HOMEWORK ASSIGNMENT 10

Due in class on Friday, April 9.

- 36. Let B_1 and B_2 be Banach spaces, with the norm in each denoted by $\|\cdot\|$. Let p be a number in $[1, \infty]$.
 - (a) Prove one gets a norm on $B_1 \oplus B_2$, the algebraic direct sum of B_1 and B_2 , if one defines

$$||x_1 \oplus x_2|| = \begin{cases} (||x_1||^p + ||x_2||^p)^{1/p}, & 1 \le p < \infty \\ \max\{||x_1||, ||x_2||), & p = \infty. \end{cases}$$

- (b) Let $B_1 \oplus_p B_2$ denote $B_1 \oplus B_2$ equipped with the preceding norm. Prove $B_1 \oplus_p B_2$ is complete.
- (c) Prove that the dual of $B_1 \oplus_p B_2$ equals $B_1^* \oplus_{p'} B_2^*$.
- 37. Prove that all norms on a finite-dimensional vector space B are equivalent: if $\|\cdot\|$ and $\|\cdot\|'$ are norms on B, then there are positive constants c_1 and c_2 such that

$$c_1||x|| \le ||x||' \le c_2||x||$$

for all x in B.

- 38. Prove that a finite dimensional subspace of a Banach space is closed.
- 39. (a) Let x_1, \ldots, x_n be linearly independent vectors in a Banach space B. Prove that there are functionals $\varphi_1, \ldots, \varphi_n$ in B^* such that $\varphi_j(x_j) = 1$ for all j and $\varphi_j(x_k) = 0$ for $j \neq k$.
 - (b) Let A be a finite-dimensional subspace of a Banach space B. Prove that there is a closed subspace A' of B such that $A \cap A' = \{0\}$ and A + A' = B.
- 40. Consider the Banach space ℓ^{∞} (real scalars). Let $T:\ell^{\infty}\to\ell^{\infty}$ be the shift operator on ℓ^{∞} , the map that sends $x=(x_1,x_2,\ldots)$ in ℓ^{∞} to $Tx=(0,x_1,x_2,\ldots)$. Let $Y=\{x-Tx:x\in\ell^{\infty}\}$ and let e be the sequence $(1,1,\ldots)$.
 - (a) Prove dist(e, Y) = 1.
 - (b) Prove there is a φ in $(\ell^{\infty})^*$ such that $\varphi(e) = 1$, $\|\varphi\| = 1$, and $\varphi = 0$ on Y.
 - (c) Prove φ is translation invariant: $\varphi(Tx) = \varphi(x)$ for all x.
 - (d) Prove that $\liminf_{n\to\infty} x_n \le \varphi(x) \le \limsup_{n\to\infty} x_n$ for all x. (In particular, $\varphi(x) = \lim_{n\to\infty} x_n$ if x converges.) (Banach. Such a functional φ is called a Banach limit.)