HOMEWORK ASSIGNMENT 7

Due in class on Wednesday, October 22.

- P. Prove that the following sets are open.
 - (a) $U_1 = \{x \in \mathbb{R}^k : ||x|| > 1\}$
 - (b) $U_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 > 0\}$
 - (c) $U_3 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 > x_4, x_2 < x_3\}$
- Q. Prove that the following sets are closed.
 - (a) $F_1 = \{x \in \mathbb{R}^k : ||x|| = 1\}$
 - (b) $F_2 = \{(x, y) \in \mathbb{R}^2 : y \ge x^2\}$
 - (c) $F_3 = \{(x, y, z) \in \mathbb{R}^3 : xyz = 0\}$
- R. Find the set of limit points of the subset $A = \left\{ \left(\frac{1}{n}, \frac{k}{n} \right) : n \in \mathbb{N}, k \in \mathbb{N}_n \right\}$ of \mathbb{R}^2 .
- S. Let \mathcal{B}_0 be the family of balls $B_r(q)$ in \mathbb{R}^k such that q is in \mathbb{Q}^k and r is in \mathbb{Q} .
 - (a) Prove \mathcal{B}_0 is countable.
 - (b) Prove that, if U is an open subset of \mathbb{R}^k , then U is the union of the balls in \mathcal{B}_0 that it contains.
- T. Let F be an infinite closed subset of \mathbb{R}^k . Prove there is a countable set whose closure is F.
- U. (a) Let F be a closed subset of \mathbb{R}^k . Prove there are open sets U_1, U_2, \ldots such that $F = \bigcap_{n=1}^{\infty} U_n$.
 - (b) Let U be an open subset of \mathbb{R}^k . Prove there are closed sets F_1, F_2, \ldots such that $U = \bigcup_{n=1}^{\infty} F_n$.