M. Rieffel Math 202A, Homework 14 due Friday November 30, 2018

1. Prove that

$$\lim_{a \to +\infty} \int_0^a (\sin(t))/t \ dt$$

exists and is finite, but that $t \to (\sin(t))/t$ is not Lebesgue integrable.

2. Let f be defined and Lebesgue intergrable on the interval $[0, +\infty)$. Define g on that interval by

$$g(t) = \int_0^\infty e^{-tx} f(x) \ dx.$$

Prove that g is differentiable for t > 0, and that

$$g'(t) = -\int_0^\infty e^{-tx} x f(x) \ dx$$

for t > 0.

3. a) Let f be the function defined on \mathbb{R} by $f(t) = t^{-1/2}$ for t in the interval (0,1), and f(t) = 0 for t not in that interval. Prove that f is Lebesgue integrable.

b) Let $\{r_n\}_{n=1}^{\infty}$ be an enumeration of the rational numbers. For f defined as in part a), define g a.e. on \mathbb{R} by

$$g(t) = \sum_{n=1}^{\infty} 2^{-n} f(t - r_n).$$

Prove that the series defining g converges a.e., and that g is Lebesgue integrable. But show that g is unbounded on any open interval of \mathbb{R} , and in fact that any function that agrees with g a.e. is unbounded on any open interval c) Calculate $\int_{-\infty}^{\infty} g(t) dt$.