HOMEWORK ASSIGNMENT 6

Due in class on Friday, March 5.

- 21. Suppose the sequence $(f_n)_1^{\infty}$ in $L^1(\mu)$ converges almost everywhere to the function f in $L^1(\mu)$, and that $\lim_{n\to\infty} \|f_n\|_1 = \|f\|_1$. Prove that $\lim_{n\to\infty} \|f f_n\|_1 = 0$.
- 22. Let (X, \mathcal{R}, μ) and (Y, \mathcal{S}, ν) be σ -finite measure spaces. Let A be a set in the hereditary σ -ring generated by \mathcal{R} and B a set in the hereditary σ -ring generated by \mathcal{S} . Prove that $(\mu \times \nu)^*(A \times B) = \mu^*(A)\nu^*(B)$.
- 23. (a) Prove that if f is in $L^1(\mu)$ then $\lim_{t\to\infty} t\Lambda_f(t) = 0$.
 - (b) Prove that if μ is a finite measure, if f is a measurable function, and if there is a positive number ϵ such that $\Lambda_f(t) = O(1/t(\log t)^{1+\epsilon})$ as $t \to \infty$, then f is in $L^1(\mu)$.
- 24. Let f be in $L^1(\lambda)$. Define the function g on \mathbb{R} by

$$g(x) = \int_{\mathbb{R}} \frac{f(y)}{1 + x^2 + y^2} dy.$$

Prove that g is in $L^1(\lambda)$, and that $||g||_1 \le \pi ||f||_1$.