1. Let $T = \{z \in \mathbb{C} : |z| = 1\}$, the unit circle. It is a topological group under multiplication. Define the group homomorphism $e : \mathbb{R} \to T$ by $e(r) = \exp(2\pi i r)$. Let μ be Lebesgue measure on \mathbb{R} with M the collection of Lebesgue measurable sets. Set $M(T) = \{E \subseteq T : e^{-1}(E) \in M\}$. Show that M(T) is a σ -ring. Define ν on M(T) by $\nu(E) = \mu(e^{-1}(E) \cap [0, 1))$. Show that ν is a measure, and that ν is "translation-invariant", i.e. "rotationinvariant", in the evident sense.

2. Let α be the non-decreasing function on \mathbb{R} defined by $\alpha(t) = 0$ if $t \leq 0$ and $\alpha(t) = 1$ if t > 0. Let μ_{α} be the corresponding premeasure as discussed in lecture, with μ_{α}^{*} the corresponding outer measure. Determine which sets are in $M(\mu_{\alpha}^{*})$, that is, measurable for this outer measure.

3. Let α be the function on \mathbb{R} defined by $\alpha(\mathbf{r}) = \mathbf{r}$, which is the function that leads to Lebesgue measure on \mathbb{R} . Let μ_{α} be the corresponding premeasure, and Let μ_{α}^* be the corresponding outer measure on \mathbb{R} . Let Q be the set of rational numbers, viewed as a subset of \mathbb{R} . Calculate $\mu_{\alpha}^*(Q)$.