Review Problems

- 1. Let f be a continuous increasing function from the open interval (a, b) into \mathbb{R} .
 - (a) Prove the range of f is an open interval.
 - (b) Prove the inverse function f^{-1} (whose domain is the range of f) is continuous
- 2. Let (M,d) be a metric space. Let the function $\lambda = [0,\infty) \to \mathbb{R}$ be continuous, increasing, vanishing at 0, and satisfy $\lambda(s+t) \leq \lambda(s) + \lambda(t)$ for all s and t. Define the function $d_{\lambda} : M \times M \to \mathbb{R}$ by $d_{\lambda}(x,y) = \lambda(d(x,y))$.
 - (a) Prove d_{λ} is a metric on M.
 - (b) Prove the metric spaces (M, d) and (M, d_{λ}) have the same open sets.
- 3. Let the function $f:(0,1]\to\mathbb{R}$ be uniformly continuous. Prove $\lim_{x\to 0}f(x)$ exists.
- 4. Let M and N be metric spaces and $f: M \to N$ and $g: M \to N$ continuous functions.
 - (a) Is the subset $\{x \in M : f(x) = g(x)\}\$ of M necessarily closed? Is it necessarily connected?
 - (b) Is the subset $\{(f(x), g(x)) : x \in M\}$ of $N \times N$ necessarily closed? Is it necessarily connected?
- 5. Let A and B be subsets of a metric space.
 - (a) Prove $int(A \cap B) = int(A) \cap int(B)$.
 - (b) Find an example for which $int(A \cup B) \neq int(A) \cup int(B)$.
- 6. Let G be a nonempty open subset and H a nonempty subset of \mathbb{R}^N . Prove the set $G + H = \{x + y : x \in G, y \in H\}$ is open.
- 7. Let the continuous function $f: \mathbb{R}^N \to \mathbb{R}^M$ have the property that $f^{-1}(K)$ is a compact subset of \mathbb{R}^N whenever K is a compact subset of \mathbb{R}^M . Prove f(C) is a closed subset of \mathbb{R}^M whenever C is a closed subset of \mathbb{R}^N .
- 8. (a) Suppose the graph of the function $f: \mathbb{R} \to \mathbb{R}$ is closed and connected. Prove f is continuous.
 - (b) Find a discontinuous function from \mathbb{R} to \mathbb{R} whose graph is connected.
- 9. Let C be a nonempty subset of \mathbb{R}^N with the property that every continuous function of C into \mathbb{R} attains a maximum value on C. Prove C is compact.
- 10. Let $(a_n)_1^{\infty}$ be a convergent sequence in a metric space, with limit a_0 . Prove the set $\{a_0, a_1, a_2, \dots\}$ is compact.
- 11. Let f be a function from the metric space M into the metric space N. Prove f is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ for every subset A of M.

- 12. Let S be the union of the set of lines in \mathbb{R}^2 that have rational slope and pass through either (1,0) or (0,1). Prove S is connected.
- 13. Let $(K_n)_1^{\infty}$ be a nested sequence of nonempty compact subsets of a metric space, and let $K = \bigcap_{n=1}^{\infty} K_n$. Prove diam $K = \lim_{n \to \infty} \operatorname{diam} K_n$.
- 14. Let M and N be metric spaces and $(f_n)_1^{\infty}$ a uniformly convergent sequence in C(M, N) with limit f. Let $(x_n)_1^{\infty}$ be a convergent sequence in M with limit x_0 . Prove $f(x_0) = \lim_{n \to \infty} f_n(x_n)$.
- 15. Let K be the set of functions f in C[0,1] that satisfy (a) $||f||_{\infty} \le 1$, and (b) $|f(x) f(y)| \le |x y|$ for all x and y in [0,1]. Prove K is compact. (Suggestion: Given a sequence of functions in K, prove it has a subsequence that converges pointwise on $\mathbb{Q} \cap [0,1]$. Then prove the subsequence actually converges uniformly on [0,1].