
M. Rieffel Math 202A, Problem set 3
due September 14, 2018

1. Let X be the square [−1, 1]×[−1, 1], with its usual product
topology. We “glue” together parts of the boundary of X by the
following equivalence relation on X. Each point of the interior is
its own equivalence class, but (1, t) ∼ (−1, t) and (t, 1) ∼ (t,−1)
for each t with −1 ≤ t ≤ 1. Let D be the quotient space X/ ∼
equipped with the quotient topology.

a) You will probably quickly recognize D as a familiar surface,
for which there are many ways to define a one-to-one continuous
function of it into R3. Such a function is necessarily a homeo-
morphism onto its image for reasons we will see later, and then it
is called an “embedding”. Describe one such embedding. Equa-
tions are best, but a carefully explained picture is acceptable.
(Note that while the square is a subset of R2, it seems, correctly,
unlikely that D can be embedded in R2.)

b) In general, given a set and a quotient of it, and a metric on
the set, it is not so evident how to define the quotient metric on
the quotient space. (Compare with how easy it is to define the
quotient topology.) But for the above space X with its metric
from the Euclidean metric of the plane, it is not hard to see what
the quotient metric on D should be. (Think of shortest paths,
taking into account the equivalence relation.) Write a sentence
or two supporting your guess as to whether there is an isometric
embedding of D into R3. No proof is expected. What about an
isometric embedding into R4?

c) Suppose we glue together parts of the boundary of X in a
different way, by the equivalence relation on X given by: each
point of the interior is its own equivalence class, but (1, t) ∼
(−1,−t) and (t, 1) ∼ (t,−1) for each t with −1 ≤ t ≤ 1, while
(1, 1) ∼ (−1, 1) . Let K be the quotient space X/ ∼ equipped
with the quotient topology. This is a less familiar surface, but
it may well be familiar to some of you. Write a sentence or two
supporting your guess as to whether there is an embedding of



K into R3. (Try to draw a picture.) No proof is expected. (How
else might you define this surface than as a quotient space?)

Constructing spaces by gluing (i.e. forming suitable quotient
topological spaces from simple pieces) is a widely used method
in geometry and algebraic topology and their many applications.

2. In mechanics (or economics, etc) the topic of “dynamics”
studies how the state of a (mechanical, etc) system changes with
time. The state space, i.e. the set of states, is usually modeled
by a topological space, say X. For example, the state-space for
a single particle moving on the line is modeled by R2, where the
two coordinates correspond to position and momentum. Change
with time is modeled by assigning to each positive real number t
a function φt (assumed continuous) from X to itself that assigns
to each state x ∈ X the state to which that state has moved after
the passage of t units of time (a “flow”). The basic rule that is
usually satisfied is that for any s, t ∈ R+ we have φs ◦φt = φs+t.
If the system is “reversible” then negative times are permitted,
and each φt is a homeomorphism of X. Then φ is a group
homomorphism from the additive group R into the group of
homeomorphisms of X.

The motion is often specified by an ordinary differential equa-
tion (ODE) for vector-valued functions. The ODE is said to be
autonomous if it does not explicitly depend on the independent
variable, which we assume here. For simplicity we take here the
state space to be Rn. The ODE is then specified by a continu-
ous function F from Rn to itself (a vector field on Rn). For any
given x ∈ Rn (the “initial condition”) the ODE is

(dφt(x)/dt)(t) = F (φt(x))

Under mild (Lipschitz) conditions the solutions are unique for
any given initial condition. The existence of global solutions
(i.e. defined for all times t) requires stronger conditions, but let
us assume here that this holds too.

Assume that the properties indicated above hold, and that
the system is reversible. For any point x ∈ X define its “orbit”
under φ to be the subset {φt(x) : t ∈ R} of X. Check that being



in the same orbit is an equivalence relation on X. Let Oφ be
the set of all the orbits for φ. There is an evident surjection
from X onto Oφ, and so we can equip Oφ with the quotient
topology from X. The nature of this quotient topology often
reflects important properties of the dynamics of the system.

A rich source of simple reversible mathematical dynamical
systems arises as follows. Let H (for “Hamiltonian”) be a real
n × n matrix. It determines a vector field F by F (x) = Hx.
Then the solution to the corresponding ODE is given by φt(x) =
etHx ( where etH is defined by the usual power-series for er but
using matrix multiplication, so not entry-wise exponentiation in
general, and convergence is for the operator norm on matrices).

For each of the matrices

(
1 0
0 −1

)
and

(
0 1
−1 0

)
as H, de-

termine the corresponding set of orbits in R2, and the quotient
topology on the orbit space. One good way to describe the
topology is by parametrizing the orbits, e.g. by choosing in
an attractive way one point (a “representative”) in each orbit,
so that there is a bijection (i.e. one-to-one and onto function)
from the set of orbits to this set of representatives, and then de-
scribing the topology on the set of representatives such that the
bijection is a homeomorphism. Draw an informative picture.

Discuss briefly interesting features of the quotient topology
that you see, such as closures of interesting subsets of the orbit
space, whether points are closed, interesting limits of sequences
of orbits. In particular, determine for each case whether the
quotient topology is the topology determined by a metric on
the space of orbits.

If you remove the origin, to obtain the “punctured plane”,
then the orbits there are the “leaves” of a “one-dimensional foli-
ation” of the punctured plane, i.e. express it as a disjoint union
of curves, with each point having a neighborhood that is foliated
in the “trivial” way. So from the two above matrices for H you
obtain two different foliations, which are not equivalent in the
sense that there is no homeomorphism that carries one foliation
to the other. Foliations, including ones with higher-dimensional



“leaves”, occur in many situations in topology and geometry
and their many applications.

If instead you use only the open upper half-plane, and its
intersections with the orbits as leaves, you obtain two foliations
of the upper half-plane, that are not equivalent. The upper
half-plane is homeomorphic to the whole plane, and to the open
unit disk, so you obtain foliations of these too. You can entertain
yourselves by drawing these two foliations on the open unit disk,
and then drawing more complicated foliations of the open unit
disk and seeing what the quotient topologies are on the sets of
leaves of the foliations.


