Math 202B Solutions

Assignment 1 D. Sarason

1. Let \mathcal{R} be a ring on a set X, let \mathcal{R}' be the family of complements of the sets in \mathcal{R} , and let $\mathcal{A} = \mathcal{R} \cup \mathcal{R}'$. Prove that \mathcal{A} is an algebra, and is a σ -algebra if \mathcal{R} is a σ -ring.

Proof: First, if $A, B \in \mathcal{R}$, and we set $A' = X \setminus A \in \mathcal{R}'$ and $B' = X \setminus B \in \mathcal{R}'$, then $A \cup B \in \mathcal{R}$; $A' \cup B' = X \setminus (A \cap B) \in \mathcal{R}'$; and $A \cup B' = X \setminus (B \setminus A) \in \mathcal{R}'$. Therefore, A is closed under finite unions. Since A is obviously closed under absolute complements, if $A, B \in \mathcal{A}$, then $A \setminus B = X \setminus (B \cup (X \setminus A)) \in \mathcal{A}$, showing that A is also closed under relative complements. Clearly, $X = X \setminus \emptyset \in \mathcal{R}'$, which completes the proof that A is an algebra.

Now if \mathcal{R} is a σ -ring, then \mathcal{R}' is closed under countable unions, since \mathcal{R} is closed under countable intersections. Namely, if $A_n \in \mathcal{R}$ for $n=1,2,\ldots$, then $\bigcup_{n=1}^{\infty}(X\setminus A_n)=X\setminus \bigcap_{n=1}^{\infty}A_n\in \mathcal{R}'$. Thus, if we have $A_n\in \mathcal{A}$ for $n=1,2,\ldots$, then $\bigcup_{A_n\in\mathcal{R}}A_n\in \mathcal{R}$, and $\bigcup_{A_n\in\mathcal{R}'}A_n\in \mathcal{A}$ (the latter union could be empty if all $A_n\in \mathcal{R}$). Therefore, $\bigcup_{n=1}^{\infty}A_n=\left(\bigcup_{A_n\in\mathcal{R}}A_n\right)\cup\left(\bigcup_{A_n\in\mathcal{R}'}A_n\right)\in\mathcal{A}$.

2. Let \mathcal{L} be a lattice of sets, that is, a family of sets that contains \emptyset and is closed under finite unions and finite intersections. Prove that the family of relative complements of the sets in \mathcal{L} is a semiring.

Proof: First, $\emptyset = \emptyset \setminus \emptyset$ is in this family. Now, for $A, B, C, D \in \mathcal{L}$, we have $(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D)$ is a relative complement of sets in \mathcal{L} . Similarly, $(A \setminus B) \setminus (C \setminus D)$ can be expressed as the disjoint union of $A \setminus (B \cup C)$ and $(A \cap C \cap D) \setminus B$.

3. Let X be a complete metric space, and let A be the family of subsets of X that are either meager or residual. For A in A define

$$\mu(A) = \begin{cases} 0 & \text{if } A \text{ is meager} \\ 1 & \text{if } A \text{ is residual.} \end{cases}$$

Prove that A is a σ -algebra and that μ is a measure.

Proof: Since the family of meager subsets of X is a σ -ring (in fact, a hereditary σ -ring), problem 1 implies that \mathcal{A} is a σ -algebra. Also, by the Baire category theorem, no subset of X is both meager and residual, so μ is well-defined. Obviously, $\mu(\emptyset) = 0$. Now suppose $E_n \in \mathcal{A}$ are disjoint. Then if each E_n is meager, then $\bigcup_{n=1}^{\infty} E_n$ is meager, so $\mu(\bigcup_{n=1}^{\infty} E_n) = 0 = \sum_{n=1}^{\infty} \mu(E_n)$. Otherwise, some E_n is residual, which implies all other E_m are meager, since no two residual subsets of X are disjoint. Also, $\bigcup_{n=1}^{\infty} E_n$ is residual. Thus, $\mu(\bigcup_{n=1}^{\infty} E_n) = 1 = \sum_{n=1}^{\infty} \mu(E_n)$.

- 4. Let $X = \{0,1\}^{\mathbb{N}}$, the set of all sequences of 0's and 1's (aka the coin-tossing space), regarded as a topological space with the product topology (each coordinate space $\{0,1\}$ having the discrete topology). For n in \mathbb{N} let P_n denote the n-th coordinate projection on X, the function that maps a sequence in X to its n-th term. Recall that the subbasic open sets in X are the sets $P_n^{-1}(\epsilon)$ $(n \in \mathbb{N}, \epsilon \in \{0,1\})$, and the basic open sets are the finite intersections of subbasic open sets.
 - (a) Prove the Borel σ -algebra on X is the σ -algebra generated by the basic open sets.

Proof: Since there are countably many subbasic open sets, there are only countably many possible finite intersections of them, so the given basis of X is countable. Now any open set in X is a union of basic open sets, and this union is automatically countable, which shows that every open set is in the σ -algebra generated by the basic open sets. Thus, the Borel σ -algebra on X is contained in the σ -algebra generated by the basic open sets, and the other inclusion is obvious.

(b) Prove the basic open sets, together with \emptyset , form a semiring.

Proof: For S a finite subset of \mathbb{N} and $f: S \to \{0,1\}$, let U(S,f) be the set of functions $x: \mathbb{N} \to \{0,1\}$ such that the restriction x|S=f. (This is another way of stating the definition given on the problem sheet.) Thus, the sets U(S,f) enumerate the basic open sets. We now have $U(S,f) \cap U(T,g) = \emptyset$ if $f|(S \cap T) \neq g|(S \cap T)$. Otherwise, $U(S,f) \cap U(T,g) = U(S \cup T,f \cup g)$. Also, $U(S,f) \setminus U(T,g)$ is the disjoint union of sets $U(S \cup T,h)$ over functions $h: S \cup T \to \{0,1\}$ satisfying h|S=f but $h|T\neq g$. Since $S \cup T$ is a finite set, there are finitely many such functions h.