Math 202B Spring 2004
Sarason

HOMEWORK ASSIGNMENT 10

Due in class on Friday, April 9.
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Let By and By be Banach spaces, with the norm in each denoted by || - ||. Let p be a number
in [1, oo].

(a) Prove one gets a norm on By @ Bs, the algebraic direct sum of By and Bs, if one defines

o ||P + [|lz2||P)P, 1< p< oo
21 & 3| = (o [P+ [l2]7)
max{||z[|, [[z2]),  p = oo.

(b) Let By @, By denote B; @ B, equipped with the preceding norm. Prove By @, Bs is
complete.
(c) Prove that the dual of By &, B, equals B} &, Bj.

Prove that all norms on a finite-dimensional vector space B are equivalent: if || - || and || - ||/
are norms on B, then there are positive constants ¢; and ¢y such that

allzll < 2" < eol]]
for all z in B.
Prove that a finite dimensional subspace of a Banach space is closed.

(a) Let x1,...,x, be linearly independent vectors in a Banach space B. Prove that there are
functionals ¢, ..., ¢, in B* such that ¢;(z;) =1 for all j and ¢;(zx) = 0 for j # k.

(b) Let A be a finite-dimensional subspace of a Banach space B. Prove that there is a closed

subspace A’ of B such that AN A" ={0} and A+ A" = B.

Consider the Banach space (> (real scalars). Let T : /*° — (> be the shift operator on ¢*,
the map that sends x = (1, 29,...) in * to Tx = (0,21, 22,...). Let Y ={o—Tx:x € (>}
and let e be the sequence (1,1,...).

(a) Prove dist(e,Y) = 1.

(b) Prove there is a ¢ in (£>°)* such that p(e) =1, [[¢|| =1, and ¢ =0 on Y.

(c) Prove ¢ is translation invariant: p(7'z) = ¢(z) for all z.

(d) Prove that ligiol.}f xn, < p(x) <limsupz, for all z. (In particular, p(z) = lim =z, if x

n—oo n—0oo

converges.) (Banach. Such a functional ¢ is called a Banach limit.)



