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Abstract. We obtain a multiscale wave packet representation for
the fundamental solution of the wave equation whose coefficients
satisfy ∂2g ∈ L1

t L
∞
x . This leads to pointwise and weighted Lp

bounds on the fundamental solution and also to a proof of disper-
sive estimates for such operators.

1. Introduction

The kernel of the forward fundamental solution for the wave operator
� in Rn+1 has the form

K(t, x) = cn1t>0


(t2 − x2)

−n−1
2

+ n even

δ(n−3
2

)(t2 − x2) n odd

In odd dimension it is supported on the characteristic cone

K = {t = |x|}
In even dimension it is supported inside the cone, but its singular sup-
port is still on the cone.

Solutions for the wave equation with smooth compactly supported
initial data cannot stay concentrated for a long time. Instead they will
spread out along the cone and decay at a rate of t−

n−1
2 . One often refers

to this as the dispersive phenomena. Gaining a good understanding of
it is of special interest in the study of semilinear and quasilinear wave
equations, as it is the main factor which limits the strength of nonlinear
interactions.

A quantitative way of measuring the dispersion of waves for the
homogeneous wave equation

(1) �u = 0 u(0) = u0 ∂tu(0) = u1

in Rn+1 takes advantage of the pointwise decay of the fundamental
solution. Then one easily obtains a dispersive inequality roughly of the
type

(2) ‖∇u(t)‖L∞ . t−
n−1

2 ‖|Dx|
n+1

2 ∇u(0)‖L1

1
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To make this estimate correct one can either replace L∞ by the BMO
space, or L1 by the Hardy norm H1, or restrict the Fourier transform
of the initial data (u0, u1) to a dyadic shell {2k ≤ |ξ| ≤ 2k+1} for some
fixed k ∈ Z.

Interpolating between (2) and the L2 conservation of energy

(3) ‖∇u(t)‖L2 = ‖∇u(0)‖L2

we obtain the intermediate bounds

(4) ‖∇u(t)‖Lp . t
−n−1

2
( 1

p′−
1
p
)‖|Dx|

n+1
2

( 1
p′−

1
p
)∇u(0)‖Lp′ , 2 ≤ p ≤ ∞

If one simply considers wave equations with energy data without
any additional decay at spatial infinity then it becomes impossible to
obtain any uniform rate of decay in time for the solutions. Instead,
in order to measure the dispersion one needs to average in time and
obtain bounds which say that the solution cannot stay concentrated
for too long. These bounds are called Strichartz estimates. Applied
to the solutions for the homogeneous wave equation (1) they have the
form

(5) ‖|Dx|
n+1

2
( 1

p
− 1

2
)∇u‖Lq(Lp) . ‖∇u(0)‖L2

where (see [4], [6])

2

q
+
n− 1

p
=
n− 1

2
2 ≤ p, q ≤ ∞, (q, p, n) 6= (2,∞, 3)

In this article we investigate the variable coefficient version of the
dispersive inequalities (4). We consider the Cauchy problem

(6) P (t, x, ∂)u = 0 u(0) = u0 ∂tu(0) = u1

in [0, 1]× Rn where the second order operator

(7) P (t, x, ∂) = gαβ(t, x)∂α∂β + lα(t, x)∂α +m(t, x)

is hyperbolic with respect to time. We assume that the matrices
(gαβ(t, x)), (gαβ(t, x))

−1 are uniformly bounded, have signature (1, n)
and the surfaces {t = constant} are uniformly space-like. Our main
result is the following:

Theorem 1.1. Let ε > 0 be sufficiently small. Assume that the coeffi-
cients of P satisfy

(8) ‖∂2g‖L1(0,1;L∞(Rn)) ≤ ε, l, ∂l,m ∈ L1(0, 1;L∞(Rn))

Then for t ∈ [0, 1] the solution u to (6) satisfies

(9) ‖|Dx|−s∇u(t)‖Lp . t
−n−1

2
( 1

p′−
1
p
)‖|Dx|

n+1
2

( 1
p′−

1
p
)−s∇u[0]‖Lp′
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provided that

(10) 2 ≤ p ≤ ∞ (n = 2), 2 ≤ p <
2(n− 1)

n− 3
(n ≥ 3)

and

n(
1

2
− 1

p
) ≤ s ≤ 3

2
− 1

p

The main part of the proof is to obtain a multiscale wave packet
decomposition for solutions to the wave equation. This decomposition
may also be of independent interest.

We note that results which are similar in spirit are independently
obtained in ongoing work of Smith using a different approach, based
on representing the wave evolution in a single frequency dependent
wave packet basis.

The exponent p = 2(n−1)
n−3

is exactly the one appearing in the end-
point Strichartz estimates. For this exponent there is a logarithmic
divergence in our estimates. One can remedy it and even increase the
range of p by improving the regularity of the coefficients. We note that
our proof makes it easy to obtain many such variations of the above
result.

Remark 1.2. The only role of the small constant ε is to prevent caus-
tics. One can easily replace the assumption that ε is small with an
assumption that no caustics occur in the time interval [0, 1].

Remark 1.3. The upper limit for s in the theorem is determined by
the regularity of g. However, the lower limit only has to do with the
regularity of the lower order terms. For instance if in addition we
assume

(11) ∂2l ∈ L1Ln, ∂m ∈ L1Ln

then we obtain the extended range

n

(
1

2
− 1

p

)
− 2 ≤ s ≤ 3

2
− 1

p

This can be further improved if the coefficients g, l,m have additional
Sobolev regularity on the same scale.

Remark 1.4. Using the multiscale wave packet decomposition of the
fundamental solution one can also obtain weighted pointwise bounds for
it. The weights depending on the distance to the characteristic cone,
more precisely the variable coefficient analogue of the t2 − x2 function.
This is perhaps less interesting since it matches the constant coefficient
bounds only in dimension n = 2. Similarly, by adding up our wave
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packet bounds in a different way on can also obtain weighted Lp bounds
for the fundamental solution.

Remark 1.5. The above result applies equally to systems with diagonal
principal part and coupling only in the lower order terms.

One can compare the above result with similar results obtained ear-
lier for the Strichartz estimates. For operators with smooth coefficients
these were proved in [5], [8]. The first result for low regularity coeffi-
cients was obtained in [10]. In this article Smith first introduced the
idea of constructing wave packet parametrices for the wave equation
with C2 coefficients. He also showed that the Strichartz estimates hold
for such operators in low dimension n = 2, 3.

Smith’s result was extended to higher dimensions in [13]. The g ∈ C2

condition was later relaxed to ∂2g ∈ L1L∞ in [15]. We also refer
the reader to [2], [1] and [7] for related work. On the other hand,
counterexamples in [11], [12] show that the Strichartz estimates do not
hold in general for operators with Cs coefficients with s < 2. However,
they do hold for certain operators with lower regularity coefficients
arising in the study of quasilinear wave equations, see [9].

The result we prove here is stronger, since a classical argument shows
that the dispersive estimates (4) imply the Strichartz estimates (5). In-
terestingly enough, the range of p that we can allow in Theorem 1.1 is
exactly the range which is needed in order to prove the dispersive esti-

mates (modulo the endpoint p = 2(n−1)
n−3

in dimension n ≥ 4). However,
we do not know if this range for p is sharp.

One should note also that the Strichartz estimates are considerably
more robust than the dispersive estimates, in that it suffices to prove
them for a convenient parametrix and then iterate. By contrary, as
far as we know, no such method can be used in order to prove the
dispersive estimates.

Our strategy for the proof is as follows. The initial step is to use
a Littlewood-Paley decomposition to reduce the problem to frequency
localized estimates. To achieve this we prove in Section 3 that the
leakage from one frequency to other frequencies is negligible. This is a
very robust argument which requires only ∂g ∈ L1L∞ for the regularity
of the coefficients.

The main step in the proof is to obtain a multiscale wave packet de-
composition for a frequency localized part of the fundamental solution.

We briefly describe the Hamilton flow for the operator P in Sec-
tion 4; especially, we consider the geometry of the characteristic cones
and show that caustics do not occur in the time interval we consider.
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In Section 5 we introduce the wave packets and show that they are co-
herent along the wave flow. In Section 6 we show that if the coefficients
of P are frequency localized on some scale then we have an almost or-
thogonal decomposition of waves into wave packets on a related scale.
Using a paradifferential type calculus, this leads to the multiscale wave
packet decomposition for the P waves in Section 7. The dispersive
estimates are obtained in Section 8 following a brief analysis of the
Hamilton flow, precisely of the characteristic cones.

The simplest wave packets in our construction are sharply localized
on the scale of the uncertainty principle as in [10], [9]. As the spatial
scales increase we give up the sharp localization but we gain better L2

bounds in the fundamental solution representation.

2. Notations

We adopt the usual convention that Roman alphabet letters stand for
indices in the range {1, . . . , n}, while the Greek ones denote indices in
the range {0, . . . , n}. We also use the common summation convention.

The partial differentiation is denoted by ∂, where ∂0 is the time
derivative and ∂i are the spatial derivatives. ∇ stands for the space
time gradient.

For the initial data in (6) we occasionally use the short notation

u[0] = (u(0), ∂tu(0))

We consider a spatial Littlewood-Paley decomposition in the Fourier
space,

1 =
∞∑
k=0

Sk(D)

where for k > 0 we have

Sk(ξ) = φ(2−k|ξ|)

with φ supported in {1
2
≤ |ξ| ≤ 2}. Set

S<k =
k−1∑
h=0

Sh, S>k =
∑
h>k

Sh, S[j,k] =
∑
j<h<k

Sh

We say that a function u is localized at frequency 2k if its Fourier
transform is supported in the annulus {2k−1 ≤ |ξ| ≤ 2k}.

For the the paradifferential type calculus we also need to truncate the
coefficients of P in frequency. However, for them it is more convenient



6 DANIEL TATARU AND DAN-ANDREI GEBA

to use a space-time truncation. Thus we denote a similar space-time
Littlewood-Paley decomposition by

1 =
∞∑
k=0

S̃k(Dx,t)

We assume that the two decompositions are chosen so that the differ-
ence of their symbols is supported in

supp (Sk(ξ)− S̃k(τ, ξ)) ⊂ {|ξ| < 2k+1, |τ | > 2k+10}
Given P in (7) we define the modified operators

P<k = (S<kg
αβ)∂α∂β + (S<kl

α)∂α + (S<km)

Similarly we define Pk, P[j,k], P̃<k, P̃k, P̃[j,k], The last three truncations
require the coefficients to be defined globally in time. Hence we assume
they have been extended to functions with similar properties in all of
Rn+1.

In our analysis we consider the equation (6) with P replaced by P̃<h.
This new equation is denoted (6)<h and is used for solutions which are
essentially localized at a frequency 2k with k/2 < h < k.

For various parts of our analysis we use weaker or stronger regularity
of the coefficients of P . Thus we introduce the following two sets of
assumptions1:

(12) ∂g ∈ L1L∞, l ∈ L1L∞, m ∈ L1Ln

(13) ∂2g ∈ L1L∞, l, ∂l ∈ L1L∞, m ∈ L1L∞

3. Dyadic frequency localization

Assume that the initial data for the solution u to (6) is frequency
localized at frequency 2k. Is the solution u also frequency localized to a
similar region ? This is definitely not the case in general for operators
with variable coefficients. However, if the coefficients satisfy (12) and
are smooth on a scale larger than 2−k then we are able to obtain a very
convenient estimate of the tail that spills into the other frequencies.

Proposition 3.1. For each M > 0 there exists C > 0 so that for each
0 < h < k and each solution u to (6) in [0, 1] whose initial data (u0, u1)
is frequency localized in {|ξ| ≈ 2k} and whose coefficients satisfy

(14)

 ‖∇g‖L1L∞ ≤M and ‖∂ax∇g‖L1L∞ ≤ ca2
|a|h for |a| ≥ 1

‖∂axl‖L1L∞ + ‖∂axm‖L1Ln ≤ ca2
|a|h for |a| ≥ 0

1A slight variation is required for (12) in the case n = 2, namely m ∈ L1L2+δ

with δ > 0
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we have∑
|b|≤N

2−|b|k‖∂bx∇S>k+Cu(t)‖L2 + ‖∇S<k−Cu(t)‖L2 . 2N(h−k)‖∇u(0)‖L2

for all t ∈ [0, 1], N ≥ 0.

In this article we use the above proposition for operators whose co-
efficients are frequency localized. Precisely, we note that if the coef-
ficients of P satisfy (12) then the coefficients of P̃<h satisfy (14) with
M = ‖∇g‖L1L∞ . As a consequence of this and a simple commutator
estimate we obtain the following corollary:

Corollary 3.2. Suppose that the coefficients of P satisfy (12). Then
there exists C = C(‖∇g‖L1L∞) > 0 so that for 1 < h < k − 2C and
for each initial data u[0] which is frequency localized in {|ξ| ≈ 2k} the
solution u to (6)<h satisfies

‖P̃<hS[k−C,k+C]u‖L1(0,1;L2) . 2N(h−k)‖∇u(0)‖L2

We emphasize again that only an L1L∞ bound on ∂g is needed;
thus this result is much more robust than the more precise parametrix
representations which we obtain later on.

Proof of Proposition 3.1: Without any restriction in generality we as-
sume that g00 = −1. We introduce the L1 functions

M(t) = ‖∇g(t)‖L∞ , µ0(t) = ‖∇g(t)‖L∞ + ‖l(t)‖L∞ + ‖m(t)‖Ln

µ(t) = sup
|a|≤Z

2−|a|h(‖(∂ax∇g)(t)‖L∞ + ‖(∂axl)(t)‖L∞ + ‖(∂axm)(t)‖Ln)

where Z is a sufficiently large integer.
We define the energy functional,

E(u(t)) = ‖∂tu− g0j∂ju‖2
L2 + 〈g̃ij∂iu, ∂ju〉+ ‖u‖2

L2

where g̃ij is the positive definite quadratic form

g̃ij = gij + g0ig0j, i, j = 1, n

A routine computation shows that for all solutions to (6) we have

d

dt
E(u(t)) . µ0(t)E(u(t))

which by Gronwall’s inequality implies the energy inequality

E(u(t)) . E(u(0)), t ∈ [0, 1]
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To prove the proposition we seek to obtain a weighted version of the
above energy estimate. Given a symbol q(t, ξ) we define the modified
energy functional

Eq(u(t)) = ‖q(t,D)∂tu− g0jq(t,D)∂ju‖2
L2 + 〈g̃ijq(t,D)∂iu, q(t,D)∂ju〉

+‖q(t,D)u‖2
L2

For an appropriate choice of q we prove that the time derivative of
Eq(u(t)) is bounded from above,

(15)
d

dt
Eq(u(t)) . µ(t)Eq(u(t))

which by Gronwall’s inequality yields

Eq(u(t)) . Eq(u(0)), t ∈ [0, 1]

This implies the conclusion of the proposition provided that

(16)
q(0, ξ) = 1 2k−1 < |ξ| < 2k+1

q(t, ξ) > 2N(k−h) |ξ| < 2k−C

q(t, ξ) > |ξ|N2−Nh |ξ| > 2k+C

It remains to find a multiplier q so that both (15) and (16) hold. For
the energy estimate (15) we compute

d

dt
Eq(u(t)) = 〈q(t,D)∂2

t u−g0jq(t,D)∂t∂ju, (q(t,D)∂t − g0jq(t,D)∂j)u〉

+ 〈g̃ijq(t,D)∂t∂iu, q(t,D)∂ju〉
+ 〈(qt(t,D)∂t − g0jqt(t,D)∂j)u, (q(t,D)∂t − g0jq(t,D)∂j)u〉
+ 〈g̃ijqt(t,D)∂iu, q(t,D)∂ju〉+O(µ(t))Eq(u(t))

In the first term we substitute ∂2
t u from the equation, commute the

coefficients gαβ, lα and m with q(t,D) and integrate by parts as in
the usual energy estimates. This cancels the second term and, except
for the commutators, everything else can be included in the last term.
Denoting

C = [q(t,D), giα]∂i∂α + [q(t,D), lα]∂α + [q(t,D),m]

we obtain

d

dt
Eq(u(t)) = 〈Cu, (q(t,D)∂t − g0jq(t,D)∂j)u〉

+ 〈(qt(t,D)∂t − g0jqt(t,D)∂j)u, (q(t,D)∂t − g0jq(t,D)∂j)u〉
+ 〈g̃ijqt(t,D)∂iu, q(t,D)∂ju〉+O(µ(t))Eq(u(t)))

= I + II + III + IV
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To continue we need some assumptions on q. We impose some poly-
nomial limit on its growth at infinity,

(17) 2−Nk(|ξ|+ 2k)N . q(t, ξ) . 2−Nh(|ξ|+ 2k)N

To insure that II+III is essentially non-positive we need q to decrease
in time,

(18) qt(t, ξ) ≤ 0

Finally, in order to have a reasonable calculus we ask that

(19) |∂aξ ∂bt q(t, ξ)| ≤ caµ(t)bq(t, ξ)[2h(|ξ|+ 2k)]
b−|a|

2 , b = 0, 1

We denote v = q(t,D)∇u and we write

II + III = 〈A(t, x)
qt
q

(t,D)v, v〉

where A is a positive definite matrix which has the same regularity
as the coefficients gij. We claim that by G̊arding’s inequality we can
conclude that

II + III ≤ c23〈
qt
q

(t,D)v, v〉+O(1)‖v‖2
L2 , c23 > 0

The formulation of G̊arding’s inequality which we use follows [14]:

Lemma 3.3. Let λ > 0 and r(x, ξ) be a symbol which satisfies <r ≥ 0
and

|∂ax∂bξr(x, ξ)| ≤ cabλ
|a|−|b|, |a|+ |b| ≥ 2

Then

<〈R(x,D)u, u〉 ≥ −c‖u‖2
L2

By (14), (18) and (19) we can use the above result with

λ = [2h(|ξ|+ 2k)]
1
2

It remains to estimate I. For this we consider the commutators in
C, which we write as

C = [q, giα]q−1∂iq∂α + [q, lα]q−1q∂α + [q,m]q−1|Dx|−1q|Dx|

The last two terms are easy to estimate. By (14), (17) and (19) we
have the fixed time bound

‖[q, lα]q−1‖L2→L2 . µ(t)

Intuitively this is because lα are smooth on the 2−h spatial scale while
the symbol q(t, ξ) varies little on the dual 2h frequency scale. Similar
considerations also show that [q,m]q−1|Dx|−1 satisfies a similar bound.
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For the first term we write

[q(t,D), giα]q−1(t,D)∂i = (∂xg
iα)
∂ξq

q
(t,D)Di +R(t, x,D)

Using again (14), (17) and (19) it follows that the symbol of the re-
mainder R satisfies

|∂ax∂bξr(t, x, ξ)| . µ(t)2|a|h[2h(|ξ|+ 2k)]−
|b|
2

Hence
‖R(t, x,D)‖L2→L2 . µ(t)

For the first expression we note that

|(∂xgiα)
∂ξq

q
(t, ξ)ξi| . M(t)|∂ξq

q
(t, ξ)||ξi|

On the other hand by (14), (19) we obtain the bounds

|∂ax∂bξ [(∂xgiα)
∂ξq

q
(t, ξ)ξi]| . [2

3h
4 (|ξ|+ 2k)

1
4 ]|a|−|b|, |a|+ |b| ≥ 2

Hence can use the above form of the sharp G̊arding inequality combined
with a Littlewood-Paley decomposition in ξ to obtain

I ≤M(t)〈c1|∂ξq|(t,D)|D|∇u, q(t,D)∇u〉+O(µ(t))‖q(t,D)∇u‖2
L2

Summing up the bounds for I and II + III we obtain

d

dt
Eq(u(t)) ≤ 〈(c1M(t)|ξ||qξ|+ c23qt)∇u, q∇u〉+O(µ(t))Eq(u(t))

Thus, in order to derive the estimate (15) it suffices to insure that

(20) c1M(t)|ξ||qξ|+ c23qt . O(µ(t))q

It remains to construct a symbol q which satisfies (16), (17), (18),
(19) and (20). We consider a smooth cutoff function χ which equals 0
in [−∞, 1] and 1 in [2,∞]. We also set

φ(t) =

(∫ t

0

M(s)ds

) (∫ 1

0

M(s)ds

)−1

, 0 ≤ φ ≤ 1

Then we define the multiplier q(t,D) whose symbol is

q(t, ξ) = 2ψ
−(t,|ξ|)+ψ+(t,|ξ|)

where
ψ−(t, r) = N(k − h)χ(− ln r + k − Cφ(t)),

ψ+(t, r) = N(ln r − h)χ(ln r − k − Cφ(t))

It is easy to verify that q has the desired properties for large C (pre-
cisely, for C �M).

�
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Proof of Corollary 3.2: Using the equation (6)<h satisfied by u we can
write:

P̃<hS[k−C,k+C]u = −P̃<hS≤k−Cu − P̃<hS≥k+Cu

= −[P̃<h, S≤k−C ]u − [P̃<h, S≥k+C ]u

Decomposing u in frequency and taking advantage of the fact that
h < k − 2C, we finally obtain that:

P̃<hS[k−C,k+C]u = −[P̃<h, S≤k−C ]S[k−C−1,k−C+2]u−
− [P̃<h, S≥k+C ]S[k+C−2,k+C+1]u

Taking the L1L2 norm and using a standard commutator estimate at
fixed time it follows that:

‖P̃<hS[k−C,k+C]u‖L1L2 .

(‖∂g<h‖L1L∞ + 2−k‖∂l<h‖L1L∞ + 2−2k‖∂m<h‖L1L∞)

(‖∇S[k−C−1,k−C+2]u‖L∞L2 + ‖∇S[k+C−2,k+C+1]u‖L∞L2)

For the first factor we use (12) and the frequency localization. For
the second we use Proposition 3.1 after slightly readjusting C. The
conclusion of the corollary follows.

�

4. The Hamilton flow.

Given coefficients gij as in (13) with g00 = −1 we decompose the
principal symbol

p(t, x, τ, ξ) = τ 2 − 2g0jτξj − gijξiξj

of P (t, x, ∂) as

p(t, x, τ, ξ) = (τ + a+(t, x, ξ))(τ + a−(t, x, ξ))

where the symbols a+(t, x, ξ), a−(t, x, ξ) are real, homogeneous and
nowhere equal, satisfying

a+(t, x, ξ) = −a−(t, x,−ξ)
They are smooth in ξ and have the same regularity as the coefficients
gij, namely

‖|ξ||b|−1∂2
x,t∂

b
ξa

±(t, x, ξ)‖L1
tL

∞
x,ξ
≤ cb

To fix the signs we assume that a+ > a−. Then a+ is convex while a−

is concave.
For (x, ξ) ∈ T ∗Rn at time 0 we denote the Hamilton flows of each of

the two factors by χ±t ,

χ±t (x, ξ) = (x±t , ξ
±
t )
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The ′′+′′ and the ′′−′′ flows can be identified by

χ−t (x,−ξ) = (x+
t ,−ξ+

t )

and are solutions for the ordinary differential system

(21)


d
dt
x±t = ∂ξa

±(t, x±t , ξ
±
t )

d
dt
ξ±t = −∂xa±(t, x±t , ξ

±
t )

 x±0 = x

ξ±0 = ξ

We denote by γ±(x, ξ) the two trajectories of the Hamilton flow starting
at (x, ξ).

The Hamilton flow is homogeneous in the sense that

χ±t (x, λξ) = (x±t , λξ
±
t )

Hence, to study it, without any restriction in generality we can restrict
our attention to ξ ∈ Sn−1. As a consequence of standard theory of
ordinary differential equations one obtains

Proposition 4.1. Assume that the coefficients gαβ have regularity
∂2gαβ ∈ L1(0, 1;L∞(Rn). Then the maps χ±t are Lipschitz continu-
ous from Rn × Sn−1 into Rn × (Rn \ {0}).

In the study of the fundamental solution for the wave equation an
important role is played by the characteristic cones. Given x ∈ Rn, the
forward characteristic cone originating at x is obtained as the union of
the bicharacteristics

K = {(t, x+
t ), t ∈ [0, 1], ξ ∈ Sn−1}

In general one expects the dispersive estimates to hold for as long (in
time) as the cones remains nondegenerate. The degeneracies of the
cone occur in general after a finite time and are called caustics.

An easy way to insure that caustics do not occur in a finite time
interval is to assume that the coefficients gij have small first and second
derivatives.

Proposition 4.2. Assume that the coefficients gαβ satisfy

‖∇g‖L1(0,1;L∞(Rn) + ‖∇2g‖L1(0,1;L∞(Rn) ≤ ε

for ε sufficiently small. Then for each fixed x ∈ Rn and t ∈ [0, 1] the
map

Sn−1 3 ξ → x±t
is an O(ε) Lipschitz perturbation of the map

Sn−1 3 ξ → x+ t∂ξa
±(0, x, ξ)
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Proof. After a linear change of variable we can assume that gαβ(0, x)
corresponds to the d’Alembertian,

gαβ(0, x) = diag(−1, 1, · · · , 1)

Then a+(0, x, ξ) = |ξ|, and using the equations (21) we successively
obtain

ξ±t = ξ +O(εt)

and
x±t = x± tξ +O(εt)

To evaluate the derivatives

X =
∂x±t
∂ξ

, Ξ =
∂ξ±t
∂ξ

we consider the linearization of the Hamilton flow,
d
dt
X = a±ξx(t, x

±
t , ξ

±
t )X + a±ξξ(t, x

±
t , ξ

±
t )Ξ

d
dt

Ξ = −a±xx(t, x±t , ξ±t )X − a±xξ(t, x
±
t , ξ

±
t )Ξ

 X(0) = 0

Ξ(0) = In

This is a linear system with integrable coefficients. A routine analysis
leads to

Ξ(t) = In +O(εt), X(t) = ta±ξξ(0, x, ξ) +O(εt)

This concludes the proof.
�

In the sequel we apply the above results to the operators P̃<h as h
varies. Then it is important to know that the corresponding Hamilton
flows are not too far apart.

Proposition 4.3. Assume that the coefficients gαβ have regularity
∂2gαβ ∈ L1(0, 1;L∞(Rn). Let

R× Sn−1 3 (x, ξ) → (x±t,h, ξ
±
t,h)

be the Hamilton flow for P̃<h. Then

|x±t,h − x±t | . 2−h, |ξ±t,h − ξ±t | . 2−h, |(x±t,h − x±t )ξ±t | . 2−2h

Proof. We denote
µ(t) = ‖∂2g(t)‖L∞

Then we have

|(g − g̃<h)(t)| . 2−2hµ(t), |(∇(g − g̃<h))(t)| . 2−hµ(t)

which further yield

|∂x(a± − a±<h)(t, x, ξ)| . 2−hµ(t)|ξ|
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|∂ξ(a± − a±<h)(t, x, ξ)| . 2−2hµ(t)

Subtracting the two Hamilton flow equations (21) we have

d

dt
(x±t,h − x±t ) . 2−2hµ(t) +O(|x±t,h − x±t |+ |ξ±t,h − ξ±t |)

d

dt
(ξ±t,h − ξ±t ) . 2−hµ(t) +O(|x±t,h − x±t |µ(t) + |ξ±t,h − ξ±t |)

Using Gronwall’s inequality yields the first two relations in the proposi-
tion. For the third we need to be more precise. Using the homogeneity
of the symbols a± we obtain ξ · a±ξ = a±. Then we compute

d

dt
[(x±t,h − x±t )ξt] = ((a±<h)ξ(x

±
t,h, ξ

±
t,h)−a

±
ξ (x±t , ξ

±
t ))ξt − (x±t,h−x

±
t )a±x (x±t , ξ

±
t )

= a±(x±t,h, ξ
±
t,h)− a±(x±t , ξ

±
t )− (ξ±t,h − ξ±t )a±ξ (x±t,h, ξ

±
t,h)

−(x±t,h − x±t )a±x (x±t , ξ
±
t )

=O(µ(t))(|x±t,h − x±t |2 + |ξ±t,h − ξ±t |2)

which yields the third relation in the proposition. �

5. Generalized wave packets

In this section we define a generalized notion of wave packets, which
are functions which are phase space localized in certain neighborhoods
of bicharacteristic rays for P̃<h. Then we use energy estimates to show
that initial data with an appropriate phase space localization yields
solutions which are generalized wave packets. We assume that

2
k
2 ≤ 2h � 2k

Consider a fixed bicharacteristic ray

t→ γ(t) = (x±t , ξ
±
t )

for P̃<h. One can easily compute its regularity using (21), namely

(22) ‖∂at x±t ‖L1 ≤ ca2
hmax{0,|a|−3},

(23) ‖∂at ξ±t ‖L1 ≤ ca2
hmax{0,|a|−2}|ξ±t |.

Then we take d(t) = (d0(t), · · · , dn−1(t)) to be a family of normalized
first order differential operators chosen so that at time t we have

(i) d0 is the flow direction,

d0 = ∂t + a±ξ ∂x

(ii) (d1(t), · · · , dn−1(t)) are a basis for the plane x · ξ±t = 0.
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These operators can be chosen so that their coefficients have a similar
regularity to ξt, namely,

‖∂at d
j
k‖L1 ≤ ca2

hmax{0,|a|−2}, j = 0, n, k = 0, n− 1

For a spatial vector y at time t we denote by yn its normal component
with respect to the same plane,

yn =
ξ±t · y
|ξ±t |

Now we define wave packets as approximate solutions to the wave equa-
tion which are localized near a bicharacteristic on an appropriate scale.

Definition 5.1. Let N be a large integer and (x, ξ)∈T ∗Rn with |ξ|≈2k.
a) A function u is called a frequency 2k and localization 2−h wave

packet of ± type centered at γ±(x, ξ) for P̃<h if it is localized at fre-
quency 2k and satisfies the bounds

(24) ‖(x− x±t )a(x− x±t )bnd
ρ∇u‖L∞L2 ≤ 2k|ρ|+(h−k)(|a|+2b+|ρ|),

(25) ‖(x− x±t )a(x− x±t )bnd
ρP̃<hu‖L1L2 ≤ 2k|ρ|+(h−k)(|a|+2b+|ρ|).

for |a|+ 2b+ |ρ| ≤ N .
b) An initial data set (u0, u1) is called a frequency 2k and localization

2−h wave packet initial data of ± type centered at (x, ξ) for P̃<h if the
corresponding solution satisfies (24) at time t = 0.

c) A function u is called a frequency 2k and localization 2−h exact
wave packet of ± type centered at γ±(x, ξ) for P̃<h if it is localized at
frequency 2k and satisfies the bound (24) together with

(26) ‖P̃<hu‖L1L2 ≤ 2N(h−k)

Thus our packet are localized on the 22(h−k) × (2h−k)n−1 spatially,
respectively 2k × (2h)n−1 in frequency. This is on the scale of the
uncertainty principle precisely when h = k/2.

Our main energy estimate asserts that if the initial data is local-
ized in the phase space then the solution remains localized along the
corresponding bicharacteristic.

Proposition 5.2. Assume that the coefficients of P satisfy (13). Let u
be a frequency 2k function so that (25) holds and that (24) holds at time
0. Then (24) holds at all times t ∈ [0, 1] with an additional constant.

An immediate consequence of this result and of Corollary 3.2 is the
following
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Corollary 5.3. Assume that the coefficients of P satisfy (13) and that
u[0] and P̃<hu are localized at frequency 2k. If (25) holds and (24) holds
at time 0 then (24) holds for S[k−C,k+C]u at all times.

Proof. The model case. Our idea is to reduce the problem to a
canonical case, where the analysis is considerably simpler. We begin
by describing this case. First we want the geodesic γ to be straight.
Precisely, we assume that

(27) x±t = 0, ξ±t = (0, 2k), di = ∂i

This requires that the coefficients gαβ satisfy

(28) gin(t, 0) = 0, i = 1, n, ∂xg
nn(t, 0) = 0

Then we want the coefficients to satisfy (12) and be smooth on the 2−h

scale with sharp spatial frequency localization. We consider a function
µ ∈ L1(0, 1). For gαβ we must have

(29) |∂agαβ| ≤ caµ(t)2(|a|−1)h, |a| ≥ 1

For l and m we need

(30) |∂alα| ≤ caµ(t)2|a|h, ‖∂am(t)‖Ln ≤ caµ(t)2|a|h

A consequence of (28) and (29) is the bound

(31) |gin| . µ(t)|x|
Furthermore, (28) suggests that for gnn we should ask for a stronger
bound, namely

(32) |gnn| . µ(t)(|x|2 + |xn|), |∇gnn| . µ(t)|x|
In addition, we ask for a similar stronger bound for its higher order
derivatives, namely

(33) |∂agnn| ≤ caµ(t)2(|a|−1)h(|x|+ 2−h)

Reduction to the model case. We do a change of coordinates in
order to straighten the bicharacteristic t → (x±t , ξ

±
t ). By (23) we can

choose a matrix valued function Q(t) so that

(34) Q(t)ξ±t = (0, 2k), ‖∂aQ(t)‖L1 ≤ ca2
hmax{0,|a|−2}

Then the linear transformation

x := Q(t)−1(x− x±t )

achieves the first two conditions in (27).
The coefficients of P in the new coordinates involve the Jacobian of

the change of coordinates. Hence they will retain their spatial regular-
ity. However, we loose control of the second order time derivative in



DISPERSIVE ESTIMATES 17

the terms which involve derivatives of Q(t). Fortunately these terms
have a special form, in that they contain a factor of x. Hence the new
coefficients have the form

g(t, x) = g0(t, x) + a(t)x g1(t, x)

where ∂2g0, ∂
2g1 ∈ L1L∞ while a is of class W 1,1 in t and smooth on

the 2−h scale. Then the bound (29), (33) easily follow, while (32) is a
consequence of (28).

A similar issue arises with the first order terms, which in the new
coordinates have the form

l(t, x) = l0(t, x) + a(t)x l1(t, x)

where ∂l0, ∂l1 ∈ L1L∞ while a is of class L1 in t and smooth on the
2−h scale. But this is still in L1L∞.

Finally, we investigate the change in the operators d. In the new
coordinates, we obtain d of the form

d0(t) + xd1(t)

where d0 retains the same regularity and properties as before, while
d1 is only of class W 1,1 and it is not necessarily tangent to {xn = 0}.
However, because of the balance between the powers of x and of d in
the definition of wave packets we can neglect this second term. Fur-
thermore, d is a basis in the space generated by ∂0, · · · , ∂n−1 therefore
we can substitute it by ∂0, · · · , ∂n−1.

The energy estimates in the model case. We first recall he
standard energy estimate for the wave equation, which we write in the
form

(35) ‖∇u(t)‖L2 . ‖∇u(0)‖L2 +

∫ t

0

‖Pu(s)‖L2ds

This requires only the weaker assumption (12) on the coefficients. We
also note that we do not need to include the L2 norm of u in the
energy estimates, due to the fact that u is localized at frequency 2k.
This implies the bound

(36) ‖u(t)‖L2 . 2−k‖∇u(t)‖L2

The energy estimate implies the conclusion of the theorem directly
in the case when N = 0. To prove the theorem for a larger N we will
argue by induction with respect to N . Given multiindices (a, b, c) we
denote

ρ(a, b, c) = k|c|+ (h− k)(|a|+ 2b+ |c|)
Let JN , J≤N be the sets of indices

JN = {(a, b, c); |a|+2b+ |c| = N}, J≤N = {(ã, b̃, c̃); |ã|+2b̃+ |c̃| ≤ N}
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The key fixed time estimate which we will inductively prove is

‖P (xaxbnd
cu)‖L2 . 2ρ(a,b,c)

∑
J≤N

2−ρ(ã,b̃,c̃) (µ(t)‖∇xãxb̃ndc̃u‖L2

+‖xãxb̃ndc̃Pu‖L2

)(37)

for all indices (a, b, c) ∈ JN . If this holds then the energy estimate (35)
together with Gronwall’s lemma yield

‖∇xaxbndcu‖L∞L2 . 2ρ(a,b,c)
∑
J≤N

2−ρ(ã,b̃,c̃)‖xãxb̃ndc̃Pu‖L1L2 , (a, b, c) ∈ JN

which implies the conclusion of the theorem.
We note that by (36) the summand in (37) can be expanded to

include expressions of the form

2k‖xãxb̃ndc̃u‖L2

Because of this, it also follows that the order of operators ∇xãxb̃ndc̃
in the first summand is not important, we can commute them in any
possible way. These two observations are used repeatedly in the sequel
without further comment.

Induction: The case N = 0. As mentioned before, this follows di-
rectly from (35).

Induction: The case N = 1. Strictly speaking this is not necessary,
but we do it in order to better illustrate the idea. We write

P (xu) = xPu+ [P, x]u, P (du) = dPu+ [P, d]u

Then it suffices to estimate the second right hand side terms by

(38) ‖[P, x]u‖L2 . µ(t)(‖x∇u‖L2 + ‖du‖L2 + ‖u‖L2)

(39) ‖[P, d]u‖L2 . µ(t)(2k‖x∇u‖L2 +‖d∇u‖L2 +2h(‖∇u‖L2 +‖u‖L2))

For (38) we have

[P, xj] = gαj∂α + lj

The first term contains a d unless α = n, in which case we use (31).
The commutator in (39) is written as

[P, d] = −(dgαβ)∂α∂β − (dlα)∂α − dm

For the first term we use the Lipschitz bound on g unless α = β = n,
when we need (32). For the second and the last we use the bound (30).
This yields

‖[P, d]u‖L2 . µ(t)(‖d∇u‖L2 + ‖x∂2
nu‖L2 + 2h‖∇u‖L2 + 2h‖u‖L2)
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Finally, in the second term we use the frequency localization of u to
replace a ∂n by 2k.

The induction step: We assume that we know the estimate (37) for
N − 1 and we prove it for N . We have

P (xaxbnd
cu) = xaxbnd

cPu+ [P, xaxbnd
c]u

so it remains to estimate the commutator.
We begin with the first order term in P namely lα∂α; the zero order

term is somewhat simpler. We compute

[lα∂α, x
axbnd

c]u = lxa−1xbnd
cu+ lxaxb−1

n dcu+

e≤c∑
1≤|e|

(del)xaxbnd
c−e∇u

We bound l by µ(t) in the L2 estimate for the first two terms. For the
last sum we simply use the bound (30) for the derivatives of l.

It remains to consider the second order terms in P . We write

[gαβ∂α∂β, x
axbnd

c] = gijxa−2xbnd
c + ginxa−1xb−1

n dc + gnnxaxb−2
n dc

+ giγxa−1xbn∂γd
c + gnγxaxb−1

n ∂γd
c+ xaxbn[g

αβ∂α∂β, d
c]

=E1 + E2 + E3 + E4 + E5 + E6

For the first term we use the frequency localization of u and the
induction hypothesis to write:

‖E1u‖L2 . ‖xa−2xbnd
cu‖L2 . 2−k‖∇(xa−2xbnd

cu)‖L2

which suffices since k < 2h.
For the second term we use in addition (31) to obtain

‖E2u‖L2 . µ(t)‖xaxb−1
n dcu‖L2 . µ(t)2−k‖∇(xaxb−1

n dcu)‖L2

For the third term we need the more precise bound (32):

‖E3u‖L2 . µ(t)(‖xa+2xb−2
n dcu‖L2 + ‖xaxb−1

n dcu‖L2)

. µ(t)2−k(‖∇(xa+2xb−2
n dcu)‖L2 + ‖∇(xaxb−1

n dcu)‖L2)

For the fourth term we have to split the discussion in two cases. The
first one is when γ 6= n. It follows that

‖Eγ
4u‖L2 . ‖xa−1xbnd

c+1u‖L2 . 2−k‖∇(xa−1xbnd
c+1u)‖L2

The case γ = n requires (31):

‖En
4 u‖L2 . µ(t)‖xaxbndc∇u‖L2

The fifth term will be the one which creates the most problems. We
have to discuss it in terms of the possible values of γ. We start with
γ ∈ {1 . . . n− 1}, in which case we use (31) to obtain:

‖Eγ
5u‖L2 . µ(t)‖xa+1xb−1

n dc+1u‖L2 . µ(t)2−k‖∇(xa+1xb−1
n dc+1u)‖L2
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For γ = n we take advantage of (32):

‖En
5 u‖L2 . µ(t)(‖xaxbndc∇u‖L2 + ‖xa+2xb−1

n dc∇u‖L2)

The case when γ = 0 is the difficult one because for g0n we do not have
a nice estimate like in the case of the other gin coefficients. So if we
estimate E0

5u directly using just ‖g0n‖L∞ . 1, we obtain

‖E0
5u‖L2 . 2−k‖∇(xaxb−1

n dc+1u)‖L2

which is obviously not good enough.
On the other hand, due to the frequency localization we have

‖E0
5u‖L2 . 2−k‖∇(g0nxaxb−1

n dc∂t)u‖L2

. 2−k
(
‖g0n∂t∂nx

axb−1
n dcu‖L2 + ‖g0ndxaxb−1

n dc+1u‖L2

+‖(∇g0n)xaxb−1
n dc+1u‖L2 )

In the last two terms we can simply use the uniform bound on g0n and
the µ(t) bound on ∇g0n. For the first term we use the form of the
operator P to write

g0n∂t∂n = P −
∑

(α,β) 6=(0,n)

gαβ∂α∂β −
∑
α

lα∂α −m

Hence, using the pointwise bounds for gin, gnn, l and m in (31), (32),
(30) we can estimate it by

. 2−k‖Pxaxb−1
n dcu‖L2 + µ(t)2−k ( ‖d2xaxb−1

n dcu‖L2

+ ‖xd∂nxaxb−1
n dcu‖L2 + ‖xn∂2

nx
axb−1

n dcu‖L2

+ ‖x2∂2
nx

axb−1
n dcu‖L2 + ‖∇xaxb−1

n dcu‖L2 + ‖xaxb−1
n dcu‖L2 )

For the first norm we use the induction hypothesis, while the rest are
all acceptable terms.

Finally we come to E6, which we write in the form:

E6 = −
∑
f 6=0

xaxbn(d
fgαβ)dc−f∂α∂βu =

∑
f 6=0

Eαβf
6

Suppose α 6= n (the same applies by symmetry if β 6= n). Then by
(29) we have

‖Eαβf
6 u‖L2 . µ(t)2h(|f |−1)‖xaxbndc−f+1∇u‖L2

It remains to consider the case α = β = n. If |f | = 1 then we use
(32) and the frequency localization to obtain

‖Eαβf
6 u‖L2 . µ(t)‖xa+1xbnd

c−1∂2
nu‖L2

. µ(t)(2k‖xa+1xbnd
c−1∇u‖L2 + ‖xa+1xb−1

n dc−1∇u‖L2)
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where the second term appears only if b ≥ 1. If |f | ≥ 2 then we need
the higher order bounds (33):

‖Eαβf
6 u‖L2 .µ(t)(2h(|f |−2)‖xaxbndc−f∂2

nu‖L2 + 2h(|f |−1)‖xa+1xbnd
c−f∂2

nu‖L2)

. µ(t)2h(|f |−2)(2k‖xaxbndc−f∇u‖L2 + ‖xaxb−1
n dc−f∇u‖L2)

+ µ(t)2h(|f |−1)(2k‖xa+1xbnd
c−f∇u‖L2 + ‖xa+1xb−1

n dc−f∇u‖L2)

�

6. Waves as superpositions of wave packets.

The aim of this section is to show that if the coefficients are localized
at frequency < 2h then any initial data which is localized at frequency
2k is a square summable superposition of frequency 2k and localization
2−h wave packet initial data.

We first introduce a discrete decomposition of the frequency 2k part
of the phase space

Rn × {2k−1 < |ξ| < 2k+1}

We begin with a locally finite covering of the annulus in the Fourier
space in sectors of size

2k × (2h)n−1

For each such sector we consider a locally finite covering of the physical
space by parallelepipeds of size

22(h−k) × (2h−k)n−1

with respect to the dual set of directions. Thus we obtain a discrete
locally finite phase space covering

Rn × {2k−1 < |ξ| < 2k+1} ⊂
⋃
j∈Jh

Rj

For j ∈ Jh we denote by (xj, ξj) the center of Rj.

Proposition 6.1. Assume that the coefficients of P satisfy (13). Let
k/2 ≤ h < k − C. Then for any frequency 2k initial data u[0] for P̃<h
there exist (k, h,±) wave packet initial data u±j [0] centered at (xj, ξj)

and coefficients a±j so that

u[0] =
∑
±

∑
j∈Jh

a±j u
±
j [0],

∑
±

∑
j∈Jh

|a±j |2 . ‖∇u(0)‖2
L2

Combining this result with Corollary 5.3 we obtain
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Proposition 6.2. Assume that the coefficients of P satisfy (13). Let
k/2 ≤ h < k − C. Given a frequency 2k initial data u[0] for P̃<h there
exist (k, h,±) exact wave packets u±j and coefficients a±j so that the
solution u satisfies

S[k−C,k+C]u =
∑
±

∑
j∈Jh

a±j u
±
j

with ∑
±

∑
j∈Jh

|a±j |2 . ‖∇u(0)‖2
L2

Proof. We first note that if the coefficients of P satisfy (13) then their
frequency localizations satisfy at time 0 the following pointwise bounds:

(40) |∂a∇g<h|+ |∂al<h|+ 2−h|∂am<h| ≤ ca2
|a|h

This is all that is needed for this proof.
STEP 1: Phase space localization. Some care is required here, since

we want the pieces to be localized sharply in frequency, while on the
other hand the spatial decomposition depends on the frequency. To
achieve this we proceed as follows:

(a1) We localize in frequency with respect to the 2k × (2h)n−1 sector
decomposition of the 2k annulus.

(a2) We split each frequency localized piece into spatially localized
pieces on the corresponding 22(h−k) × (2h−k)n−1 spatial scale, at the
expense of losing the sharp frequency localization.

(a3) We relocalize in frequency, obtaining rapidly decreasing tails in
neighboring spatial regions.

At the end of this process, we obtain a decomposition

u[0] =
∑
j∈J

ajuj[0],
∑
j∈J

|aj|2 . ‖∇u(0)‖2
L2

where for each j the L2 normalized initial data uj[0] is localized in Rj,
(xj, ξj), with sharp frequency localization. More precisely, for uj[0] we
have:

(41) ‖(x− xj)
a(x− xj)

b
n∂

′cuj[0]‖H1×L2 ≤ ca,b,c2
k|c|+(h−k)(|a|+2|b|+|c|)

where ∂′ stands for spatial derivatives in directions normal to ξj.

STEP 2: The ± decomposition. Here we consider the above initial
data uj[0] and show that we can decompose it into two components
corresponding to the two possible travel directions. The main result is
contained in the next Lemma.
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Lemma 6.3. Let u[0] be an initial data localized near (x0, ξ0), with
sharp frequency localization, which satisfies (41). Then there is a de-
composition

u[0] = u+[0] + u−[0]

so that the corresponding solutions u+ respectively u− satisfy (24) at
time 0.

Proof. We choose coordinates so that x0 = 0 and ξ0 = (0, ξ0n). We
consider the two possible initial travel directions l± = l±(x0, ξ0), nor-
malized in the form

l± = ∂t + q±, q± = a±ξ (0, x0, ξ0)∂x

Then it is easy to see that (24) for u± at time 0 takes the form

(42) ‖x′axbn∂′ρ(l±)µu±[0]‖H1×L2 ≤ 2k(|ρ|+µ)+(h−k)(|a|+2b+|ρ|+µ).

|a|+ 2b+ |ρ|+ µ ≤ N

The product l+l− serves as a good approximation for P̃<h near (x0, ξ0).
Precisely, set

R = P̃<h − l+l− = R1(t, x, ∂x)∂t +R2(t, x, ∂x) +M(t, x, ∂)

where R1, R2 have orders 1 and 2, while M contains the lower order
terms in P and has order 1. Then

(43) R1(0, x0, ξ0) = 0, R2(0, x0, ξ0) = 0

This will allow us to substitute �g with l+l− modulo a lower order
term. Such a substitution may seem too rough, but it turns out to
suffice for the ± split of the initial data.

We seek u±[0] as a partial sum of the formal series

u±[0] =
N∑
j=0

u±,j[0]

where

(44) ‖x′axbn∂′γu±,j[0]‖H1×L2 ≤ ca,b,γ2
k|γ|+(h−k)(|a|+2|b|+|γ|+j)

We denote by u±,j the corresponding solutions for the wave equation
and set

u±,(j) = u±,0 + · · ·+ u±,j

We claim we can construct the u±,j[0]’s inductively so that the solutions
u±,(j) satisfy (42) for µ ≤ j + 1.

For j = 0 we solve

(u0, u1) = (u+,0
0 , u+,0

1 ) + (u−,00 , u−,01 )
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and
u+,0

1 − q+u+,0
0 = 0, u−,01 − q+u−,00 = 0

Thus we get a system with 4 equations and four unknowns, governed
by the matrix

A =


1 1 0 0
0 0 1 1
1 0 q+ 0
0 1 0 q−


This has determinant q+−q−, which is an elliptic multiplier on the fre-
quency support of of u0, u1. Hence we can solve it and find (u±,00 , u±,01 )
which satisfy (44).

To obtain (42) for µ = 1 we still need to compute the regularity of
l±∂tu

±,0. We have

∂tl
±u±,0 = −q∓l±u±,0 − (R1∂t +R2 +M)u±,0

The first term is zero by construction, while for the second we gain ei-
ther a factor of x′ or a factor of ∂′ due to the properties of the remainder
in (43).

For larger j we argue inductively. First observe that we can use the
equation to convert time derivatives into spatial derivatives, which have
size O(2k) because of the frequency localization. Then the contribution
of u±,j to (l±)iu±,(j) in (42) is trivially estimated using (44) provided
that i ≤ j. Hence in the induction step it suffices to show that we can
find packets u±,j+1[0] so that (42) holds for µ = j + 2. We have

(45) (l±)j+2u±,(j+1)[0] = (l±)j+2u±,(j)[0] + (l±)j+2u±,j+1[0]

We bound the first expression using the induction hypothesis. For a
solution u we can write

(l+)j+2u = (q− − q+)(l+)j+1u+ (l+)j(R1∂t +R2 +M)u

= (q− − q+ +R1)(l
+)j+1u+ (R1q

+ +R2 +M)(l+)ju

+
∑
|α|≥1

(∂αg<h)∂
2
x(l

+)j−|α|

We apply this to u+,(j). Using the induction hypothesis, (43) for the
second term and and the C1 bound (40) on g for the third term we
obtain

(46) ‖x′axbn∂′γ(l+)j+2u+,(j)[0]‖H1×L2 ≤ ca,b,γ2
k|γ|+(h−k)(|a|+2|b|+|γ|+j+1)

On the other hand, for the second expression in (45) we write

(l+)j+2u+,j+1 = (q+ − q−)j+1l+u+,j+1 + ∂jl+l−u+,j+1

= (q+ − q−)j+1l+u+,j+1 + ∂j(R1∂t +R2)u
+,j+1
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In the second part we have the additional gain of either an x′ or a ξ′

factor in R1 and R2. Then the fact that its Cauchy data at time 0
satisfies the correct bounds (42) follows directly from (44). Hence we
can neglect it, and conclude that it suffices to choose (u±,j+1

0 , u±,j+1
1 )

so that at time 0 we have

u+,j+1
0 + u−,j+1

0 = 0

u+,j+1
1 + u−,j+1

1 = 0

(q+ − q−)jl+u+,j+1 = −(l+)j+1u+,(j)

(q− − q+)jl−u−,j+1 = −(l−)j+1u−,(j)

This is an elliptic system which we can solve to obtain (u±,j+1
0 , u±,j+1

1 )
satisfying (44). �

�

7. A multiscale wave packet decomposition

Here we consider frequency localized solutions for the wave equation
with coefficients satisfying (13) and show that they can be represented
as superpositions of wave packets which are localized on multiple scales.

Proposition 7.1. a) Assume that the coefficients of P satisfy (13)
and C is sufficiently large. Given a initial data u[0] for P̃<k−3C which
is localized at frequency 2k, the solution u to (6)<k−3C satisfies

(47) ‖∂au‖L1L2 . 2k(|a|−1)‖∇u(0)‖L2 , |a| ≥ 0

b) The frequencies away from 2k in u satisfy the better bound

(48) ‖∂a(1− S[k−2C+2,k+2C−2])u‖L1L2 . 2k(|a|−2)‖∇u(0)‖L2 , |a| ≥ 1

c) The frequency 2k part of u can be represented as

S[k−2C,k+2C]u =
∑

k
2
≤h≤k

2k−2h
∑
j∈Jh

a±h,jv
±
h,j

where v±h,j are (k, h,±) type wave packets for P̃<h and∑
j∈Jh

∑
±

|a±h,j|
2 . ‖∇u(0)‖2

L2

Proof. a) For a = 1 this follows directly by energy estimates. For a > 1
we differentiate the equation |a|−1 times and then use energy estimates.
In the case a = 0 we need an additional low frequency bound, which
follows from part (b).
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b) For k
2
≤ h ≤ k − 3C we denote by uh the solution to the Cauchy

problem

P̃<huh = 0 uh[0] = u[0]

The differences

vh = uh+1 − uh

solve

P̃<hvh = −P̃huh+1, vh[0] = 0.

We decompose vh into two parts,

vh = vh,0 + vh,1

which solve

P̃<hvh,0 = −P̃hS[k−C,k+C]uh+1, vh,0[0] = 0

respectively

P̃<hvh,1 = −P̃h(1− S[k−C,k+C])uh+1, vh,1[0] = 0.

Then for the exact solution u we have

u = u k
2

+
∑

k
2
<h<k−3C

(vh,0 + vh,1)

The regularity (13) of the coefficients implies that Shg has size 2−2h

and Shl has size 2−h in L1L∞. Then for the first component we have
the trivial estimate

‖P̃<hvh,0‖L1L2 . 2k−2h‖∇u(0)‖L2

By energy estimates this gives

‖∇vh,0‖L∞L2 . 2k−2h‖∇u(0)‖L2

On the other hand by Proposition 3.1 and Duhamel’s formula we obtain
a better estimate at frequencies away from 2k, namely

‖∇a(1−S[k−2C+2,k+2C−2])vh,0‖L∞L2 . 2k(|a|−2)2N(h−k)‖∇u(0)‖L2 , |a| ≥ 1

After summation in h this gives the corresponding part of (48). Inte-
grating it in time one also obtains the weaker L2 bound

(49) ‖S<k−2C+2vh,0‖L∞L2 . 2−k2N(h−k)‖∇u(0)‖L2

which after summation in h yields the corresponding part of (47) for
a = 0.

Next we turn our attention to vh,1. By Proposition 3.1 the part of
uh which is away from frequency 2k has size

‖∇a(1−S[k−C,k+C])uh+1‖L∞L2 . 2k(|a|−1)2(N+2)(h−k)‖∇u(0)‖L2 , |a| ≥ 1
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We claim that the same happens for a = 0; only the low frequency
bound is nontrivial, so we need to show that

(50) ‖S<k−2C+2uh+1‖L∞L2 . cN2−k2(N+2)(h−k)‖∇u(0)‖L2

We use induction with respect to h. The implicit constants in our
bounds depend on N ; to avoid any danger of confusion, above and in
the following argument we make this dependence explicit.

If h = k
2

then (50) follows easily by integrating the previous bound
and readjusting N . For the induction step we need a bound for the
difference vh = uh+1−uh. The vh,0 part was already estimated in (49),
it remains to consider vh,1. We rewrite the vh,1 equation as

(P̃<h + Shm)vh,1 = −(P̃h − Shm)(1− S[k−C,k+C])uh+1

−(Shm)(1− S[k−C,k+C])uh

The first part contains derivatives so we estimate it using the |a| ≥ 1
bound. Hence we obtain

‖(P̃<h + Shm)vh,1‖L1L2 . cN2−k2(N+2)(h+1−k)‖∇u(0)‖L2 + ‖uh‖L∞L2

It is important here that the secont term contains no N dependent
constant. By energy estimates this gives

‖vh,1‖L∞L2 . cN2−k2(N+2)(h+1−k)‖∇u(0)‖L2 + ‖uh‖L∞L2

Summing up all bounds we have proved that

‖uh+1‖L∞L2 . cN2−k2(N+2)(h+1−k)‖∇u(0)‖L2 + ‖uh‖L∞L2

which suffices for the induction step provided that cN is chosen suffi-
ciently large.

The regularity (13) of the coefficients implies that Shg has size 2−2h

and Shl has size 2−h in L1L∞ therefore

‖P̃<hvh,1‖L1L2 . 2−k2N(h−k)‖∇u(0)‖L2

which leads to

‖∇vh,1‖L∞L2 . 2−k2N(h−k)‖∇u(0)‖L2

Higher order derivatives of vh,1 are estimated in a similar manner by
differentiating the vh,1 equation. Then the corresponding part of the
bound (48) follows by summation in h.

c) Using the above bounds for vh,1 and some simple commutations
we obtain

‖P̃<hS[k−2C,k+2C]vh,1‖L1L2 . 2−k2N(h−k)‖∇u(0)‖L2

Hence the contributions of S[k−2C,k+2C]vh,1 to S[k−2C,k+2C]u is negligible,
i.e. it can be included into a single wave packet v±k−3C,j.



28 DANIEL TATARU AND DAN-ANDREI GEBA

On the other hand by Proposition 6.2 we have the wave packet de-
composition for the frequency 2k part of uh,

S[k−C,k+C]uh =
∑
j∈Jh

∑
±

a±h,ju
±
h,j

The functions u±h,j satisfy the bounds (24). This implies that

(51) ‖(x− x±t )a(x− x±t )bnd
ρP̃hu

±
h,j‖L1L2 ≤ 2k−2h2kρ+(h−k)(|a|+2b+|ρ|),

We define the functions v±h,j as

v±h,j = 22h−kS[k−2C,k+2C]w
±
h,j

where w±h,j solves

P̃<hw
±
h,j = −P̃hu±h,j

Then
S[k−2C<·<k+2C]vh,1 = 2k−2h

∑
j∈Jh

v±h,j

Furthermore, by Corollary 5.3 and (51) we conclude that v±h,j is an

(k, h,±) wave packet associated to the same P̃<h bicharacteristic as
u±h,j.

�

8. Frequency localized dispersive estimates.

Proposition 8.1. Assume that the coefficients of P satisfy (13). Let
u be the solution for P̃<k−3C with initial data u[0] localized at frequency
2k. Then the following estimates hold:

(52) ‖∇S[k−2C,k+2C]u(t)‖Lp . 2k(n+1)( 1
2
− 1

p
)t−(n−1)( 1

2
− 1

p
)‖∇u(0)‖Lp′

for p as in (10).

Proof. The bound is trivial for p = 2. It also follows from the p = 2
case by Sobolev embeddings provided that |t| < 2−k. For larger t we
rescale and reduce the problem to the case t = 1.

For t = 1 we use the multiscale decomposition in the previous section.
For each of the functions S[k−2C,k+2C]vh we prove an L2 → L2 and an
L1 → L∞ bound. The L2 → L2 bound is the trivial one obtained from
energy estimates for vh, namely

(53) ‖∇S[k−2C,k+2C]vh(1)‖L2 . 2k−2h‖∇u(0)‖L2

For the L1 → L∞ bound it suffices to consider an initial data u[0]
which is an L1 normalized bump function on the 2−k scale concen-
trated at a point, say x = 0. Then the wave packet decomposition for
the initial data contains only packets spatially centered at 0. There
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must be 2
(n−1)(k−h)

2 such packets u±h,j[0] whose coefficients a±h,j have size

2
k
2
+(n−1)h

2 . This leads to the (k, h,±) wave packet decomposition for
uh.

The (k, h,±) wave packet decomposition for S[k−2C,k+2C]vh is similar
and involves the same packets, except that we gain an additional 2k−2h

factor. Each packet v±h,j is normalized in L2 and frequency localized on

a 2k × (2h)n−1 scale, therefore by Sobolev embeddings

‖(x− xtj)
a(x− xtj)

b
n∇v±h,j(t)‖L∞ . 2(h−k)(|a|+2|b|)2

k
2
+(n−1)h

2

Thus for ∇vh,j we get an 2
k
2
+(n−1)h

2 uniform bound, plus rapid decay
outside the parallelepiped Rj(t) centered at xj(t) and of size 22(h−k) ×
(2h−k)n−1.

Observe that at time 1 the rectangles Rj(1) are essentially disjoint.
This is due to Proposition 4.2 since the points xj(1) are reached on the
bicharacteristics starting at (0, ξj) where the directions ξj have angular
separation 2h−k.

Then for the sum S[k−2C,k+2C]vh(1) we obtain

‖∇S[k−2C,k+2C]vh(1)‖L∞ . 2
k
2
+(n−1)h

2 2k−2h2
k
2
+(n−1)h

2 = 22k+(n−3)h

Hence

(54) ‖∇S[k−2C,k+2C]vh(1)‖L∞ . 22k+(n−3)h‖∇u(0)‖L1

Interpolating between (53) and (54) we obtain

(55) ‖∇S[k−2C,k+2C]vh(1)‖Lp . 2k(2−
2
p
)2h(n−3−(n−1) 2

p
)‖∇u(0)‖Lp′

The conclusion of the proposition follows after summation with respect
to h in the range k

2
≤ h ≤ k − 3C.

�

9. Conclusion

We denote by uk, ũk the solutions to

P<k−3Cuk = 0, uk[0] = Sku[0]

respectively

P̃<k−3C ũk = 0, ũk[0] = Sku[0]

The results in the previous two sections apply to the function ũk. The
next result asserts assert that uk is close to ũk and has similar proper-
ties.
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Proposition 9.1. Assume that the coefficients of P satisfy (13). Then

‖∇(uk − ũk)‖L∞L2 . 2−k‖Sku[0]‖H1×L2

In addition, if C is large enough then

(56) ‖P<k−3CS[k−2C,k+2C]uk‖L2 . µ(t)2−k‖Sku[0]‖H1×L2

Using the functions uk we can construct a good approximate solution
to (6).

Proposition 9.2. Assume that the coefficients of P satisfy (13).
a) For s = 0 we have

(57) ‖P
∞∑
k=1

S[k−2C,k+2C]uk‖L1Hs . ‖∇u(0)‖Hs−1

If in addition (11) is valid then the above estimate holds for 0 ≤ s ≤ 2.
b) The equation (6) is well-posed in Hs× Hs−1, s ∈ [0, 1]. If in

addition (11) is valid then the well-posedness range extends to s ∈ [0, 3].

A straightforward consequence of the above propositions is

Corollary 9.3. Let s = 0. Then the solution u to (6) can be repre-
sented as

(58) u = v +
∞∑
k=1

S[k−2C,k+2C]ũk

where

‖∇v‖L∞(Hs) . ‖∇u(0)‖Hs−1

If in addition (11) is valid then the same result holds for 0 ≤ s ≤ 2.

This allows us to quickly conclude the proof of our main theorem.
Precisely, the dispersive estimates for

∑
S[k−2C,k+2C]ũk follow from

Theorem 8.1 in the previous section combined with Littlewood-Paley
theory. On the other hand in the bounds for v we have gained one
derivative, therefore we can simply use Sobolev embeddings to obtain
the desired Lp estimates.

Proof of Proposition 9.1: We write an equation for the difference,

P<k−3C(uk − ũk) = (P̃<k−3C − P<k−3C)ũk, (uk − ũk)[0] = 0

Then we need to show that

‖(P̃<k−3C − P<k−3C)ũk‖L1L2 . 2−k‖Sku[0]‖H1×L2
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But this follows from the estimate (47) for ũk, since by (13) the coeffi-
cients of P̃<k−3C − P<k−3C satisfy the pointwise bounds

‖(S̃<k−3C − S<k−3C)g‖L1L∞ . 2−2k

‖(S̃<k−3C − S<k−3C)l‖L1L∞ . 2−k

‖(S̃<k−3C − S<k−3C)m‖L1L∞ . 1

The proof of the second part of the proposition is identical to the
proof of Corollary 3.2. The function µ(t) can be used because all com-
mutators are estimated at fixed time.

�

Proof of Proposition 9.2: a) We need to bound the function∑
k≥1

P<k−3CS[k−2C,k+2C]uk +
∑
k≥1

P[k−3C,k+3C]S[k−2C,k+2C]uk

+
∑
k≥1

P>k+3CS[k−2C,k+2C]uk

in L∞Hs. The first sum is easily estimated using (56) and orthogonal-
ity.

In the second sum we have two comparable frequencies interacting,
and the product contains frequencies which are similar or lower. We
claim that (13) suffices in order to estimate it as in (57) for all s ≥ 0.
From (13) we obtain

‖S[k−3C,k+3C]g‖L1L∞ . 2−2k, ‖S[k−3C,k+3C]l‖L1L∞ . 2−k,

‖S[k−3C,k+3C]m‖L1L∞ . 1

which leads to the trivial bound

‖P[k−3C,k+3C]S[k−2C,k+2C]uk‖L∞L2 . 2−k‖∇S[k−2C,k+2C]uk‖L∞L2

This suffices for s > 0. In the case s = 0 we make the additional
observation that at fixed time the expressions

∞∑
k=1

(S[k−3C,k+3C]g
iα)∂i∂αS[k−2C,k+2C]uk

∞∑
k=1

(S[k−3C,k+3C]l
α)∂αS[k−2C,k+2C]uk,

∞∑
k=1

(S[k−3C,k+3C]m)S[k−2C,k+2C]uk

are combinations of paraproducts of ∂2giα, ∂lα respectively m with
sub-sums of |Dx|−1

∑∞
k=1∇S[k−2C,k+2C]uk which are chosen so that the
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terms have disjoint Fourier support. Hence at each time t we can bound
them in L2 using the Coifman-Meyer paraproduct estimate [3] by

(‖∂2g‖L∞ + ‖∇l‖L∞ + ‖m‖L∞)(
∞∑
k=1

‖|Dx|−1∇S[k−2C,k+2C]uk‖2
L2)

1
2

It remains to consider the third sum. There the g factor is at a
higher frequency, which is inherited by the product. In the case s = 0
the above paraproduct argument still applies under the assumption
that (13) holds.

In the case s = 2 we use the stronger assumption (11) on the coeffi-
cients. We need to estimate

‖∂2
x

∑
k≥1

P>k+3CS[k−2C,k+2C]uk‖L1L2

The worst case is when the two derivatives in front apply to the co-
efficients of P . Then we need fixed time L2 bounds for paraproducts
of

∂2
xg with

∑
k≥1

∂x∇S[k−2C,k+2C]uk

∂2
xl with

∑
k≥1

∇S[k−2C,k+2C]uk

∂2
xm with

∑
k≥1

S[k−2C,k+2C]uk

Using the Coifman-Meyer paraproduct estimate we bound these para-
products at fixed time by

‖∂2
xg‖L∞‖∂x∇S[k−2C,k+2C]uk‖L2 + ‖∂2

xl‖Ln‖∇S[k−2C,k+2C]uk‖
L

2n
n−2

+‖∂2
xm‖Ln

2
‖∇S[k−2C,k+2C]uk‖

L
2n

n−4

and then use Sobolev embeddings for the second factor.
b) For s = 1 the well-posedness follows directly from energy estimates

using only (12). For s = 2, 3 we use the stronger condition (11) to
differentiate the equation once, respectively twice and then use the
energy estimates.

For s = 0 we use an indirect argument. We seek the solution u of
the form (58). Then v should solve

Pv = −P
∑
k≥1

S[k−2C,k+2C]uk, v[0] = 0
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But by (a) the right hand side can be estimated in L1L2, therefore we
can solve this equation using only the s = 1 result. This concludes the
proof of the Proposition. �
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