HOMEWORK ASSIGNMENT 3

Due in class on Friday, February 13.

- 9. Let E be a Lebesgue null subset of \mathbb{R} and let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function. Prove f(E) is a null set.
- 10. Let X be a set, \mathcal{A} a σ -algebra on X, and $(f_n)_1^{\infty}$ a sequence of real-valued \mathcal{A} -measurable functions. Prove that the set of points where $\lim_{n\to\infty} f_n$ exists finitely belongs to \mathcal{A} .
- 11. Let X be a topological space and \mathcal{F} a family of continuous real-valued functions on X. Prove that the function g defined by

$$g(x) = \sup\{f(x) : f \in \mathcal{F}\}\$$

is Borel measurable. (Note that \mathcal{F} need not be countable.)

12. Let X be a set and \mathcal{A} a σ -algebra on X. A complex-valued function f on X is said to be \mathcal{A} -measurable if its real and imaginary parts are \mathcal{A} -measurable. Prove that this happens if and only if $f^{-1}(B)$ is in \mathcal{A} for every Borel subset B of the complex plane.