1. a) Let f be a continuous function from \mathbb{R} to a Banach space B. Prove that f is Borel-measurable, i.e. is S-measurable (in the sense defined in class) where S is the σ -field of all Borel subsets of \mathbb{R} , that is, the σ -field generated by the open (or by the compact) subsets of \mathbb{R} .

b) Describe a natural class of topological spaces X for which you can prove the same result as in part a) but with \mathbb{R} replaced by X (with essentially the same proof).

2. Let X be an uncountable set, equipped with the discrete topology, and let S be the σ -field (generated by the open subsets of X) consisting of all subsets of X. Let $B = \ell^{\infty}(X)$, the Banach space of all bounded \mathbb{R} -valued functions on X with the uniform (i.e. supremum) norm. For each $x \in X$ let δ_x be the function on X taking value 1 at x and value 0 at all other points. So each δ_x is an element of B. Define a continuous function, f, from X to B by $f(x) = \delta_x$ for all $x \in X$. Is f an S-measurable function? Why?