs,ξ(t, x, ξt)

�

8. A perturbation of the Schrodinger equation
oureq

Here we consider the evolution equation

(Dt −∆ + aw0 (t, x,D)− ibw0 (t, x,D))u = 0

where a0 ∈ l1S
(2)
ε , b0 ∈ l1S

(1)
are real symbols with b ≥ 0. This will serve as the model for

our outgoing parametrix. We denote by S0(t, s) the L2 evolution generated by the above

equation, and by S̃0(t, s) its phase space image

S̃0(t, s) = T 1
t
S0(t, s)T

∗
1
s

We want to obtain bounds on the kernel of S̃0(t, S) which are similar to the ones in Theo-

rem
lt1
28. As a preliminary step we need to study the regularity of the associated Hamilton
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flow which we denote by χ0(t, s). This can be done directly, but for our purposes it is more

convenient to reduce it to the case considered in the previous section.

At each time t we consider the simplectic map µ defined by

µt(x, ξ) = (x+ 2tξ, ξ)

This extends to a space-time simplectic map

µ(t, τ, x, ξ) = (t, τ − ξ2, x+ 2tξ, ξ)

If p0 is the symbol

p0(t, τ, x, ξ) = τ + ξ2 + a0(t, x, ξ)

then its image through µ is

p(µ(t, τ, x, ξ)) = τ + a(µ(t, τ, x, ξ)), a(t, x, ξ) = a0(t, x+ 2tξ, ξ)

Hence the conjugate of the Hamilton flow χ0(t, s) for τ + ξ2 + a0 with respect to µt is the

Hamilton flow χ(t, s) for τ + a(t, x, ξ),

χ0(t, s) = µt ◦ χ(t, s) ◦ µ−1
s

We note that a ∈ εl1S
(2)

iff a0 ∈ εl1S
(2)

. Hence from (
xsxt
67) we obtain its counterpart for

the χ0 flow,

Proposition 32. If a0 ∈ l1S
(2)
ε with ε sufficiently small and t > s then the Hamilton flow

χ0(t, s) has the Lipschitz regularity

xsxt1 (86)
∂(xt, ξs)

∂(xs, ξt)
=

(
In + εO(1) εO(1

s
)

2tIn + εO(t) In + εO(1)

)
flowreg1

We proceed in a similar manner with b0 and set

b(t, x, ξ) = b0(t, x+ 2tξ, ξ)

Then the integral ψ0 of b0 along the χ0 flow is the µ conjugate of the integral ψ of b along

the χ flow. Hence we also trivially obtain the analog of Proposition
psireg
27, namely

Proposition 33. If a0 ∈ l1S
(2)
ε with ε sufficiently small and b0 ∈ l1S

(1)
then for t > s we

have

psir1 (87)
∂(ψ0(xt, ξt)− ψ0(xs, ξs))

∂(xs, ξt)
= (O(s−

1
2 ), O(t

1
2 ))

psireg1

Now we can state our main result:
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Theorem 34. Let a0 ∈ l1S
(2)
ε , b0 ∈ l1S

(2)
be real symbols with b0 ≥ 0 with ε sufficiently

small. Then for s < t the kernel K0 of the operator S̃0(t, s) satisfies the bound

kbd1 (88)

|K0(t, x, ξt, s, xs, ξ)| . t−
n
4 s

n
4

(
1 + (ψ0(xs, ξs)− ψ0(xt, ξt))

2 +
(x− xt)

2

t
+ s(ξ − ξs)

2

)−N
tphase1

Proof. We use Theorem
lt1
28 via a conjugation with respect to the flat Schrödinger flow, whih

corresponds to the cannonical transformations µt. Denote

S(t, s) = e−itD
2

S0(t, s)e
isD2

Then we compute

d

dt
S(t, s) = e−itD

2

(aw0 (t, x,D)− ibw0 (t, x,D))eitD
2

S(t, s)

Hence S(t, s) is the evolution associated to the pseudodifferential operator

e−itD
2

(aw0 (t, x,D)− ibw0 (t, x,D))eitD
2

Using rescaled versions of Proposition (
conj01
23),(

conj02
24) his operator can be expressed in the form

aw(t, x,D)− ibw(t, x,D) + cw(t, x,D)

where the remainder term satisfies c ∈ l1S(0)
. Hence the phace space kernel of S(t, s) satisfies

the bounds given by Theorem
lt1
28.

Returning to the original equation, for the phase space evolution S̃0(t, s) we can write

S̃0(t, s) = T 1
t
eitD

2

S(t, s)e−isD
2

T ∗1
s

= T 1
t
eitD

2

T ∗1
t
T 1

t
S(t, s)T ∗1

s
T 1

s
e−isD

2

T ∗1
s

= (T 1
t
eitD

2

T ∗1
t
)S̃(t, s)(T 1

s
e−isD

2

T ∗1
s
)

By a rescaled version of Proposition
flatphase
22 the kernel of the first factor T 1

t
eitD

2
T ∗1

t

is rapidly

decreasing on the t
1
2 × t− 1

2 scale away from the graph of µt, while the kernel of the last factor

T 1
s
e−isD

2
T ∗1

s

is rapidly decreasing on the s
1
2 × s−

1
2 scale away from the graph of µ−1

s . Hence

the composition simply replaces the Hamilton flow associated to a by the Hamilton flow

associated to a0 and the function ψ with ψ0 in the kernel bounds. Thus (
kbd
69) implies (

kbd1
88),

and the proof is concluded. �
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9. The parametrix construction

In this section we prove Proposition
K0
10. We begin with a dyadic partition of the initial

data with respect to the distance from the origin. At frequency 1 we consider a smooth

partition of unit in the phase space

s−1(ξ) + s0(ξ) + s1(ξ) =
∑
±

∑
j≥0

p±j (x, ξ)

where p±j have the support properties:

supp p±j ⊂ {2j−1 < |x| < 2j+1, ±xξ ≥ −2−5|x|}

The signs ± correspond to waves which are outgoing forward, respectively backward in time.

In order for the corresponding pseudodifferential operators to preserve the frequency 1

localization we mollify these symbols in x, replacing

p±j (x, ξ) → S<−10(Dx)p
±
j (x, ξ)

This adds rapidly decreasing tails on the unit scale away from the initial localization region;

however these tails play no role in the sequel so we simply disregard and keep the same

notation for the symbols.

We construct the parametrix K0 as a sum of the form

K0(t, s) =



∞∑
j=1

S−j (t, s)(p−j )w(x,D) t < s

∞∑
j=1

S+
j (t, s)(p+

j )w(x,D) t > s

The following Proposition summarizes the properties of the Kj’s:

Proposition 35. Assume that ε is sufficiently small. Then for each s ∈ R there is an

outgoing parametrix S+
j for Dt + A(0) in {t > s} which is localized at frequency 1 and has

the following properties:

(i) L2 bound:

(89) ‖S+
j (t, s)‖L2→L2 . 1

(ii) Error estimate:

l2errorj (90) ‖xα(Dt + Ã(0))S
+
j (t, s)P+

j ‖L2→L2 . (2j + |t− s|)−N

(iii) Initial data:

S+
j (s+ 0, s) = I
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(iv) Outgoing parametrix:

outl2j (91) ‖1{|x|<2−10(|t−s|+2j)}S
+
j (t, s)P+

j ‖L2→L2 . (|t− s|+ 2j)−N

(v) Finite speed:

finitel2j (92) ‖xα1{|x|>210(|t−s|+2j)}S
+
j (t, s)P+

j ‖L2→L2 . (|t− s|+ 2j)−N

(vi) Pointwise decay:

(93) ‖S+
j (t, s)P+

j ‖L1→L∞ . (1 + |t− s|)−
n
2

Kj

With obvious modifications the same holds for P−
j . It is easy to verify that by summation

this implies Proposition
K0
10. We proceed to prove the above proposition.

We note that the hypothesis is translation invariant in time. In order to place ourselves in

the context considered in Sections
modeleq
7,
oureq
8 we assume without any restriction in generality that

s = 2j. By slightly increasing the εk’s we can also assume that

eej (94) εj ≈ ε

The condition (
coeff
8) insures that

a(0)(x, ξ)− ξ2 ∈ l1S(2)
ε , |x| ≈ t, |ξ| ≈ 1

We would like to have this satisfied for all x, ξ. This can be easily achieved due to properties

(iv),(v) above. These allow us to truncate the coefficients aij(0) − δij at the expense of a

negligible error in (
l2errorj
90). Since we also seek a frequency localized parametrix, we can also freely

modify the symbol a(0)(x, ξ) at higher frequencies. Thus we have reduced Proposition
Kj
35 to

the case of an evolution governed by a symbol of the form

ξ2 + a0(t, x, ξ), a0 ∈ l1S
(2)
ε

In effect it is easy to see that the symbol a0 can be chosen to have even better regularity,

extraa (95)

|∂αx∂
β
ξ a0(t, x, ξ)| . ε(t)t−|α| |α| ≤ 2

|∂αx∂
β
ξ a0(t, x, ξ)| . ε(t)t−1− |α|

2 |α| ≥ 2

We note that we can weaken the requirement that the parametrix P+
j is frequency localized

to bounds of the form

lowfreq (96) ‖xαP<−5(D)S+
j (t, s)P+

j ‖L2→L2 . (|t− s|+ 2j)−N

highfreq (97) ‖xα∂βP>5(D)S+
j (t, s)P+

j ‖L2→L2 . (|t− s|+ 2j)−N
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Indeed, if P+
j satisfies these estimates then we can replace it by its frequency truncation

P−7<·<7P
+
j

at the expense of negligible errors in (
l2errorj
90).

At this point we are already allowed to apply the result in Theorem
tphase1
34. However, such a

direct application would fail to give the rapid decay in time in (
outl2j
91), (

finitel2j
92), (

lowfreq
96), (

highfreq
97). To gain

this decay we introduce an artificial damping term into the equation. Precisely, we define

S+
j (t, s) to be the forward evolution operator associated to the equation

(98) (i∂t + ∆− aw0 (t, x,D))u = −ibw0 (t, x,D)u, u(2j) = u0

where b0 is a nonnegative symbol in l1S
(1)

. The effect of the damping is to give the decay

we want, but there is a price to pay, namely that we have to be able to estimate bw0 (t, x,D)u

as an error term,

bbound (99) ‖xαbw0 (t, x,D)S+
j (t, s)P+

j ‖L2→L2 . (|t− s|+ 2j)−N

With this choice of S+
j (t, s) the properties (i), (iii) are trivial. Next we show how to prove

the pointwise decay (vi). We consider three cases:

Case 1: |t− s| ≥ s. For this we use the bounds in Theorem
tphase1
34 and neglect the damping.

Take u(s) = δ0. Then

Tu(s, xs, ξs) = s−
n
4 e−

x2
s

2s eixsξs

By Theorem
tphase1
34 we obtain

|Tu(t, xt, ξt)| . t−
n
4

∫
(1 + t−1(xt − xt(ξt, xs))

2)−N(1 + s(ξs − ξs(xs, ξt))
2)−Ne−

x2
s

2s dxsdξs

Integrating with respect to ξs we obtain

|Tu(t, xt, ξt)| . t−
n
4 s−

n
2

∫
(1 + t−1(xt − xt(ξt, xs))

2)−Ne−
x2

s
2s dxsdξs

Since xt(ξt, xs) is a Lipschitz function of xs the integration with respect to xs is also straight-

forward, and we obtain

|Tu(t, xt, ξt)| . t−
n
4 (1 + t−1(xt − xt(ξt, 0))2)−N

Inverting the phase space transform we have

|u(t, y)| . t−
n
2

∫
(1 + t−1(xt − xt(ξt, 0))2)−Ne−

(x−xt)
2

2t dxtdξt

We integrate with respect to xt,

|u(t, y)| .
∫

(1 + t−1(y − xt(ξt, 0))2)−Ndξt
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If |t−s| & s then the map ξt → xt(ξt, 0) has inverse Lipschitz constant t−1. Hence integration

with respect to ξt yields

|u(t, y)| . t−
n
2

Case 2: 1 ≤ |t − s| ≤ s. The difficulty we encounter here is that the s
1
2 × s−

1
2 phase

space scale in our parametrix representation is too rough to allow s
1
2 × s−

1
2 packets starting

together at time s to separate before time t. Hence instead of pointwise phase space bounds

for the solution we would also have to exploit cancellations coming from stationary phase. To

avoid this difficulty we reinitialize the time scale. For this we impose an additional condition

on the regularity of b0 for |t− s| < 2j, namely

extrab (100)

|∂αx∂
β
ξ b0(t, x, ξ)| . t−

1
2
−|α| |α| ≤ 1

|∂αx∂
β
ξ b0(t, x, ξ)| . t−1− |α|

2 |α| ≥ 1

Together with (
extraa
95) this implies that a0 and b0 have enough additional regularity so that the

hypothesis of Theorem
tphase1
34 remains valid after the time translation which resets the value of

the initial time s to t− s. Then the above computation still applies in the new coordinates.

Case 3: 0 ≤ |t − s| ≤ 1. This is the easiest, because our initial data is localized at

frequency 1. Then we can use Sobolev embeddings combined with L2 bounds,

‖u(t)‖L∞ .
∑
|β|<N

‖∂βu(t)‖L2 . ‖P+
j u(0)‖L2 . ‖u(0)‖L1

For the rest of the proof we need to know more about the properties of b. We allow b0 to

vary between 0 and t−
3
4 , and require that it satisfy the following properties:

(b1) t
3
4 b0 is nonincreasing along the Hamilton flow for Dt +D2

x + aw, and

0 < t
3
4 b0(xt, ξt) < 1 =⇒ b0(x2t, ξ2t) = 0.

(b2) At the initial time we have

b(2j, x, ξ) = 0 in {2−3 < |ξ| < 23, 2j−2 < |x| < 2j+2, xξ > −2−4|x|}

(b3) At any time t ≥ 2j we have

b(t, x, ξ) = t−
3
4 outside {2−4 < |ξ| < 24} ∩ {2−6t < |x| < 26t}

The power 3
4

is somewhat arbitrary, anything between 1
2

and 1 works.

We verify that a symbol b ∈ l1S
(1)

which has the above properties leads to the correct

conclusion.

Lemma 36. Assume that the symbol b ∈ l1S(1)
satisfies the properties (b1),(b2),(b3) above.

Then the bounds (
outl2j
91), (

finitel2j
92), (

lowfreq
96), (

highfreq
97) and (

bbound
99) hold.
46



Proof. This proof is based on pointwise bounds for the phase space transform of the solution

u to the equation

(i∂t + ∆− aw(t, x,D))u = −ibw(t, x,D)u, u(2j) = P+
j u0

At the initial time s = 2j we know that the symbol of P+
j is supported in the region

Ds = {2−2 < |ξ| < 22, 2j−1 < |x| < 2j+1, xξ > −2−5|x|}

Then the phase space transform of P+
j u0 decays rapidly outside this region,

|(T 1
s
P+
j u0)(x, ξ)| . (1 + ds((x, ξ), Ds)

2)−N

The phase space transform of u(t) is expressed in terms of the phase space kernel K+
j (t, s)

of S+
j (t, s), namely

(T 1
t
u)(t, x, ξ) =

∫
K+
j (t, x, ξt, s, xs, ξ)T 1

s
u(s, xs, ξ)dxsdξ

For the phase space kernel we use the bounds in Theorem
tphase1
34. Hence we obtain

|(T 1
t
u)(t, x, ξt)| . s

n
4 t−

n
4

∫ (
1 +

(x− xt)
2

t

)−N (
1 + s(ξ − ξs)

2 + (ψ(xt, ξt)− ψ(xs, ξs)
2
)−N

(1 + ds((xs, ξ), Ds)
2)−Ndxsdξ

The integration with respect to ξ is trivial. Also, by (
xsxt
67), the variables xs and xt are in a

bilipschitz correspondence. Hence we obtain

|(T 1
t
u)(t, x, ξt)| . s−

n
4 t+

n
4

∫
t−

n
2

(
1 +

(x− xt)
2

t

)−N
W (xt, ξt)dxt

where

W (xt, ξt) =
(
1 + (ψ(xt, ξt)− ψ(xs, ξs))

2
)−N (

1 + ds((xs, ξs), Ds)
2
)−N

If we simply bound W by 1 then this gives the global estimate

decay1 (101) |(T 1
t
u)(t, xt, ξt)| .

(
t

s

)n
4

On the other hand, we claim it also implies a rapid decay in the support of b, more precisely

decay2 (102) |(T 1
t
u)(t, xt, ξt)| .

(
t

s

)n
4

(t
1
2 + t−2|xt|2 + |ξt|2)−N(1 + dt((xt, ξt), supp b(t))2)N

It suffices to prove that W satisfies a similar bound,

decay3 (103) |W (t, xt, ξt)| .
(
t

s

)n
4

(t
1
2 + t−2|xt|2 + |ξt|2)−N(1 + dt((xt, ξt), supp b(t))2)N
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We begin with the simpler case when (xt, ξt) lies inside the support of b, i.e. b(t, xt, ξt) > 0.

Then b(s, xs, ξs) > 0, which by (b2) implies that

ds((xs, ξs), Ds) & s
1
2

On the other hand we have

|ξs| ≈ |ξt|, |xs − xt| . t|ξt|

which give

1 + ds((xs, ξs), Ds) & |ξt|+ t−1|xt|

Summing up the two bounds we get

dsxxi (104) ds((xs, ξs), Ds) & s
1
2 + |ξt|+ t−1|xt|

This suffices for (
decay3
103) provided that t < 4s. For larger t we use also (b1) to conclude that

b(σ, xσ, ξσ) = σ−
3
4 s ≤ σ ≤ t/2.

Then

ψ(xt, ξt)− ψ(xs, ξs) & t
1
4

which together with (
dsxxi
104) leads again to (

decay3
103).

Next we consider the case when (xt, ξt) 6∈ supp b(t). Then |xt| ≈ t and |ξt| ≈ 1. Due to

(
decay1
101) we can assume without any restriction in generality that

close (105) dt((xt, ξt), supp b(t)) � t−
1
4

We consider two cases as before. If t < 4s this implies that

ds((xs, ξs), supp b(s)) � s−
1
4

therefore

ds((xs, ξs), Ds) & s
1
2

and (
decay3
103) follows.

If t > 4s then we need a more detailed analysis of the Lipschitz regularity of the decay

factor ψ(xt, ξt)−ψ(xs, ξs). By (b1), the symbol t
1
2 b1 is either constant along a bicharacteristic,

or it changes from 1 to 0 with the transition occuring within a single dyadic time interval.

Suppose this interval is around time σ > 2s. Then on one hand we have

ψ(xt, ξt)− ψ(xs, ξs) ≈ σ
1
4

while, on the other hand, (
psir1
87) leads to the better bounds

∂(ψ(xt, ξt)− ψ(xs, ξs))

∂(xt, ξt)
= (O(σ−

1
2 , O(t

1
2 ))
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which we rewrite in the form

|∇(ψ(xt, ξt)− ψ(xs, ξs))|gt . t
1
2σ−

1
2

We summarize this result as

ode (106) ψ(xt, ξt)−ψ(xs, ξs) & s
1
4 =⇒ |∇(ψ(xt, ξt)−ψ(xs, ξs))|gt . t

1
2 (ψ(xt, ξt)−ψ(xs, ξs))

−2

Suppose (
close
105) holds. Then we can find a second bicharacteristic σ → (x̃σ, ξ̃σ) with

b(t, x̃t, ξ̃t) > 0, dt((xt, ξt), (x̃t, ξ̃t)) � t−
1
4

The first relation implies that

ψ(x̃t, ξ̃t)− ψ(x̃s, ξ̃s) ≈ t
1
4

The the second relation combined with (
ode
106) gives

ψ(xt, ξt)− ψ(xs, ξs) ≈ t
1
4

and concludes the proof of (
decay3
103).

Together, the bounds (
decay1
101) and (

decay2
102) imply (

outl2j
91), (

finitel2j
92), (

lowfreq
96) and (

highfreq
97) since the support of

b contains the localization regions in each of these bounds.

To prove (
bbound
99) we use the properties of the phase space kernel of bw, given by Proposition

k=1
17.

This gives

|T 1
t
bw(t, x,D)u(t, x, ξ)| .(b(t, x, ξ) + (1 + dt((x, ξ), supp b(t))2)−2N

∫
(1 + dt((x, ξ), (y, η))

2)−2N

(t+ t−2|y|2 + |η|2)−N(1 + dt((y, η), supp b(t))2)Ndydη

.(t+ t−2|x|2 + |ξ|2)−N(1 + dt((x, ξ), supp b(t))2)−N

Then (
bbound
99) follows.

�

It remains to construct a symbol b with the desired properties.

Lemma 37. There exists a symbol b ∈ l1S
(1)

which satisfies the properties (b1), (b2) and

(b3) and has the additional regularity (
extrab
100).

Proof. Let φ be a smooth cutoff function which equals 0 in (−∞, 0) and 1 in (1,∞). We

define the symbol b as

b(t, x, ξ) = t−
3
4 (1− φ(b1)φ(b2)φ(b3)φ(b4)φ(b5))

Here φ(b1) selects the frequencies which are not too large,

b1(t, ξ) =
24 + Ce(t)− |ξ|

ε(t)
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where C is a fixed large constant. The symbol φ(b2) selects the frequencies which are not

too small,

b2(t, ξ) =
|ξ| − 2−4 + Ce(t)

ε(t)

φ(b3) selects the outgoing waves,

b3(t, x, ξ) =
2−3|x||ξ|+ xξ

2−12|x|
.

Finally φ(b4) selects a spatial region not too far from the origin

b4(t, x) =
26t− |x|

t

while φ(b5) selects a spatial region not too close too the origin

b5(t, x, ξ) =
|x||ξ| − 2−5t|ξ|+ xξ

2−10t
.

We note that

{2−3 < |ξ| < 23} ∩ {2−5t < |x| < 25t} ∩ {xξ > −2−4|x|} = Dt ⊂ {b = 0}

while

{b < 1} ⊂ Et = {2−4 < |ξ| < 24} ∩ {2−6t < |x| < 26t} ∩ {xξ > −2−3|x|}

so the conditions (b2) and (b3) are easily satisfied.

To prove (b1) it suffices to study the behavior of b along the Hamilton flow within Et and

show that for each bj we have

bj (107)
d

dt
bj(t, ξt) ≈

2

t
in Et ∩ {0 ≤ bj ≤ 1}

For (xt, ξt) ∈ Et we have

d

dt
ξt = O

(
ε(t)

t

)
,

d

dt
xt = 2ξt +O(ε(t))

Then an easy computation shows that

d

dt
b1(t, ξt) ≈

1

εt
in {0 ≤ b1 ≤ 1}

with the main contribution coming from the derivative of e(t). The computation for b2 is

identical. For b3 we have

d

dt
b3(t, xt, ξt) =

2−2(ξ2
t x

2
t − (xtξt)

2)

2−12|x|3
+
O(ε(t))

t
≥ 2

t
in Et ∩ {0 ≤ b3 ≤ 1}

For b4 we compute

d

dt
b4(t, xt) =

|xt|2 + 2txtξt
t2|xt|

+
O(ε(t))

t
>

25

t
in Et ∩ {0 ≤ b4 ≤ 1}
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Finally for b5 we also estimate

d

dt
b5(t, xt, ξt) =

2|xt|−1|ξt|xtξt + 2ξ2
t

2−10t
− |xt||ξt|+ xtξt

2−10t2
+
O(ε(t))

t

≥ ξ2
t

2−10t
− 2−5|ξt|

2−10t

≥ 2

t

within the set Et ∩ {0 ≤ b5 ≤ 1}. �
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