HOMEWORK ASSIGNMENT 5

Due in class on Friday, February 27.

- 17. Let f and g be in $L^p(\mu)$, where $1 . Prove that the inequality <math>||f + g||_p \le ||f||_p + ||g||_p$ is strict unless f = 0 a.e., or g = 0 a.e., or g is a positive scalar multiple of f. (Geometric interpretation: The closed unit ball of $L^p(\mu)$ is strictly convex.)
- 18. Assume $1 \le p_0 < p_1 < \infty$. For 0 < t < 1 define p_t by

$$\frac{1}{p_t} = \frac{1-t}{p_0} + \frac{t}{p_1}.$$

Prove that if f is in $L^{p_0}(\mu) \cap L^{p_1}(\mu)$, then f is in $L^{p_t}(\mu)$ and

$$||f||_{p_t} \le ||f||_{p_0}^{1-t} ||f||_{p_1}^t.$$

- 19. Let f be in $L^{\infty}(\mu)$ and in $L^{p}(\mu)$ for some finite p. Prove that $||f||_{\infty} = \lim_{p \to \infty} ||f||_{p}$.
- 20. Let λ be Lebesgue measure on \mathbb{R} . Let p be in $(1, \infty)$. Construct a function that is in $L^p(\lambda)$ but that fails to be in $L^q(\lambda)$ for q in $[1, \infty)\setminus\{p\}$.