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Sarason

Review Problems

1. Prove that every polynomial on R of odd degree has a real root.

2. Let L1, L2, . . . be lines in R
2. Prove ∪∞

n=1Ln �= R
2.

3. Let E be an uncountable subset of R. A point c of R is called a condensation point of E if
(c − ε, c + ε) ∩ E is uncountable for every ε > 0. Let C be the set of condensation points of
E. Prove E\C is countable.

4. Let the function ϕ : R
2 → R be defined by ϕ(x, y) = x + y.

(a) Prove ϕ maps open sets onto open sets.

(b) Find a closed subset of R
2 whose image under ϕ is not closed.

(c) Prove ϕ maps bounded closed subsets of R
2 onto closed sets.

5. Let K be a compact subset of R
N and F a closed subset of R

N . Prove the set K + F =
{x + y : x ∈ K, y ∈ F} is closed.

6. Let M be a metric space, K a compact subset of M , and (fn)∞1 a sequence of nonnegative,
continuous, real-valued functions on K satisfying the conditions (i) fn+1(x) ≤ fn(x) for all
n and all x in K, and (ii) limn→∞ fn(x) = 0 for all x in K. Prove fn → 0 uniformly on K.
(Dini’s lemma)

7. Prove that all norms on R
N are equivalent to the Euclidean norm: If ‖ · ‖ is a norm on R

N

then there are positive numbers a and b such that a‖x‖2 ≤ ‖x‖ ≤ b‖x‖2 for all x.

8. Prove or find a counterexample: If f : (α, β) → R is differentiable and c is a point of (α, β),
then there are points a in (α, c) and b in (c, β) such that

f ′(c) =
f(b) − f(a)

b − a
.

9. Let the function F : [a, b] × [α, β] → R be continuous, and let the function f : [a, b] → R be
defined by

f(x) =

∫ β

α

F (x, ξ)dξ.

Prove f is continuous.

10. Let f : [a, b] → R be bounded and g : [a, b] → R Riemann integrable. Assume |f(x)−g(x)| ≤ ε
for all x. Prove U(f) − L(f) ≤ 2ε(b − a).

11. Prove that if f and g are Riemann integrable on [a, b] then fg is Riemann integrable on [a, b].
(Suggestion: Treat first the case f = g.)

12. Let f be a Riemann-integrable function on [a, b]. Prove that, for every ε > 0, there are

continuous functions g and h such that g ≤ f ≤ h and
∫ b

a
(h− g) < ε. (Suggestion: Treat first

the case where f is a step function.)



13. Use the Weierstrass approximation theorem to prove that C[a, b] is separable.

14. Prove there is a sequence (pn)∞1 of polynomials such that

lim
n→∞

pn(x) =




1, x > 0

0, x = 0

−1, x < 0.

15. (a) Let f be a continuous real-valued function on [0, 1] such that
∫ 1

0
xnf(x) = 0 for n =

0, 1, 2, . . . . Prove f = 0.

(b) Suppose f is as in (a) but it is only assumed that
∫ 1

0
xnf(x)dx = 0 for n = 0, 2, 4, . . . .

Can you still conclude f = 0?

16. Let K be a compact metric space and (fn)∞1 a sequence of functions in C(K) with the
properties (i) the set {fn : n ∈ N} is equicontinuous, and (ii) there is a dense subset S of
K such that the sequence (fn(x))∞1 converges for each x in S. Prove the sequence (fn)∞1
converges uniformly on K.


