Math 202B Solutions

Assignment 7 D. Sarason

25. Let f be in $L^p(\lambda_N)$ and g in $L^{p'}(\lambda_N)$. Prove that f*g is bounded and continuous.

Proof: Clearly, for any x, $|(f*g)(x)| = \left| \int_{\mathbb{R}^N} f(y)g(x-y) \, d\lambda_N(y) \right| \le ||f||_p ||g||_{p'}$, so f*g is bounded. Also, if T_a represents the operation of translation by a (i.e. $T_a f(x) = f(x-a)$), then $T_a (f*g) = (T_a f)*g$. Proof:

$$(f * g)(x - a) = \int_{\mathbb{R}^N} f(y)g(x - a - y) \, dy = \int_{\mathbb{R}^N} f(y - a)g(x - y) \, dy = ((T_a f) * g)(x).$$

Thus, if $1 \le p < \infty$, then $||T_a(f * g) - f * g||_{\infty} \le ||T_a f - f||_p ||g||_{p'} \to 0$ as $a \to 0$, which implies that f * g is uniformly continuous. If $p = \infty$, use symmetry to reverse the roles of f and g.

26. (a) Let the function $\psi : \mathbb{R} \to \mathbb{R}$ be of class C^{∞} and have compact support. Let the function g be in $L^p(\lambda)$ $(1 \le p \le \infty)$. Prove that $\psi * g$ is of class C^{∞} , with $(\psi * g)^{(n)} = \psi^{(n)} * g$ for all positive integers n.

Proof: It will be enough to show that $\psi * g$ is differentiable with derivative $\psi' * g$; the desired conclusion will then follow by induction.

For $\delta \neq 0$ define the function $D_{\delta}\psi$ by

$$D_{\delta}\psi(x) = \frac{\psi(x+\delta) - \psi(x)}{\delta}.$$

One easily verifies that

$$\frac{(\psi * g)(x + \delta) - (\psi * g)(x)}{\delta} = (D_{\delta}\psi) * g(x).$$

We now have $D_{\delta}\psi \to \psi'$ pointwise; also, by the mean value theorem, $D_{\delta}\psi(x) = \psi'(c)$ for some c between x and $x + \delta$. However, since ψ' is continuous and has compact support, it is uniformly continuous. This implies that $\|D_{\delta}\psi - \psi'\|_{\infty} \to 0$ as $\delta \to 0$. Also, if ψ is supported on [-R, R] and $|\delta| < 1$, then $D_{\delta}\psi$ is supported on [-R - 1, R + 1]. If we let K = [-R - 1, R + 1], then $\|D_{\delta}\psi - \psi'\|_{p'} \le \|D_{\delta}\psi - \psi'\|_{\infty} m(K)^{1/p'} \to 0$ for $p' < \infty$ also. Therefore,

$$\left| \frac{(\psi * g)(x+\delta) - (\psi * g)(x)}{\delta} - (\psi' * g)(x) \right| \le \|D_{\delta}\psi - \psi'\|_{p'} \|g\|_p \to 0 \text{ as } \delta \to 0,$$

which gives the desired conclusion.

(b) Use Part (a) to prove that $C^{\infty}(\mathbb{R}) \cap L^p(\lambda)$ is dense in $L^p(\lambda)$ for $1 \leq p < \infty$.

Proof: Take a nonnegative C^{∞} function ψ of compact support such that $\|\psi\|_1 = 1$. For example, let

$$\psi(x) = \begin{cases} C \exp\left(\frac{1}{x^2 - 1}\right), & |x| < 1\\ 0, & |x| \ge 1, \end{cases}$$

where the constant C is chosen so that $\|\psi\|_1 = 1$. For $\epsilon > 0$ let $\psi_{\epsilon}(x) = \frac{1}{\epsilon}\psi(\frac{x}{\epsilon})$.

Let g be in $L^p(\lambda)$ $(1 \le p < \infty)$. By Theorem 15.1 in lecture we have $\psi_{\epsilon} * g \to g$ in L^p norm. By part (a), each function $\psi_{\epsilon} * g$ is of class C^{∞} , giving the desired conclusion.

27. Let E be a Lebesgue measurable subset of \mathbb{R}^N of finite positive measure. Prove that the set

$$E - E = \{x - y : x, y \in E\}$$

contains a neighborhood of the origin.

Proof: Consider the convolution $\chi_E * \chi_{-E}$; we calculate

$$(\chi_E * \chi_{-E})(a) = \int_{\mathbb{R}^N} \chi_E(t) \chi_{-E}(a-t) \, d\lambda_N(t) = \int_{\mathbb{R}^N} \chi_E(t) \chi_{E+a}(t) \, d\lambda_N(t) = \lambda_N(E \cap (E+a)).$$

By problem 25, since $\chi_E \in L^1(\lambda_N)$ and $\chi_{-E} \in L^{\infty}(\lambda_N)$, this means that $\lambda_N(E \cap (E+a))$ is a continuous function of a. By hypothesis this function has value $\lambda_N(E) > 0$ at a = 0, so the function is positive for a in some neighborhood of 0. In particular, for any such $a, E \cap (E+a) \neq \emptyset$, so $a \in E - E$.

28. Prove that the algebra $L^1(\lambda)$ has no identity (λ = Lebesgue measure on \mathbb{R}).

Proof 1: Suppose, to the contrary, that there were a function $e \in L^1(\lambda)$ such that e * g = g for each $g \in L^1(\lambda)$. Let $\psi = \chi_{[0,1]}$, and for $\epsilon > 0$ let $\psi_{\epsilon}(x) = \frac{1}{\epsilon}\psi(\frac{x}{\epsilon})$. Then by Theorem 15.1 in lecture, we have $\psi_{\epsilon} = e * \psi_{\epsilon} \to e$ in $L^1(\lambda)$ as $\epsilon \to 0$. However, this is impossible, since a straightforward calculation shows that $\|\psi_{2^{-n}} - \psi_{2^{-(n+1)}}\|_1 = 1$, so the sequence $(\psi_{2^{-n}})_{n=1}^{\infty}$ is not Cauchy in $L^1(\lambda)$.

Proof 2: If $e \in L^1(\lambda)$ were an identity, then by problem 25 we would have $e * \chi_{[0,1]} = \chi_{[0,1]}$ is equal to some continuous function almost everywhere. However, this is impossible since $\chi_{[0,1]}$ clearly remains discontinuous at 0 and 1 after any modification on a set of measure zero.