HOMEWORK ASSIGNMENT 4

Due in class on Friday, February 20.

13. Let (X, \mathcal{A}, μ) be a finite measure space and let f be a nonnegative measurable function on X. Prove that f is integrable if and only if

$$\sum_{n=1}^{\infty} \mu(\{f > n\}) < \infty.$$

- 14. For α a real number, define the function f_{α} on \mathbb{R} by $f_{\alpha}(x) = |x|^{2\alpha}/(1+x^2)$. Prove that f is Lebesgue integrable if and only if $-\frac{1}{2} < \alpha < \frac{1}{2}$.
- 15. Let f be a Lebesgue-integrable function on \mathbb{R} . Prove that the series

$$\sum_{n=-\infty}^{\infty} f(x+n)$$

converges absolutely for almost every x in \mathbb{R} .

16. Let f be a Lebesgue-integrable function on \mathbb{R}^N . For $r \geq 0$ let $B_r = \{x \in \mathbb{R}^N : ||x|| \leq r\}$, and define the function $g: [0, \infty) \to \mathbb{R}$ by

$$g(r) = \int_{B_r} f \ d\lambda_N$$

 $(\lambda_N = \text{Lebesgue measure})$. Prove g is continuous.