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During the last five years there has been much progress in
understanding and calculating the K-groups of various C*-algcbras.
But once this has been accomplished in any given situation, there
remain many interesting questions concerning finer structure, or what
I call non-stable K-thcory. My purpose here is to list some of these
questions, and then to discuss the progress which has been made in
answering them for non-commutative tori and for a few other

examples.
1. THE QUESTIONS

Most of the questions which we will consider arc only of
intecrest for C*-algebras with identity element, and so we will
assume the presence of an identity element throughout. Actually,
as far as the K, group is concerned, we can usually work with any
algebra with identity element. We recall [1, 197 that there arc two
equivalent definitions of the KO(A), of an algebra A. In thc most
natural of these two definitions, one considers the sct, S(A), of

*This research was supported in part by National Scicnce

Foundation grant DMS 8§5-41393.
© 1987 American Mathematical Society

0271-4132/87 $1.00 + $.25 per page
267



268 MARC A. RIEFFEL

isomorphism classes of finitely generated projective (say right)
A-modules. Under formation of direct sums of modules, S(A)
becomes a commutative semigroup, with the (class of the) zero
modulc serving as identity element. Then K(A) is defined to be
the enveloping (or Grothendieck) group of the semigroup S(A). The
image of S(A) in K(A) provides K (A) with a "positive cone",
which can be badly behaved if A is not finite in some sense [3].
The study and calculation of this positive cone can be very
intercsting, but we consider it to be still part of the stable
K-theory of A. Rather it is the study of S(A) itself, and of the
passage from S(A) to K, (A), which we consider to constitute the
non-stable part of K,-theory. Thus for a given algebra A the
fundamental question of non-stable K -theory is:

QUESTION 1. What is the structure of the semigroup S(A)?

This question is usually too hard to answer, and so one first
considers special aspects of it. For example:

QUESTION 2. Does S(A) satisfy cancellation, that is, if U, V and W
are finitely generated projective A-modules such that U @ W=V & W,
does it follow that U = V?

If cancellation holds, then thec map from S(A) to K (A) is
injective. Thus if one knows what is the positive cone of K (A),
then one knows S(A). However cancellation usually fails, and so
one instcad asks weaker questions. Recall, for example, that
modules U and V represent the same element of K (A) exactly if
there is some integer n such that U & A™ = V @ A", where A"
denotes the free A-module on n generators. One can then ask, for
a given algebra, whether there is an upper bound on the neceded
n’s. That is:

QUESTION 3. [s there a positive integer N such that whenever U and
V represent the same element of K (A), then U & ANzZ VvV e AN

This question can be viewed as asking whether cancellation
holds as soon as the modules involved are "large enough". Herce
"large enough” means that the modules contain AN as a summand.
For C*-algebras there is a closcly related way of defining the size
of a module, namely by means of a trace on the algebra. We recall
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that the second equivalent definition [19] of the K -group is in
terms of projections in matrix algebras, Mn(A), over A. If pis a
projection in Mn(A), then pA® will be a finitely generated
projective right A-module. If T be a (finite, positive) trace on A,
then T extends in an evident way to a trace on cach M (A), and
thus if p is a projection in any M _(A) then the positive number
T(p) is defined. One can show ceasily that this number depends
only on the isomorphism class of the module pA™. Thus T defines a
homomorphism (again denoted by T) of S(A) into the group of real
numbers, which then factors through K (A). In analogy with
Question 3 one can ask:

QUESTION 4. For a given trace T on A, is there a number N such
that, if U@ W =V & W and if T([U)]) 2 N (so also T([W]) > N), then
uU=Vv?

In a slightly different direction, one can ask about cancellation
for special classes of modules. The most commonly discussed class
consists of the stably free modules. Specifically:

QUESTION 5. Are stably free modules free? That is, if the module
U is such that

U & A" = Amtn
for some m and n, does it always follow that
U= A™

If not, then one can ask, as before, whether there is a bound on
the n’s that are needed, that is;

QUESTION 6. [Is there an integer N such that whenever U is a
stably free module then U & AN s free?

The next question is best phrased in terms of projections, and is
most appropriate to ask for C*-algebras where cancellation holds.
Here and later we let U _(A) denote the group of unitary elements
of Mn(A), and we let U;(A) denote the connected component of the
identity clement in U_(A).
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QUESTION 7. If A satisfies cancellation, and if p and q are
(self-ad joint) projections in M_(A) which represent the same class in
KO(A), then are p and q in the same connected component of the set
of projections in M_(A)? Equivalently, is there a unitary u in Us(A)
such that upu* = q?

A question about K (A) which goes in a rather different
direction is:

QUESTION 8. What is the smallest n such that the projections in
M (A) generate K (A)?

We remark that the answers to Questions I and 2 are invariant
under Morita equivalence of algebras [12], whereas most of the
other questions above involve, in some sense, the position of the
free module of rank one as an order unit in S(A).

We recall [19] that K (A) is defined as the limit of the groups

U (A)/US(A) = U, (A)/Ug, (A).

There are two quite evident questions to ask about the non-stable
behavior for K,, namely:
QUESTION 9. What is the smallest n such that the homomorphism
from Uk(A)/Uk°(A) to KI(A) is injective for all k 2 n?
QUESTION 10. What is the smallest n such that the homomorphism
from Un(A)/UX‘;(A) to K (A) is surjective?

There is a substantial literature in algebraic K-theory
concerning these last two questions. Sce [20] and the references
thercin.

2. TECHNIQUES AND INTERRELATIONS

For a commutative C*-algebra, of form A = C(X) for X a
compact space, the finitely generated projective modules correspond
exactly to the complex vector bundles, by a theorem of Swan [18,
12]. Thus in this case the vast apparatus of algebraic topology,
especially topological K-theory, can be brought to bear on
answering the above questions. But it is known that the answers
arc usually complicated. There are a small number of general
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results. For example, from Theorem 1.5 of Chapter 8 of [8] one
obtains immecdiately the following answer to Question 4 (where one
may take as the trace, evaluation of functions at some fixed point):
THEOREM 1. Let X be a compact connected CW complex of
dimension d. If V and W are complex vector bundles over X which
represent the same element of K°X), and if their dimension is > d/2,
then V. = W.

But usually, even when one can compute for specific examples,
it is difficult to find general patterns. One must then expect that
this will be all the more the situation for non-commutative
C*-algebras.

In the case of C*-algebras which are postliminal (i.e. GCR), and
so are fairly closely related to commutative C*-algebras, one can
hope that results in topological K-theory will provide some
guidance as to what to expect, as well as results upon which one
can build by inductive arguments. For example, Albert J. Sheu [17]
has studied the unitized C*-algebras 6*(G) where G is a simply
connected nilpotent Lie group of form R™ x R. These are GCR,
and can be considered to be "non-commutative spheres". He obtains
a good answer to Question 4, where as trace he uses evaluation at
the adjoined "point of infinity". He also shows that cancellation
holds for certain of the G of arbitrarily high dimension. But he
has an example of a four-dimensional G for which cancellation
fails, though he can nevertheless describe the structure of 1its
semigroup of projective modules.

Theorem 1 above suggests that some notion of dimension in the
non-commutative context might play a role in non-stable K-theory.
It is far from clear whether there should be a unique notion of
dimension in this context, but one notion has already played an
important role in algebraic K-theory, namely the notion of Bass
stable rank. We omit the definition, since for topological algebras
it is more convenient to use the notion of topological stable rank
(tsr) which was introduced in [13] and shown there to dominate the
Bass stable rank. Subsequently, it was shown by Herman and
Vaserstein [7] that for C*-algebras the topological stable rank
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coincides with the Bass stable rank. To define the topological
stable rank, we let Gen,(V), for any module V and positive integer
k, denote the collection of k-tuples of elements, {vj}, in V¥ which
collectively generate V algebraically, that is, such that

r vJ.A =V.

Note next that if A is a topological algebra, then any finitely
generated projective A-module, being realizable as a summand of
some A", is a topological module (independently of the realization).
DEFINITION. Let A be a topological algebra, and let V be a finitely
generated projective A-module. Then tst(V) is defined to be the least
integer k, if it exists, such that Genk(V) is dense in VE. In particular,
tsr(A) is defined to be the tsr of A as a right A-module.

Motivation for the above definition can be found in [13]. There
1s a substantial literature in algebraic K-theory (see [l1, 20])
relating the Bass stable rank to the non-stable behavior of K.,
especially Questions 9 and 10. Applied to C*-algebras, these results
vield, for example:

THEOREM 2 (Theorem 10.12 of [13]). If n 2 tsr(A) + 2, then the
map from U (A)/UL(A) to K,(A) is an isomorphism.

Warficld [21] seems to have been the first to notice a direct
general  relationship between the Bass stable rank and the
cancellation property for projective modules. A distinctive feature
of his results is that it is not the Bass stable rank of the algebra
which is important, but rather that of the endomorphism algebra of
the module being cancelled. His results are in the spirit of
Questions 3 and 4 to the effect that cancellation holds for
"sufficiently large” modules, but now size is measured in terms of
the size of the module being cancelled. For example, from his
results one obtains:

THEOREM 3. Let W be a projective A-module and let n be the Bass
stable rank of End,(W). If U and V are projective modules such that

(Ue WHoWZVeWw,
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then U @ WP = V,

To apply such stable rank techniques, one needs to be able to
estimate stable ranks, and this is often very difficult. But Sheu’s
work mentioned above depends heavily on successful estimates of
stable ranks, and the same 1is true for the results about
non-commutative tori to be discussed in the next section. A crucial
tool is provided by an estimate in the case of crossed products by
the integers, which can be considered the most important result of
[13] (see Theorem 7.1). Specifically:

THEOREM 4. Let A x_ Z denote the crossed product of a

o
C*-algebra A by an action « of the integers. Then

tsr(A % Z) € tsr(A) + L.

Let us mention here that Blackadar [2] has used several of the
techniques indicated above to show that cancellation holds for
tensor products with algebras having ample small projections. For
cxample, his Theorem A2 is:

THEOREM 5. Let A be a simple unital C*-algebra, and let B be a
UHF C*-algebra with B ® B = B. If tsr(A ® B) < =, then A ® B has
cancellation.

A somewhat analogous result concerning tensor products has
been obtained by Sheu [17] using rather different methods. To
state his result, let B = Cx(R") ® K where K denotes the algebra
of compact operators and R denotes the real line. For any
C*-algebra C without identity element we let C™ denote the algebra
obtained by adjoining an identity to C.

THEOREM 6 (Theorem 4.11 of [17]). For any C*-algebra A and any
n 2 1, cancellation holds for (A ® Bn)’”.

Notably missing are techniques for obtaining a lower bound for
tsr in the absence of either a directly relevant compact space or of
proper isometries. In particular, no finite simple C*-algebras are
known for which one can prove that tsr(A) > 2, although there are
many possible candidates. This is related to the lack of any
example of a finite simple C*-algebra for which cancellation fails,
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since tsr(A) = I is equivalent to the invertible elements being dense,
and one has (see 111.2.4 of [4] and 4.5.2 of [3]):

THEOREM 7. If invertible elements are dense in A, then A satisfies
cancellation.

Notice, for example, that this implies that AF C*-algebras have
cancellation. There is correspondingly a lack of any example of a
finite simple C*-algebra for which one can show that the invertible
elements are not dense.

Let us discuss next the fact that the various questions stated in
§1 are somewhat interrelated. We give two examples, whose proof’s
will appear in [16]. The first involves Questions 8 and 10.
THEOREM 8. Let a be an automorphism of the unital C*-algebra A
which is in the connected component of the identity automorphism of
A, and let « also denote the corresponding action of Z on A. Suppose
that

1. Every element of K,(A) is represented by an invertible element
in A itself.

2. The projections in A generate K (A).

Then every element in K (A Xy Z) is represented by an invertible
element in A Xy Z.

For the next result we let TA denote the C*-algebra of
continuous functions from the circle, T, to A. We remark that then
TA = A x, Z for « the trivial action, and it is an interesting
question as to whether the next theorem can be generalized to the
case of non-trivial o This theorem involves Questions 2 and 9.
THEOREM 9. For a unital C*-algebra A the following are equivalent:

1. TA satisfies cancellation.

2. Both a) A satisfies cancellation, and

b) For every projective A-module V the natural map from
Aut,(V)/Autg(V) to K (A) is injective.

The proof of this last theorem comes from examining the
familiar “clutching" construction which to any automorphism of an
A-module associates a TA-module.
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3. NON-COMMUTATIVE TORI

By definition a non-commutative torus, Ag, is a C*-algebra
defined as follows. Let 8 be a skew bilinear form on R", and
define a skew cocycle o on Z" by

o(x,y) = exp(mid(x, y))

for x, y € Z" Let Ag be the group C*-algebra of Z" twisted by o,

ie., C¥(Z"o0). Thus to each x € Z" there is a unitary, u_, in Ay,

x’
and these unitaries satisfy the relation

uu, = o(x, y)ux+y .

For n = 2 one obtains the more familiar irrational (and rational)
rotation C*-algebras [14].

By the work of Pimsner and Voiculescu [I11] concerning the
computation of the K-groups of crossed products with the integers,
one finds that the K-groups of an Ag are the same as those for an
ordinary n-torus T™ (which is the Ag for which 6 = 0). In
particular,

- n-1
Ky(Ag) = 2P .

This still leaves quite open the problem of determining what is the
positive cone of K (Ag). By using techniques from topological
K-theory, one can show that the answer for T" becomes
complicated for n = 4 and 5 (see {16]), and I do not know if the
answer is known for dimensions much above that. (Also,
cancellation already fails for T5)

It turns out however that there is a nice answer when 8 is not
entirely rational, in the sense that the range of 8 on the integer
lattice Z™ € R™ is not entirely contained in the rational numbers.
Notice that there is a canonical trace, 7, on Ag, corresponding to
evaluating at the identity element of Z7" with its associated
homomorphism, 7, from KO(Ae) into the group of real numbers.
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The latter is positive on the positive cone of K (Ag). In [16] it is
shown that:

THEOREM A. If 8 is not rational, then the positive cone of K (Ag)
consists of exactly the elements on which T is positive.

We should mention that the range of T on K (Ag) has been
clucidated by Elliott [6], whose work is an important ingredient of
the proofs of most of the theorems stated in this section. Much of
the proof of the above theorem involves a specific construction,
sketched in [15], of finitely generated projective modules over Ag,
together with a classification of the modules so constructed, by
means of Connes’ Chern character introduced in [5]. In fact, one
finds that every element of K (Ag) with positive trace is
represented by a module obtained by the construction. If one
examines the construction further so as to obtain, among other
things, information about the topological stable rank of the
endomorphism algebras of the constructed modules, one finds that
one can apply Warfield’s theorem (Theorem 2 above) to answer
Question 2:

THEOREM B. [f 6 is not rational, then S(Ag) satisfies cancellation.

Thus for such 6 one can answer Question 1, that is, one can
describe S(Ag). Even more, one has an explicit construction of all
finitely generated projective Ag-modules up to isomorphism. For
the special case n = 2 these results were obtained earlier in [14].
We also obtain in [16] an answer to Question §:

THEOREM C. [f 8 is not rational, then the projections in Ag
generate K (Ag).

By using Theorem 8 of the previous section with Theorem C
above in an induction argument, we then obtain the following
answer to Question 10:

THEOREM D. [If 6 is not rational, then every element of K,(Ag) is
represented by an invertible element of Ag.

By using Theorem 9 of the previous section with Theorem B we
also obtain the following answer to Question 9:

THEOREM E. [If 8 is not rational, then the natural map from
U, (Ag)/UNAg) to K (Ag) is an isomorphism.
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From this theorem together with some additional argument, onc
obtains the following answer to Question 7:

THEOREM F. [If 0 is not rational, then any two projections in
Mm(Ae) which represent the same element of K (Ag) are in the same
connected component of the set of projections in M, (Ag).

In closing, let me mention that J. A. Packer [9, 10] has studied
the algebras C*(G, o) where G is the discrete Heisenberg group and
o is a cocycle on G. Among many other results, she has shown that
for many o’s, these algebras satisfy cancellation. For this she uses,

in part, the techniques of [13, 14].
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