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Generalized Kac-Moody algebras can be described in two ways: either using generators
and relations, or as Lie algebras with an almost positive definite symmetric contravariant
bilinear form. Unfortunately it is usually hard to check either of these conditions for
any naturally occurring Lie algebra. In this paper we give a third characterization of
generalized Kac-Moody algebras which is easier to check, which says roughly that any
Lie algebra with a root system similar to that of a generalized Kac-Moody algebra is a
generalized Kac-Moody algebra. We use this to show that some Lie algebras constructed
from even Lorentzian lattices are generalized Kac-Moody algebras.

I thank the referee for suggesting several improvements and corrections.

Section 1 states the theorems of this paper, section 2 describes some examples, and
section 3 gives the proof of the theorems.

1. Statement of result.

All Lie algebras are Lie algebras over the real numbers R. We will assume the basic
theory of generalized Kac-Moody algebras given in [2,3,4].

We first recall the definition of a generalized Kac-Moody algebra. Suppose that a;;
is a real square matrix indexed by ¢ and j in some countable set I with the following
properties.

1 Qi = Qji-
2 If@;’éj then A5 SO
3 If a;; > 0 then 2a;;/a;; is an integer for all j.
Then we define the universal generalized Kac-Moody algebra of a;; to be the Lie
algebra generated by elements e;, f;, and h;; for ¢,j € I, with the following relations.
1 [es, f3] = hij- A
2 [hij, ex] = &l aiger, [hij, fr] = —0] air fr-
3 If a;; > 0 then Ad(e;)!~2%i/%uie; = Ad(f;)12%a/a f; = 0.
4 If Qi = 0 then [ei,ej] = [fz; f]] =0.

(The relations [h;j;, hi;] are usually also included, but these follow from the other

relations.)

We define a generalized Kac-Moody algebra to be a Lie algebra G such that G is
a semidirect product A.B, where A is an ideal of G which is the quotient of a universal
generalized Kac-Moody algebra by a subspace of its center, and B is an abelian subalgebra
such that the elements e; and f; are all eigenvalues of B. In other words, G can be obtained
from a universal generalized Kac-Moody algebra by throwing away some of the center and
adding some commuting outer derivations.

This is slightly more restrictive than some previous definitions because we insist that
I is a countable set, but I do not know of any interesting examples where I is uncountable.
Kac [4] extended the definition by allowing the matrix a;; to be non symmetrizable. In this
case the generalized Kac-Moody algebra does not have an invariant bilinear form, and the
existence of such a form is an essential condition in the theorems of this paper. I do not
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know of any useful characterizations of the Lie algebras associated to non symmetrizable
matrices.

There is a characterization of generalized Kac-Moody algebras given in [3] as follows.
A Lie algebra G is a generalized Kac-Moody algebra if it satisfies the following conditions.

1 G can be graded as G = ®,czG,,, with G, finite dimensional for n # 0.
2 G has an involution w which maps G,, to G_,, and acts as —1 on Gj.
3 G has a symmetric invariant bilinear form (, ) which is preserved by w and such that

G,, and G,, are orthogonal unless m = —n.

4 If g € Gy, g #0, and n # 0, then (g,w(g)) > 0.

We can summarize these conditions by saying that G has an almost positive definite
symmetric contravariant bilinear form. Conversely, it is almost true that any generalized
Kac-Moody algebra satisfies the conditions above. It is incorrectly stated in some previous
papers of mine that this is true but several people pointed out to me the following two
minor reasons why this is not quite true: if the i’th and j’th rows of the Cartan matrix are
equal and ¢ # j then w need not act as —1 on the subalgebra spanned by h;; and hj;, and
if the Cartan matrix has an infinite number of identical rows then it is not always possible
to grade G so that G, always has finite dimension (because of the elements h;; for i # j).
The elements h;; for ¢ # j seem to be of no use in practice and is tempting just to add
the relations that they should be 0 to the definition of a generalized Kac-Moody algebra;
the main reason for not doing this is that they are nonzero in some central extensions
of simple generalized Kac-Moody algebras and most central extensions of groups or Lie
algebras seem to turn out to be useful sooner or later.

There are many examples of Lie algebras satisfying the conditions above which can
be constructed using vertex algebras, and which are therefore generalized Kac-Moody
algebras. Unfortunately there are many examples of Lie algebras which are generalized
Kac-Moody algebras for which it is very hard to verify the positivity condition (4) directly.
This condition is sometimes not satisfied for the “obvious” involution w, but is for some
other choices of w. We will prove the following theorem which removes this difficulty.

Theorem 1. Any Lie algebra G satisfying the following 5 conditions is a generalized
Kac-Moody algebra.

1 G has a nonsingular invariant symmetric bilinear form (, ).

2 @ has a self centralizing subalgebra H (called the Cartan subalgebra) such that G is
the sum of the eigenspaces of H and all the eigenspaces are finite dimensional. The
nonzero eigenvalues of H acting on G (which are elements of the dual of H) are called
the roots of G. (Note that the simple roots need not be linearly independent.)

3 H has a regular element h; this means that the centralizer of h is H and that there
are only a finite number of roots a such that |a(h)| < M for any real number M. We
call a root o positive or negative depending on whether its value on h is positive or
negative, and call « real if its norm («, «) is positive, and call a imaginary if its norm
(o, ) is at most 0. (Roots are elements of H*, which has a natural bilinear form
because the bilinear form on H is nonsingular, so the norm of a root is well defined.)

4 'The norms of roots of G are bounded above.

5 Any two imaginary roots which are both positive or both negative have inner product
at most 0, and if they are orthogonal their root spaces commute.
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Roughly speaking, these conditions say that G has a root system similar to that of
a generalized Kac-Moody algebra. Not all generalized Kac-Moody algebras satisfy the
conditions above, but it is not difficult to weaken the conditions slightly so that they all
do at the cost of making the statement of the theorem more complicated. For example, we
would have to allow the inner product to be singular on H, we would have to allow H to
be infinite dimensional, and conditions 3 and 4 would have to be relaxed. The conditions
of the theorem above are satisfied in all cases I know of where one might wish to use it to
prove that a Lie algebra is a generalized Kac-Moody algebra.

The following special case of theorem 1 seems to cover most of the useful cases where
we might wish to apply it and has cleaner hypotheses. For example, the monster Lie
algebra satisfies the following conditions.

Theorem 2. Any Lie algebra G satisfying the following 5 conditions is a generalized
Kac-Moody algebra.
1 G has a nonsingular invariant symmetric bilinear form (, ).
2 G has a self centralizing subalgebra H such that G is the sum of the eigenspaces of H
and all the eigenspaces are finite dimensional.
3 The bilinear form restricted to H is Lorentzian (i.e., it has signature dim(H) — 2).
4 The norms of roots of G are bounded above.
5 If two roots are positive multiples of the same norm 0 vector then their root spaces
commute.

The conditions in theorem 2 easily imply the conditions of theorem 1 are satisfied.
For the regular element h we can take any negative norm vector in general position. In a
Lorentzian lattice any two positive imaginary roots have inner product at most 0, and have
inner product 0 only if they are both multiples of the same norm 0 vector, so condition 5
of theorem 1 is satisfied.

2. Examples

Example 1. If the matrix a;; is finite and nonsingular then the generalized Kac-
Moody algebra associated to it satisfies the conditions of theorem 1. (It is not hard to
weaken the conditions of theorem 1 so that all generalized Kac-Moody algebras satisfy the
conditions.) The only condition which is not trivial to check or well known for generalized
Kac-Moody algebras is condition 5, that the root spaces of orthogonal imaginary positive
roots commute. This follows from the following lemma.

Lemma. The root spaces of any two orthogonal imaginary positive roots «, (3 of a gener-
alized Kac-Moody algebra commute.

Proof. By applying reflections of the Weyl group we can assume that « is in the Weyl
chamber (i.e., (c,r) < 0 for every real simple root 7). Then every simple root has inner
product at most 0 with «, so every simple root in the support of 3 has inner product 0 with
a, as (o, ) = 0 and (3 is a sum of simple roots. We can move 3 into the Weyl chamber
by applying the reflections of real simple roots in the support of 3. As these real simple
roots are orthogonal to a their reflections do not move «, so we can assume that both «
and 3 are in the Weyl chamber.



Next we observe that any root in the support of g but not in the support of « is
orthogonal to all roots in the support of «, as it has inner product 0 with « and inner
product at most 0 with all roots in the support of o. In particular all simple roots in the
support of 3 but not in the support of o are orthogonal to all roots in the intersection
of the supports of 8 and «. As the support of  is connected, this implies that either all
roots in the support of § are disjoint to all those in the support of a, or the support of g
is in the support of «, and therefore equal to the support of o by symmetry.

In the first case when the supports of a and 3 are disjoint it is obvious that the root
spaces of o and 8 commute, because the root spaces of any two orthogonal simple roots
commute. So we are reduced to the case when o and 3 have the same support. As before
we see that every root in the support of 3 is orthogonal to «, so every root in the support
of «v is also orthogonal to «, and therefore o has zero norm. The support of « (and () must
therefore be an affine Dynkin diagram (including the degenerate case of a single simple
root of norm 0) by proposition 2.2 of [2]. But then the root spaces of « and 3 are both
contained in positive norm 0 root spaces of some affine Lie algebra, so the root spaces of
a and f commute because any two positive norm 0 root spaces of an affine Lie algebra
commute.

This completes the proof of the lemma.

Example 2. There is a Lie algebra GG associated to any even lattice L which is con-
structed in [1]. This is constructed from the vertex algebra of the lattice as “G = P*/DP°”.
This Lie algebra has a symmetric invariant bilinear form induced from the symmetric bi-
linear form of the vertex algebra [1] and the quotient G by the kernel of this form satisfies
the conditions (1) and (2) of theorem 2 (with the Cartan subalgebra isomorphic to L ® R),
and satisfies condition (4) because the norms of the roots are bounded above by 2. If the
lattice is Lorentzian it satisfies condition (3). In this case it also satisfies condition (5),
because an explicit calculation using the vertex algebra operations shows that any two root
spaces of P1/DP° commute if the corresponding roots are both positive multiples of some
norm 0 vector. (If r is a norm 0 root then the root space of z is naturally isomorphic to
(21/2) ® R.) Hence the Lie algebra G associated as above to any even Lorentzian lattice
is a generalized Kac-Moody algebra.

When the lattice has dimension at most 26, the no-ghost theorem from string the-
ory implies that the Lie algebra has an almost positive definite contravariant symmetric
bilinear form, so that G can also be shown to be a generalized Kac-Moody algebra by
the earlier characterization. When the lattice has rank greater than 26 the natural con-
travariant form associated to the obvious involution is no longer positive definite so the
earlier characterization cannot be used. (There must of course be some other less obvious
involution such that the corresponding contravariant form is positive definite because this
is true for any generalized Kac-Moody algebra.)

In all the cases I know of where a Lie algebra has been shown to be a generalized
Kac-Moody algebra using the “almost positive definite” characterization, it is no harder
to prove this by checking the conditions of theorem 2, and there are many cases where
theorem 2 can be applied and the “almost positive definite” condition cannot be checked
directly.

3. Proof of theorem 1.



In this section we prove theorem 1. We let GG be a Lie algebra satisfying the conditions
of theorem 1, and we write G, for the subspace of degree m € R, where we grade G by
letting an element in the root space of a have degree a(h), where h is the regular element
in condition (3). We write G<as and G< s for the subalgebras generated by the subspaces
Gy, for |m| < M and |m| < M. We assume that G/ is a generalized Kac-Moody algebra
for some real number M, and show that we can add generators to its generators to make
G<m into a generalized Kac-Moody algebra. By repeating this a countable number of
times we obtain a presentation of G as a generalized Kac-Moody algebra.

The Lie algebra G- is a generalized Kac-Moody algebra by hypothesis, so the bi-
linear form restricted to it is nonsingular. (The proof of this in [2] (corollary 2.5) has a
gap, which was filled by Kac in [4]. Theorem 11.13.1 of [4] shows that his definition of a
generalized Kac-Moody algebra with symmetrizable Cartan matrix is essentially the same
as the one here, and lemma 11.13.2. and the remarks after it prove the nonsingularity of
the bilinear form on the nonzero root spaces.) We can therefore take a set e; of eigenvalues
of H which form a basis for the elements of GGj; that are orthogonal to G- s, and a dual
basis f; of the elements of G_j; that are orthogonal to G.j5;. We add these to the set of
elements e; and f; that we have already chosen as generators of Gps. We define h;; to
be [e;, f;] and we define a;; to be (h;, h;) (where we write h; for h;;). We have to check
that the elements a;; satisfy the conditions for the Cartan matrix of a generalized Kac-
Moody algebra, and that the elements e;, f;, and h;; satisfy the relations of a generalized
Kac-Moody algebra.

It is clear that a;; = aj; because (hi, h;) = (hj, h;).

We check that [h;,e;] = aije;. We know that [h,, e;] = xe; for some x € R because
€ is an eigenvalue of H. So x = (ZITQj,fj) = ([hi,ej],fj) = (hl, [ej,fj]) = (hl,h]) = Q5.

We check that h;; = [e;, fj] = 0if i # j. We can assume that e; has height M. If
f; has height less than M then [e;, f;] lies in G, for some m < M. The subspaces G,
and G,, are orthogonal unless m + n = 0 because h is a regular element, so to show that
lei, f;] = 0 is is sufficient to show that it is orthogonal to any y € G_,, because (,) is
nonsingular. But then ([e;, f;],y) = (e, [fj,y]) = 0 because [f;,y] is in Gy and e; is
orthogonal to G, so [e;, f;] = 0. On the other hand if f; has height M then [e;, f;] is in
H, and if h is any element of H then ([e;, f;],h) = —(ei, [fj, h]) = 0 because (e;, f;) = 0.
So [e;, f;] is again zero because (, ) is nonsingular on H.

We check that if a; > 0 and @ # j then a;; < 0, 2a;/a;; is integral, and
Ad(e;)' 720/ aiie, = Ad(f;)172%s/% f; = 0. We use the fact that the norms of the roots
of G are bounded above (condition 4 of theorem 1). The norms of the roots of e; and f;
are positive, which implies that the Lie algebra G is the direct sum of finite dimensional
representations of the copy of slo(R) spanned by e;, f;, and h;. The element e; is killed
by f; and is an eigenvector of h; with eigenvalue a;;, so the fact that it generates a finite
dimensional representation of sla(R) implies that 2a,;/a;; must be a nonpositive integer
and that Ad(e;)!~2%i/%ie; = 0. Similarly Ad(f;)!=2%a/a f; = 0.

We check that if a;; < 0 and a;; < 0 then a;; < 0, and if a;; = 0 then [e;,e;] =
[fi, f;] = 0. This follows from the condition (5) that any two imaginary roots which are
both positive or both negative have inner product at most 0, and if they have inner product
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0 their root spaces commute.

We have checked all the conditions and relations for a generalized Kac-Moody algebra,

so that G'< )y is a generalized Kac-Moody algebra, so G is a generalized Kac-Moody algebra.
This proves theorem 1.
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