HOMEWORK ASSIGNMENT 7

Due in class on Friday, March 12.

- 25. Let f be in $L^p(\lambda_N)$ and g in $L^{p'}(\lambda_N)$. Prove that f * g is bounded and continuous.
- 26. (a) Let the function $\psi : \mathbb{R} \to \mathbb{R}$ be of class C^{∞} and have compact support. Let the function g be in $L^p(\lambda)$ $(1 \le p \le \infty)$. Prove that $\psi * g$ is of class C^{∞} , with $(\psi * g)^{(n)} = \psi^{(n)} * g$ for all positive integers n.
 - (b) Use Part (a) to prove that $C^{\infty}(\mathbb{R}) \cap L^p(\lambda)$ is dense in $L^p(\lambda)$ for $1 \leq p < \infty$.
- 27. Let E be a Lebesgue measurable subset of \mathbb{R}^N of finite positive measure. Prove that the set

$$E - E = \{x - y : x, y \in E\}$$

contains a neighborhood of the origin.

28. Prove that the algebra $L^1(\lambda)$ has no identity (λ = Lebesgue measure on \mathbb{R}).