REVIEW PROBLEMS

- 1. Let C be a countable set and F a nonempty finite set.
 - (a) Prove that the set of functions of F into C is countable.
 - (b) Prove that, if card F > 1, the set of functions of C into F is uncountable.
- 2. (a) Prove that the set of polynomials with integer coefficients is countable.
 - (b) Use (a) to prove that the set of algebraic numbers is countable.
- 3. Prove that the set of increasing sequences of natural numbers has the same cardinality as the set of all sequences of natural numbers.
- 4. Prove that the sets \mathbb{R} , (0,1), [0,1], and $\mathbb{R}\setminus\mathbb{Q}$ all have the same cardinality.
- 5. Let $(a_n)_1^{\infty}$ be a sequence in \mathbb{R} such that $\lim_{n\to\infty} a_n = 0$. Prove there is a sequence $(b_n)_1^{\infty}$ in \mathbb{R} such that $\lim_{n\to\infty} b_n = \infty$ and $\lim_{n\to\infty} a_n b_n = 0$.
- 6. Let $(s_n)_1^{\infty}$ be a sequence in \mathbb{R} , and let the sequence $(t_n)_1^{\infty}$ be defined by $t_n = \frac{1}{n}(s_1 + s_2 + \cdots + s_n)$.
 - (a) Find an example where $(s_n)_1^{\infty}$ diverges but $(t_n)_1^{\infty}$ converges.
 - (b) Prove that if $(s_n)_1^{\infty}$ is monotone and $(t_n)_1^{\infty}$ converges, then $(s_n)_1^{\infty}$ converges.
- 7. Let A be a subset of \mathbb{R} , let A' denote its set of limit points, and let A'' denote the set of limit points of A'. Prove that $A'' \subset A'$, and $(A \cup A')' = A'$.
- 8. (a) Construct a subset A of \mathbb{R} such that $A' \neq \emptyset$ but $A'' = \emptyset$.
 - (b) Construct a subset A of \mathbb{R} such that $A'' \neq \emptyset$ but $A''' = \emptyset$.
- 9. Let $(s_n)_1^{\infty}$ and $(t_n)_1^{\infty}$ be bounded sequences in \mathbb{R} , let A be the set of cluster points of $(s_n)_1^{\infty}$, let B be the set of cluster points of $(t_n)_1^{\infty}$, and let C be the set of cluster points of $(s_n + t_n)_1^{\infty}$. Prove that

$$C \subset A + B := \{a + b : a \in A, b \in B\}.$$

Give an example in which the inclusion is strict.

10. Let $(s_n)_1^{\infty}$ be a bounded sequence in \mathbb{R} and $(t_n)_1^{\infty}$ a convergent sequence. Prove that

$$\lim_{n\to\infty} \sup(s_n + t_n) = \lim_{n\to\infty} \sup s_n + \lim_{n\to\infty} t_n.$$

11. Let a and b be natural numbers. Define the sequence $(r_n)_1^{\infty}$ recursively by

$$r_1 = 1$$
, $r_{n+1} = a + \frac{b}{r_n}$ $(n = 1, 2, ...)$.

Prove that $(r_n)_1^{\infty}$ converges, and find the limit.

12. Let $(b_n)_1^{\infty}$ be a bounded increasing sequence in \mathbb{R} . Suppose the sequence $(s_n)_1^{\infty}$ satisfies $|s_{n+1} - s_n| \leq b_{n+1} - b_n$. Prove $(s_n)_1^{\infty}$ converges.