Review Problems

- 1. Prove that every polynomial on \mathbb{R} of odd degree has a real root.
- 2. Let L_1, L_2, \ldots be lines in \mathbb{R}^2 . Prove $\bigcup_{n=1}^{\infty} L_n \neq \mathbb{R}^2$.
- 3. Let E be an uncountable subset of \mathbb{R} . A point c of \mathbb{R} is called a condensation point of E if $(c-\varepsilon,c+\varepsilon)\cap E$ is uncountable for every $\varepsilon>0$. Let C be the set of condensation points of E. Prove $E\setminus C$ is countable.
- 4. Let the function $\varphi: \mathbb{R}^2 \to \mathbb{R}$ be defined by $\varphi(x,y) = x + y$.
 - (a) Prove φ maps open sets onto open sets.
 - (b) Find a closed subset of \mathbb{R}^2 whose image under φ is not closed.
 - (c) Prove φ maps bounded closed subsets of \mathbb{R}^2 onto closed sets.
- 5. Let K be a compact subset of \mathbb{R}^N and F a closed subset of \mathbb{R}^N . Prove the set $K+F=\{x+y:x\in K,\ y\in F\}$ is closed.
- 6. Let M be a metric space, K a compact subset of M, and $(f_n)_1^{\infty}$ a sequence of nonnegative, continuous, real-valued functions on K satisfying the conditions (i) $f_{n+1}(x) \leq f_n(x)$ for all n and all x in K, and (ii) $\lim_{n\to\infty} f_n(x) = 0$ for all x in K. Prove $f_n \to 0$ uniformly on K. (Dini's lemma)
- 7. Prove that all norms on \mathbb{R}^N are equivalent to the Euclidean norm: If $\|\cdot\|$ is a norm on \mathbb{R}^N then there are positive numbers a and b such that $a\|x\|_2 \leq \|x\| \leq b\|x\|_2$ for all x.
- 8. Prove or find a counterexample: If $f:(\alpha,\beta)\to\mathbb{R}$ is differentiable and c is a point of (α,β) , then there are points a in (α,c) and b in (c,β) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

9. Let the function $F:[a,b]\times [\alpha,\beta]\to \mathbb{R}$ be continuous, and let the function $f:[a,b]\to \mathbb{R}$ be defined by

$$f(x) = \int_{\alpha}^{\beta} F(x, \xi) d\xi.$$

Prove f is continuous.

- 10. Let $f:[a,b]\to\mathbb{R}$ be bounded and $g:[a,b]\to\mathbb{R}$ Riemann integrable. Assume $|f(x)-g(x)|\leq \varepsilon$ for all x. Prove $U(f)-L(f)\leq 2\varepsilon(b-a)$.
- 11. Prove that if f and g are Riemann integrable on [a,b] then fg is Riemann integrable on [a,b]. (Suggestion: Treat first the case f=g.)
- 12. Let f be a Riemann-integrable function on [a,b]. Prove that, for every $\varepsilon > 0$, there are continuous functions g and h such that $g \leq f \leq h$ and $\int_a^b (h-g) < \varepsilon$. (Suggestion: Treat first the case where f is a step function.)

- 13. Use the Weierstrass approximation theorem to prove that C[a, b] is separable.
- 14. Prove there is a sequence $(p_n)_1^{\infty}$ of polynomials such that

$$\lim_{n \to \infty} p_n(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0. \end{cases}$$

- 15. (a) Let f be a continuous real-valued function on [0,1] such that $\int_0^1 x^n f(x) = 0$ for $n = 0, 1, 2, \ldots$ Prove f = 0.
 - (b) Suppose f is as in (a) but it is only assumed that $\int_0^1 x^n f(x) dx = 0$ for $n = 0, 2, 4, \ldots$. Can you still conclude f = 0?
- 16. Let K be a compact metric space and $(f_n)_1^{\infty}$ a sequence of functions in C(K) with the properties (i) the set $\{f_n : n \in \mathbb{N}\}$ is equicontinuous, and (ii) there is a dense subset S of K such that the sequence $(f_n(x))_1^{\infty}$ converges for each x in S. Prove the sequence $(f_n)_1^{\infty}$ converges uniformly on K.