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1. Classification of positive norm vectors.

In this paper we describe an algorithm for classifying orbits of vectors in Lorentzian
lattices. The main point of this is that isomorphism classes of positive definite lattices
in some genus often correspond to orbits of vectors in some Lorentzian lattice, so we
can classify some positive definite lattices. Section 1 gives an overview of this algorithm,
and in section 2 we describe this algorithm more precisely for the case of I1; 25, and as
an application we give the classification of the 665 25-dimensional unimodular positive
definite lattices and the 121 even 25 dimensional positive definite lattices of determinant
2 (see tables 1 and 2). In section 3 we use this algorithm to show that there is a unique 26
dimensional unimodular positive definite lattice with no roots. Most of the results of this
paper are taken from the unpublished manuscript [B], which contains more details and
examples. For general facts about lattices used in this paper see [C-S], especially chapters
15-18 and 23-28.

Some previous enumerations of unimodular lattices include Kneser’s list of the uni-
modular lattices of dimension at most 16 [K|, Conway and Sloane’s extension of this to
dimensions at most 23 [C-S chapter 16|, and Niemeier’s enumeration [N] of the even 24
dimensional ones. All of these used some variation of Kneser’s neighborhood method [K],
but this becomes very hard to use for odd lattices of dimension 24, and seems impractical
for dimension at least 25 (at least for hand calculations; computers could probably push
this further). The method used in this paper works well up to 25 dimensions, could be
pushed to work for 26 dimensions, and does not seem to work at all beyond this.

We use the “(4,—, —,---,—)” sign convention for Lorentzian lattices L, so that the
reflection we are interested in are (usually) those of negative norm vectors of L. We fix
one of the two cones of positive norm vectors and call it the positive cone. The norm 1
vectors in the positive cone form a copy of hyperbolic space in the usual way. We assume
that we are given a group G of automorphisms of a Lorentzian lattice L, such that G is
the semidirect product of a normal subgroup R generated by reflections of some negative
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norm vectors, and a group Aut(D) of automorphisms preserving a fundamental domain
domain D of R in hyperbolic space. We assume that all elements of v € L having non-
negative inner product with all simple roots of R have norm (u,u) at least 0 (this is just
to eliminate some degenerate cases). If L is a lattice then L(—1) is the lattice L with all
norms multiplied by —1. We use Conway’s convention of using small letters a,,, d,, e, for
the spherical Dynkin diagrams, and capital letters A,,, D,,, F, for the corresponding affine
Dynkin diagrams. The Weyl vector of a root system is the vector p such that (p,r) = —1r2/2
for any simple root r.

We want to find the orbits of positive norm vectors of the positive cone of L under
the group GG. Every positive norm vector of the positive cone of L is conjugate under R to
a unique vector in D, so it is enough to classify orbits of vectors u in D under Aut(D).

The algorithm works by trying to reduce a vector u of D to a vector of smaller norm
by adding a root of u’ to u. There are three possible cases we need to consider:

(1) There are no roots in u™.
(2) There is a root r in u' such that u+r € D.
(3) There is at least one root in u*, but if r is a root in u then w + r is never in D.

We try to deal with these three cases as follows.

If there are no roots in u™, then we assume that D contains a non-zero vector w such
that (r,w) < (r,u) for any simple root r and any vector u € L in the interior of D. Then
u —w has inner product at least 0 with all simple roots, so it also lies in D and has smaller
norm than v unless v is a multiple of w and w? = 0. So we can reduce u to a vector
of smaller norm in D. The existence of a vector w with these properties is a very strong
condition on the lattice L.

Example 1.1. The lattices I1; 9 and II; 17 have properties 1 and 2; this follows easily
from Vinberg’s description [V85] of their automorphism groups. Conway showed that the
lattice 117 o5 also has these properties; see the next section. The lattices 111 gp,+1 for n > 4
do not have these properties; but the Minkowski-Siegel mass formula shows that these
lattices have such vast numbers of orbits of positive norm vectors that there seems little
point in classifying them.

Example 1.2. It follows from [B90] that several lattices that are fixed points of finite
groups acting on II; o5 also have a suitable vector w. For example the lattice I1;; @
BW(—1), where BW is the Barnes-Wall lattice, has this property. Some of the norm 0
vectors correspond to the 24 lattices in the genus of BW classified in [S-V]; the remaining
orbits of norm 0 vectors should not be hard to find.

Example 1.3. Take L to be the lattice I g and R to be the group generated by reflections
of norm —1 vectors. (This has infinite index in the full reflection group.) Then the lattice
has a Weyl vector for the reflection group as in [B90], so we can apply the algorithm to
this reflection group. (However it is not entirely clear what the point of doing this is, as it
is easier to use the full reflection group of the lattice!)

Next we look at the second case when u™ has a root 7 such that v = u — r is in D.
Then —r is in the fundamental domain of the finite reflection group of u', so r is a sum
of the simple roots of u with the usual multiplicities.

For w in D we let R;(u) be the simple roots u of D that have inner product i(r,r)/2
with u, so R;(u) is empty for i < 0 and Ry(u) is the Dynkin diagram of u'. We write
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S(u) for Ro(u)U Ry(u) U Ro(u). Then given S(v) we can find all vectors u of D that come
from v as in (3) above, and S(u) is contained in S(v). By keeping track of the action of
Aut(D,v) on S(v) for vectors v of D we can find all possible vectors v constructed in this
way from v, together with the sets S(u).

Finally, the third case, when there is at least one root in u™, but if r is a root in u
then v — r is never in D, has to be dealt with separately for each lattice L. In practice it
does not present too much difficulty for lattices with a vector w as in case 1. See the next
section for the example of L = I1; o5.

The following two lemmas will be used later to prove some properties of the root
systems of 25 dimensional lattices.

1

Lemma 1.4. Suppose that reflection in u is an automorphism of L. Then there is an

automorphism o of L (of order 1 or 2) with the following properties:

(1) o fixes D.
(2) If o fixes w, then w is a linear combination of u and the roots of L in ut.

Proof. There is an automorphism of L acting as 1 on v and as —1 on u’, given by the
product of —1 and reflection in u'. As this automorphism fixes v € D, we can multiply
it by some (unique) element of the reflection group of u* so that the product o fixes D.
The element o acts as —1 on the space orthogonal to u, z, and all roots of R in u*, which
implies assertion (2) of the lemma 1.4.

Lemma 1.5. Suppose that there is a norm 0 vector z such that (z,u) = 2, where u is a
vector in D. Then there is an automorphism o of L with the following properties:

(1) o fixes D.
(2) If o fixes w, then w is a linear combination of u, z, and the roots of L in u™.

Proof. If M is the lattice spanned by z and u then M has the property that all
elements of M’/M have order 1 or 2. So there is an automorphism of L acting as 1 on M
and —1 on M. The result now follows as in the proof of lemma 1.4. This proves lemma
1.5.

Remark. It is usually easy to classify all orbits of negative norm vectors u in
Lorentzian lattices, because this is closely related to the classification of the indefinite
lattices u®, and by Eichler’s theorem [E] indefinite lattices in dimension at least 3 are
classified by the spinor genus (which in practice is often determined by the genus). For
example, it is easy to give a proof along these lines that if n > 0 and m > 0 then 1]} 8,41
has a unique orbit of primitive vectors of norm —2m.

2. Vectors in the lattice I1; »5.

In this section we specialize the algorithm of the previous section to the lattice 115 5.

Note that orbits norm 4 vectors u of Il 25 correspond naturally to 25 dimensional
positive definite unimodular lattices, because v is isomorphic to the lattice of even vectors
in a 25 dimensional unimodular negative definite lattice. In particular we can classify the
665 positive definite 25 dimensional unimodular lattices, as in table 2; this is the main
application of the algorithm of the previous section. Similarly norm 2 vectors of I1; o5
correspond to 25 dimensional even positive definite lattices of determinant 2. (Another
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interpretation of the vectors of Ils5; of norm at least —2 is that they are the roots of the
fake monster Lie algebra.)

First we have to show the existence of a vector w satisfying the property of section 1.
This follows from Conway’s theorem [C85] stating that the reflection group of I11; 25 has
a Weyl vector w of norm 0, with the property that (w,r) =1 for all simple roots r of the
reflection group. Conway’s proof depends on the rather hard classification of the “deep
holes” in the Leech lattice in [C-P-S]; there is a proof avoiding these long calculations in
[B85]. It seems likely that 26 is the largest possible dimension of a lattice with a suitable
vector w.

Next we have to classify the vectors w of D such that u’ has roots but u + r is
not in D for any root r € u’. One obvious way this can happen is if u has norm 0, so
we have to classify the norm 0 vectors in I 25. In any lattice L = Ilg, 1,1 the orbits
of primitive norm 0 vectors z correspond to the 8n-dimensional even negative definite
unimodular lattices z1/z. So the orbits of primitive norm 0 vectors of I1; o5 correspond
to the 24 Niemeier lattices ([C-S]). The non-primitive norm 0 vectors are of course either
0 or a positive integer multiple of a primitive norm 0 vector, so this gives the classification
of all orbits of norm 0 vectors in I1; 25; see table 0.

Next suppose that u is a positive norm vector of D with (u,u) = 2n and r is a highest
root in u such that v —r is not in D. Then u — r is conjugate under the reflection group
to some vector v such that (v,u) < (u —r,u). But (v,u)? > (u,u)(v,v) = 2n(2n — 2) and
(v,u) < (u—7,u) =2n, so (v,u) =2n —1. Soif z =u — v then (z,u) = 1 and 22 = 0. If
we put 2’ = u —nz then z and 2z’ are norm 0 vectors with (z,z’) =1 and u =nz + 2. So
II 95 = B & (z,2') for some Niemeier lattice B. If this Niemeier lattice has roots, then
adding some of these roots to r gives a vector in D by the previous argument, so B must
be the Leech lattice so we can assume that z is in the orbit of w. If n > 1 then there are no
roots in ut, and if n < 1 then (u,u) < 0, so we must have n = 1. So the only possibility
for u is that it is a norm 2 vector in the orbit of w + w’ = 2w + r, where r is a simple root.

Putting everything together gives the following list of the vectors u € D such that u*
has roots but u —  is not in D for any root r € u=:

1. The zero vector.

2. The norm 0 vectors nz for n > 1 and z a primitive norm 0 vector of D corresponding
to some Niemeier lattice other than the Leech lattice. The vectors for a given Niemeier
lattice and a given value of n are all conjugate under Aut(D).

3. The norm 2 vectors of the form 2w + r for a simple root r of D. These form one orbit
under Aut(D).

Lemma 2.1. Suppose u,v € D, u> = 2n, v> = 2(n — 1) and (v,u) = 2n. Then

Ro(u) Q RQ(U) U R1 (U) U RQ(U) = S(U)
R;(u) € Ry(v) U Ry(v)U---U R;(v) fori > 1.

Proof. The vector v is in D, so v = u + r for some highest root r of u*. The vector r
has inner product 0, 1, or 2 with all simple roots of u™, and —r is a sum of roots of Rg(u)
with positive coefficients, so r has inner product > 0 with all simple roots of D not in
Ro(u). The lemma follows from this and the fact that (v, s) = (u, s) + (r, s) for any simple
root s of D. This proves lemma 2.1.



We now start with a vector v of norm 2(n — 1) and try to reconstruct u from it. The
vector u— v is a highest root of some component of Ry(u), and Ry(u) is contained in S(v),
so we should be able to find u from S(v). By lemma 2.1 S(u) is contained in S(v), so we
can repeat this process with u instead of v. The following theorem shows how to construct
all possible vectors u as in lemma 2.1 from v and S(v).

Theorem 2.2. Suppose that v has norm 2(n — 1) and is in D (son > 1). Then there are
bijections between
(1) Norm 2n vectors u of D with (u,v) = 2n.
(2) Simple spherical Dynkin diagrams C contained in the Dynkin diagram A of D such
that if r is the highest root of C' and ¢ in C satisfies (¢,) = i, then c is in R;(v).
(3) Dynkin diagrams C satisfying one of the following three conditions:
Either C' is an ay and is contained in Ry (v),
or Cis an a, (n > 2) and the two endpoints of C are in Ry (v) while the other points
of C are in Ry(v),
or Cisd, (n>4), es, er, or es and the unique point of C' that has inner product 1
with the highest root of C' is in Ry(v) while the other points of C' are in Ry(v).

Proof. Let u be as in (1) and put 7 = u — v. The vector r is orthogonal to u and has
inner product < 0 with all roots of Ry (because —v does) so it is a highest root of some
component C' of Ry(u). The vector r therefore determines some simple spherical Dynkin
diagram C contained in A. Any root ¢ of C has (¢,v+r) = (c,u) = 0, so ¢ is in R;(v)
where i = (¢,r). This gives a map from (1) to (2).

Conversely if we start with a Dynkin diagram C' satisfying (2) and put v = v + r
(where r is the highest root of C') then (¢,u) = 0 for all ¢ in C, so (r,u) =0 as r is a sum
of the ¢’s. This implies that u? = 2n and (u,v) = 2n. We now have to show that u is in
D. Let s be any simple root of D. If s is in C then (s,r) = —(s,v) and if s is not in C
then (s,7) > 0, so in any case (s,u) = (s,v+r) > 0 and hence u is in D. This gives a map
from (2) to (1) and shows that (1) and (2) are equivalent.

Condition (3) is just the condition (2) written out explicitly for each possible C, so
(2) and (3) are also equivalent. This proves theorem 2.2.

We define the height of a vector w in 11 95 to be (u,w). We show how to calculate
the heights of vectors of II; 25 that have been found with the algorithm above.

Lemma 2.3. Suppose u, v are vectors in D of norms 2n, 2(n — 1) with (u,v) = 2n and

suppose that v = u — r for some root r of u corresponds to the component C of Rg(u).
Then

height(u) = height(v) +h — 1
where h is the Coxeter number of the component C'.

Proof. We have v = u —r where 7 is the highest root of C', so height(u) = height(v) +
(r,w). We have r = ). m;c; where the ¢; are the simple roots of C' with weights m; and
> ;mi = h —1. All the ¢; have inner product 1 with w, so (r,w) = h — 1. This proves
lemma 2.3.



Lemma 2.4. Let u be a primitive vector of D such that there is a norm 0 vector z with

(z,u) = 0 or 1, and suppose that z corresponds to a Niemeier lattice B with Coxeter

number h.

(1) If v has norm O then its height is h. The Dynkin diagram of u' is the extended
Dynkin diagram of B.

(2) If u has positive norm then height(u) = 1+ (1+4u?/2)h. The Dynkin diagram of u™ is
the Dynkin diagram of B if u?> > 2 and the Dynkin diagram of B plus an ay if u?> = 2.

Proof.

(1) The Dynkin diagram of u* is a union of extended Dynkin diagrams. If this union is
empty then u must be w and therefore has height 0 = h. If not then let C' be one of
the components. We have u = ). m;c; where the ¢;’s are the simple roots of C' with
weights m;. Also ), m; = h because C is an extended Dynkin diagram and all the
¢;’s have height 1, so u has height h.

(2) As u has inner product 1 with a norm 0 vector z of D we can put u = nz + 2z’ with
u? = 2n and 2’2 = 0, (2,2') = 1. By part (1) 2z has height h. We have 2/ = z +r
where r is a simple root of D, so height(z’) = height(z) + height(r) = h + 1. Hence
height(u) = nh+h+1 = 1+ (1 +u?/2)h. The lattice u is B ® N where N is a
one dimensional lattice of determinant 2n, so the Dynkin diagram is that of B plus
that of NV, and the Dynkin diagram of (norm 2 roots of) N is empty unless 2n = 2 in
which case it is a;. This proves that the Dynkin diagram of = is what it is stated to
be. This proves lemma 2.4.

Orbits of norm 2 vectors u € 11 25 correspond to even 25 dimensional positive definite

lattices B of determinant 2, where B(—1) = u®. One part of the algorithm for finding

vectors of norm 2n consists of finding the vectors u such that there are no roots in u=.

For norm 2 vectors u the following lemma shows that there are no such vectors.

Lemma 2.5. If u € 11, 25 has norm 2 then ut contains roots. In other words every 25

dimensional even positive definite lattice of determinant 2 has a root.

Proof. If u' contains no roots then, by the algorithm of section 1, u = w + u; for
some u; in D. We have u? = u? — 2height(u), so u? = 0 and u has height 1 because u? > 0,
u? = 2 and the height of u is positive. Then height(u;) = height(u) = 1, so u is a norm 0
vector in D that has inner product 1 with the norm 0 vector w of D, but this is impossible
as u —w would be a norm —2 vector separating the two vectors u and w of D. This proves

lemma 2.5.

Theorem 2.6. Suppose that uw € D has norm 2. Then
w = p + height(u)u/2

where p is the Weyl vector of the root system of u~. Also —2p? = height(u)?.

Proof. The vector w is fixed by any automorphism fixing D, so by lemma 1.4 the
vector w must be in the space spanned by u and the roots of u. However w also has inner
product 1 with all simple roots of u and has inner product height(u) with u, so w must
be p + height(u)u/2. Taking norms of both sides of w = p + height(u)u/2, and using the
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facts that w? = 0, (u,p) = 0, and (u,u) = 2, shows that —2p? = height(u)?. This proves
theorem 2.6.

In particular we find the strange consequence that the norm of the Weyl vector of any
25 dimensional even positive definite lattice of determinant 2 must be a half a square.

Norm 4 vectors in the fundamental domain D of 11 25 correspond to 25 dimensional
unimodular lattices A = A; @ I™, where ut is the lattice of even elements of A(—1) and
A; has no norm 1 vectors . The odd vectors of A(—1) can be taken as the projections of
the vectors y with (y,u) = 2 into u. A norm 4 vector u can behave in 4 different ways,
depending on whether the unimodular lattice A; with no norm 1 vectors corresponding to
u is at most 23 dimensional, or 24 dimensional and odd, or 24 dimensional and even, or
25 dimensional.

Theorem 2.7. Norm 1 vectors of A correspond to norm 0 vectors z of 111 25 with (z,u) =
2. Write A = A1 & I™ where Ay has no vectors of norm 1. Then u is in exactly one of the
following four classes:

(1) w has inner product 1 with a norm 0 vector. The lattice A, is a Niemeier lattice.

(2) A has at least 4 vectors of norm 1, so that A; is at most 23 dimensional (but may be
even). There is a unique norm 0 vector z of D with (z,u) = 2 and this vector z is of
the same type as either of the two even neighbors of Ay @ I"~1.

(3) A; is 24 dimensional and odd. There are exactly two norm 0 vectors that have inner
product 2 with u, and they are both in D. They have the types of the two even
neighbors of A;.

(4) A = Ay has no vectors of norm 1.

Proof. The vector z is a norm 0 vector with (z,u) = 2 if and only if u/2 — z is a norm
1 vector of A. Most of 2.7 follows from this. The only non-trivial things to check are the
statements about norm 0 vectors that are in D.

If u does not have inner product 1 with any norm 0 vector then a norm 0 vector z
with (z,u) = 2 is in D if and only if it has inner product > 0 with all simple roots of u',
so there is one such vector in D for each orbit of such norm 0 vectors under the reflection
group of ut. If A has at least 4 vectors of norm 1 then they form a single orbit under
the Weyl group of (the norm 2 vectors of) u*, which proves (2), while if A has only two
vectors of norm 1 then they are both orthogonal to all norm 2 vectors of A and so form
two orbits under they Weyl group of u*. This proves theorem 2.7.

Theorem 2.8. Suppose that u is a norm 4 vector corresponding to a unimodular 25
dimensional lattice A = Ay @ I?>~™ with 2n > 4 vectors of norm 1. Let p be the Weyl
vector of the root system of norm —2 roots of u (which is the Weyl vector of the norm
—2 vectors of A(—1)) and let let h be the Coxeter number of the even neighbors of the
24 dimensional unimodular lattice Ay @ I**~™. Then height(u) = (w,u) = 2(h +n — 1),
w = p + height(u)u/4, and —p* = (h+n — 1)2.

Proof. There is a unique norm 2 vector z of D with (z,u) = 2; we let i be its projection
into u™. The lattice A has at least 4 vectors of norm 1, so any vector of norm 1 and in
particular 4 is in the vector space generated by vectors of norm —2 of u*. Hence by lemma
1.5 and the same argument as in theorem 2.6 we have w = p+ height(u)u/4. The norm —4
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vector 2i of u' is the sum of —2(n — 1) simple roots of the d,, component of the Dynkin
diagram of u*, so (2i,w) = (2i,p) = —2(n — 1).
The vector i is the projection of z into u’, so i = z — u/2, and hence

height(u) = (w,u)

2(w, z — 1)
2(height(z) +n —1)
2(h+n - 1).

If we calculate the norms of both sides of w = p + height(u)u/4 we find that —p? =
(h +n — 1)2. This proves theorem 2.8.

Example 2.9. Suppose u corresponds to the lattice I?°. The number n is then 25 and
the root system of the norm 2 vectors is Dss, so the Weyl vector p can be taken as
(0,1,2,...,24). The even neighbors of I?* are both Dy, with Coxeter number h = 46, so
we find that 02 +12 4+ 22 + ... + 242 = p2 = (h+n — 1)? = 70%2. Watson [W] showed that
the only solution of 02 + 12 + .. + k? = m? with k > 2 is k = 24. See [C-S Chapter 26]
for a construction of the Leech lattice using this equality.

Theorem 2.10. Suppose that u is a norm 4 vector of D with exactly two norm 0 vectors
z1, z9 that have inner product 2 with u, and suppose that there are no norm 0 vectors that
have inner product 1 with u. Then z; and z, are both in D and have Coxeter numbers hq,
he where h; = (z;,w). Then

w = p—l— (hlzg —+ thl)/2

where p is the Weyl vector of the norm —2 vectors of u™. Also u = z1 + zo, height(u) =
hi + hy, —p? = hihs, and ut has 8(hy + ho — 2) roots.

Proof. The vector u — z; is a norm 0 vector which has inner product 2 with u and so
must be z3. Hence u = 27 + 29 and height(u) = height(z1) + height(z2) = hy + has.

There is a norm 0 vector that has inner product 2 with u, and any automorphism
of L fixing D also fixes w, so by lemma 1.5 w is a linear combination of z1, 29, and the
roots of R in ut. Using the facts that (w, 21) = hy, (w, 22) = ha, and (w,r) = —r?/2 for
any simple root r in u shows that w must then be p+ (h1z2 + hoz1)/2. Using the fact
that w? = 0 this shows immediately that —p? = hihy. The number of roots follows from
remark 2.12 below. This proves theorem 2.10.

Corollary 2.11. If A, is an odd 24 dimensional positive definite unimodular lattice with
no vectors of norm 1 and whose even neighbors have Coxeter numbers hi and hsy, then
p? = hihy where p is the Weyl vector of Aj.

Proof. This follows immediately from theorem 2.10, using the fact that A; & I is the
25 dimensional unimodular lattice corresponding to u as in 2.10.

Remark. Let By, By be the two even neighbors of A;. Then it is not hard to show
that ho < 2hy + 2, and there are several lattices A; for which equality holds.
Remark 2.12. Theorem 13.1 and corollary 13.2 of [B95] show that the height of a vector
in the fundamental domain of II; o5 can be written as an explicit linear combination of
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the theta functions of cosets of the lattice u. In particular we find that if v is a norm 2
vector then

12height(u) = 18 — 4z +r
where 7 is the number of norm —2 vectors of ut and z; is the number of norm 0 vectors
having inner product i with u (so z; is 0 or 2 and is 2 if and only if the lattice ut is
the sum of a one dimensional lattice and an even lattice). Similarly if v has norm 4 and

corresponds to a 25 dimensional unimodular lattice A then
8t =20—229 — 821 +r

where r is the number of norm 2 vectors of A, zs is the number of norm 1 vectors of A, and
z1 18 1 if A is the sum of a Niemeier lattice and a one dimensional lattice and is 0 otherwise.
Note that these relations give congruences for the numbers of roots that immediately imply
that 25 dimensional even lattices of determinant 2 and 25 dimensional unimodular lattices
always have roots. There are similar relations and congruences for larger norm vectors of
11 25.

There are several other genuses of lattices that can be classified using I1; 25. Most
of these do not seem important enough to be worth publishing, but here is a summary
of what is available just in case anyone finds a use for any of these. The 24 dimensional
even positive definite lattices of determinant 5 are easy to classify as they turn out to
correspond to pairs consisting of a norm 2 vector u of I1; »5 together with a norm —2 root
r with (r,u) = 1, and these can easily be read off from the list of norm 2 vectors. The
25 dimensional positive definite even lattices of determinant 6 correspond to the norm 6
vectors in 11 25 and can be classified from the norm 4 vectors using the algorithm; there
are 2825 orbits if I have made no mistakes. A list of them is available from my home
page. These can be used to classify the 26 dimensional even positive definite lattices of
determinant 3, because the norm 2 roots of such lattices correspond to the norm 6 vectors
of I1; 25. (There is a unique such lattice with no roots; see the next section.) There are
between 677 and 681 such lattices, and a provisional list is available from my home page
(there are a few small ambiguities that I have not yet got around to resolving). If such a
lattice has no norm 6 roots then the number of norm 2 vectors is divisible by 6. With a
lot more effort it should be possible to classify the 26 dimensional unimodular lattices by
finding the (roughly 500007) orbits of norm 10 vectors of I1; o5; see the next section.

3. Lattices with no roots.

In this section we show that there is a unique 26 dimensional positive definite uni-
modular lattice with no roots. Conway and Sloane use this result in their proof [C-S98]
that there is a positive definite unimodular lattice with no roots in all dimensions greater
than 25. We also show that the number of norm 2 vectors of a 26 dimensional unimodular
lattice is divisible by 4, and sketch a construction of a 27 dimensional unimodular lattice
with no roots.

Lemma 3.1. A 26-dimensional unimodular lattice L with no vectors of norm 1 has a
characteristic vector of norm 10.

Proof. If L has a characteristic vector x of norm 2 then z=+ is a 25 dimensional even

lattice of determinant 2 and therefore has a root r by theorem 2.6; 2r 4+ x is a characteristic
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vector of norm 10. If the lemma is not true we can therefore assume that L has no vectors
of norm 1 and no characteristic vectors of norm 2 or 10. Its theta function is determined
by these conditions and turns out to be 1—156¢?+ - - - which is impossible as the coefficient
of ¢? is negative. This proves lemma 3.1.

Lemma 3.2. There is a bijection between isomorphism classes of

(1) Norm 10 characteristic vectors c in 26-dimensional positive definite unimodular lattices
L, and

(2) Norm 10 vectors u in 11y 25
given by ¢t (—1) = ut.
We have Aut(L,c) = Aut(11; 25, u).

Proof. Routine. Note that —1 is a square mod 10. This proves lemma 3.2.

Lemmas 3.1 and 3.2 give an algorithm for finding 26 dimensional unimodular lattices
L. Tt is probably not hard to implement this on a computer if one is given a computer
algorithm for deciding when 2 vectors of the Leech lattice are conjugate under its automor-
phism group; such an algorithm has been described by Allcock in [A]. The main remaining
open problem is to find a use for these lattices! We now apply this algorithm to find the
unique such lattice with no roots.

Lemma 3.3. Take notation as in lemma 3.2. The lattice L has no roots if and only if u™
has no roots and u does not have inner product 1, 2, 3, or 4 with any norm 0 vector.

Proof. If u* has roots then obviously L has too. If there is a norm 0 vector z that
has inner product 1, 2, 3, or 4 with u then the projection z, of z into u has norm —1/10,
—4/10, —9/10, or —16/10. The lattice L(—1) contains u™ + ¢, and the vector z, & 3¢/10,
2y +4¢/10, 2, £ ¢/10, or 2z, +2¢/10 is in L for some choice of sign and has norm —1, —2,
—1, or —2. Hence if u has inner product 1, 2, 3, or 4 with some norm 0 vector then L has
roots. Conversely if L has a root r then either r» has norm 2 and inner product 0, +£2, +4
with ¢ or it has norm 1 and inner product +1, +3 with ¢, and each of these cases implies
that u® has roots or that u has inner product 1, 2, 3, or 4 with some norm 0 vector by
reversing the argument above. This proves lemma 3.3.

Now let L be a 26 dimensional unimodular lattice with no roots containing a charac-
teristic vector ¢ of norm 10, and let u be a norm 10 vector of D corresponding to it as in
3.2.

Lemma 3.4. u = z + w, where z is a norm 0 vector of D corresponding to a Niemeier
lattice with root system A$, and w is the Weyl vector of D. In particular u is determined
up to conjugacy under Aut(D).

Proof. The lattice u has no roots so u = w + z for some vector z of D. By lemma 3.3
u does not have inner product 1, 2, 3, or 4 with any norm 0 vector, so (z,w) = (u,w) > 5.
Hence
10 = u® = 2 + 2(z,w) > 2(z,w) > 10

so (z,w) = 5 and 22 = 0. The only norm 0 vectors z in D with (z,w) = 5 are the primitive
ones corresponding to A Niemeier lattices, which form one orbit under Aut(D). This
proves lemma 3.4.
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Lemma 3.5. If u = z 4+ w is as in lemma 3.4 then the 26 dimensional unimodular lattice
corresponding to u has no roots.

Proof. The lattice u™ obviously has no roots so by lemma 3.3 we have to check that
there are no norm 0 vectors that have inner product 1, 2, 3, or 4 with u. Let z be any norm
0 vector in the positive cone. If x has type AS then (z,u) > (z,w) > 5; if x has Leech
type then (x,u) > (x,z) > 5; if  has type A?* then (z,u) = (z,w) + (z,2) >2+3 =5
((z, 2) cannot be 2 as there are no pairs of norm 0 vectors of types A?* and A§ that have
inner product 2 by the classification of 24 dimensional unimodular lattices); and if = has
any other type then (z,u) = (x,w) + (z,z) > 3+ 2 = 5. This proves lemma 3.5.

Theorem 3.6. There is a unique 26 dimensional positive definite unimodular lattice L
with no roots. Its automorphism group is isomorphic to the group O5(5) = 2.G.2 of order
28.32.5%.13 and acts transitively on the 624 characteristic norm 10 vectors of L.

Proof. By lemma 3.1 L has a characteristic vector of norm 10, so by lemmas 3.3 and
3.4 L is unique and its automorphism group acts transitively on the characteristic vectors
of norm 10. By lemma 3.5 L exists. The theta function is determined by the conditions
that L has no vectors of norm 1 or 2 and no characteristic vectors of norm 2, and it turns
out that the number of characteristic vectors of norm 10 is 624. The stabilizer of such a
vector is isomorphic to Aut(I1; 25,u), which is a group of the form 53.2.S5 where Ss is the
symmetric group on 5 letters. This determines the order of the automorphism group of
the lattice. From this it is not difficult to determine it precisely; we omit the details. This
proves theorem 3.6.

We now show that the number of norm 2 vectors of any 26 dimensional even positive
definite unimodular lattice is divisible by 4. There are strictly 26 dimensional unimodular
lattices with no roots or with 4 roots, so this is the best possible congruence. For unimod-
ular lattices of dimension less than 26 there are congruences modulo higher powers of 2
for the number of roots.

Lemma 3.7. If L is a 25-dimensional positive definite lattice of determinant 2 then the
number of norm 2 roots of L is 2 mod 4.

Proof. The even vectors of L form a lattice isomorphic to the vectors that have even
inner product with some vector b in an even 25-dimensional lattice B of determinant 2.
(Note that b is not in B’ — B.) The number of roots of B is 12t — 10 or 12t — 18 where ¢ is
the height of the norm 2 vector of D corresponding to B by remark 2.12, so it is sufficient
to prove that the number of norm 2 vectors of B that have odd inner product with b is
divisible by 4.

The vector b has zero inner product with u and integral inner product with w, so by
theorem 2.6 b has integral inner product with p. Hence b has even inner product with the
sum of the positive roots of B, so it has odd inner product with an even number of positive
roots. This implies that the number of roots of B that have odd inner product with b is
divisible by 4. This proves lemma 3.7.

Corollary 3.8. If L is a 26 dimensional unimodular lattice then the number of norm 2
vectors of L is divisible by 4.

11



Proof. The result is obvious if L has no norm 2 roots, so let r be a norm 2 vector of
L. The lattice 7+ is a 25 dimensional even lattice of determinant so by remark 2.12 the
number of roots of 7+ is 2 mod 4. The number of roots of L not in r* is 4h — 6 where h is
the Coxeter number of the component of L containing r, so the number of norm 2 vectors
of L is divisible by 4. This proves corollary 3.8.

Remark. A similar but more complicated argument can be used to show that there
is a unique even 26 dimensional positive definite lattice of determinant 3 with no roots.
Gluing on a one dimensional lattice to this gives a unique 27 dimensional unimodular
lattice with no roots and a characteristic vector of norm 3. As a different proof of this
has already been published in [E-Z] we will just give a brief sketch of the proof from [B].
(The preprint [B-V] shows that there are exactly three 27 dimensional positive definite
unimodular lattices with no roots.) Let L be a 27 dimensional positive definite unimodular
lattice with no roots and a characteristic vector ¢ of norm 3. The theta function of L is
determined by these conditions and this implies that L has vectors of norm 5; let v be
such a vector. Then (v,c)® is a 25 dimensional even lattice X of determinant 14 such
that X'/ X is generated by an element of norm 1/14 mod 2. Such lattices X correspond
to norm 14 vectors x in the fundamental domain D of II; o5, and the condition that L
has no vectors of norm 1 or 2 implies that there are exactly two possibilities for x: z is
either the sum of w and a norm 0 vector of height 7 corresponding to Ag, or x is the
sum of w and a norm 2 vector of height 6 corresponding to the 25 dimensional lattice of
determinant 2 with root system a3. Both of these s turn out to give the same lattice L,
which therefore has two orbits of norm 5 vectors and is the unique 27 dimensional positive
definite unimodular lattice with no roots and with characteristic vectors of norm 3.

Table 0. The primitive norm 0 vectors of I/ 5.

We list the set of orbits of primitive norm 0 vectors z of II; 25, which is of course
more or less the same as the well known list of Niemeier lattices (see [C-S table 16.1]).
The height is just (w, z) where w is the Weyl vector of a fundamental domain containing
z. The letter after the height is just a name to distinguish vectors of the same height,
and is the letter referred to in the column headed “Norm 0 vectors” of table 1. The
column headed “Group” is the order of the subgroup of Aut(D) fixing the primitive norm
0 vector. However note that the group order is not (usually) the order of the quotient of
the automorphism group of the Niemeier lattice by the reflection group; see [C-S chapter
16] for a description of the relation between these groups. For the vector w of height 0 the
group is the infinite group of automorphisms of the affine Leech lattice and is an extension
of a finite group of the order given by the group of translations of the Leech lattice A.

Height Roots Group
Ox None A-8315553613086720000
2a A2 1002795171840
3a A2 138568320
4a A3 688128
Ha AS 30000
6d DS 138240
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6a  AiD, 3456

7a Al 1176

8a  A2D?2 256

9a A3 324
10d D¢ 384
10a Ag D6 80
12¢ B 432
12a Al 1 D7 E6 24
13a A3, 52
14d D} 48
16a A15 Dg 16
18d  DjoFE? 8
18a A17E7 12
22d D2, 8
25a A24 10
30e E3 6
30d Dis g 2
46d Doy 2

Table 1. The norm 2 vectors of 11 5.

The following sets are in natural 1:1 correspondence:
(1) Orbits of norm 2 vectors in Iy 25 under Aut(I1 25).
(2) Orbits of norm 2 vectors u of D under Aut(D).

(3) 25 dimensional even bimodular lattices L.

The lattice L(—1) is isomorphic to u™. Table 1 lists the 121 elements of any of these
three sets.

The height is the height of the norm 2 vector u of D, in other words (u,w) where w is
the Weyl vector of D. The letter after the height is just a name to distinguish vectors of
the same height, and is the letter referred to in the column headed “Norm 2” of table 2.
An asterisk after the letter means that the vector u is of type 1, in other words the lattice
L is the sum of a Niemeier lattice and a;.

The column “Roots” gives the Dynkin diagram of the norm 2 vectors of L arranged
into orbits under Aut(L). “Group” is the order of the subgroup of Aut(D) fixing u. The
group Aut(L) is a split extension R.G where R is the Weyl group of the Dynkin diagram
and G is isomorphic to the subgroup of Aut(D) fixing u.

“S” is the maximal number of pairwise orthogonal roots of L.

The column headed “Norm 0 vectors” describes the norm 0 vectors z corresponding to
each orbit of roots of u™ where u is in D. A capital letter indicates that the corresponding
norm 0 vector is twice a primitive vector, otherwise the norm 0 vector is primitive. =z
stands for a norm 0 vector of type the Leech lattice. Otherwise the letter a, d, or e is
the first letter of the Dynkin diagram of the norm 0 vector, and its height is given by
height(u) — h+ 1 where h is the Coxeter number of the component of the Dynkin diagram
of u.

For example, the norm 2 vector of type 23a has 3 components in its root system, of
Coxeter numbers 12, 12, and 6, and the letters are e, a, and d, so the corresponding norm

13



0 vectors have Coxeter numbers 12, 12, and 18 and hence are norm 0 vectors with Dynkin
diagrams Eél, A11D7E6, and D10E$.
For some remarks on the reliability of table 1 see the introduction to table 2.

Height Roots Group S Norm 0 vectors
la* a1 8315553613086720000 1 X
2a as 991533312000 1 X
3a af 92897280 9 a
4a azai® 190080 13 aa
Sa* attay 244823040 25 aA
ob asald 3456 13 aa
5¢ azai® 40320 17 aa
6a a$ 3024 9 a
6b aza3a$ 240 13 aaa
Ta* a3?a, 190080 13 aA
7b asasa’ 48 13 aaa
7c azafay 384 17 aad
7d asasad 240 13 aaa
Te dya?t 120960 25 ad
Sa alas 240 13 ad
8b  asadaia? 12 13  aaaa
8c dya) 864 13 aa
9a* agal 2688 17 alA
9b aiaia 16 13 aaa
9c ajaza3a’ 12 13  aaaa
9d  djaiasa’ 48 17 aada
9e asajas 24 13 aaa
of asasa$ 48 17 aaa

10a dyaia3 12 13 aaa
10b ag,a?lagagal 4 13 aaaaa
1la* a$ay 240 13 aA
11b diad 432 25 dd
11c asdia3 24 17 daa
11d asasajazay 4 13 aaaaa
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11le a§d4a§a%a1

11f aial
11g d5aga1
11h aGaiagagal
12a a%ag
12b d5aia2
12¢ a6d4ai

2 2
12d a6aEa3as;

13&* a§d4a1
13b d5a§d4a3a1
13c dsaia3ay
13d* dgal
13e atasasa?
13f arasazas

13g a7a5d4a§a%

14a a6a6d5a4a2
14b a%d4
l4dc aragasasaq

15a* agay
15b d§a5a3
15¢ dedia’
15d d6a§a5a3
15e ard?a3ay
15¢f azdia,
15g agal

15h aggara3za9

16a a?ag
16b a8a6d5a4

17a* a2d?a,
17b 66a§d4
17c a7d6d5a5
17d a%dGagal

17e agagal
17f a9d5a5d4a1
17g a9a7ai
18a ecay

18b agagsao

48
48

24

= O o

48

12
2160
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15

17
13
17
13

13
13
13
13

17
17
17
25
13
13
17

13
13
13

13
17
25
17
17
17
13
13

13
13

17
17
17
17
13
17
13

13
13

aaaad
aa
aad
aaaaa

ad
aaa
aaa
aaaa

aaA
aaada
aaae
dD
aaaa
aaaa
aaaaa

aaaad
aa
aaaaad

aA
ade
ddd
aada
aaad
aad
aa
aaaaa

ad
aaaa

aal
aae
daaa
aada
aaa
aaaaa
aaa

aa
aaaa



19a* asay

19b d3dya’
19c¢ a766d§a1
19d d7a7d5a5
19e d7a$a3a1

19f a9a7d6a1a1
19¢  ajparagay

20a, aZegas
20b a10a8d5

21a* azdsay
21b a11d6a5a3
21c ajjagas
21d* d%al
2le a966d6a3
23a d7e§a5
23b dgd%d4a1
23c agd?
23d a9d8a7
23e a11d7d5a1
24a a3 az
24b a12€0¢6

25&* a11d766a1
25b a13d6d5

25e* eaal
26a a13a10a1
27a* atqay
27b €7dg
27¢c agager
27d d9a9€6
27e a11d9a5
271 140902
29a a11€7€¢
29d* dgal
3la d§e7a1a1
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13
25
17
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13

13
13

17
17
13
25
17

17
25
17
17
17

13
13

17
17
17

13

13
25
17
17
17
13

17
25

25

aA
ddd
eaad
aaad
aaad
aaaad
aaaa

aaa
aaa

aaA
aaaa
aaa
dD
aaad

ead
dddd
da
daa
aaad

ad
aaa

aaal
aaa
cE

aaa

alA
dd
ada
ada
aad
aaa

daa
dD

ddde



31b d10d8d6a1 1 25 dddd

3lc a15d8a1 2 17 aad
33a* a15doay 2 17 aal
33b ai5€e7a3 2 17 aad
33c¢ air7as 2 13 aa
35a e3dy 6 25 de
35b a13d11 2 17 da
36a a18€¢ 2 13 aa
37a* ai7era; 2 17 aal
37d* dloegal 2 25 ddD
39a d12€7d6 1 25 ddd
45d* d3,aq 2 25 dD
47a dipeser 1 25 edd
47b d14d10a1 1 25 ddd
47c aires 2 17 da
48a a230a9 2 13 ad
5la* 401 2 13 aA
61d* d1668a1 1 25 ddD
61le* esay 6 25 eE
63a d1867 1 25 dd
93d* d24a1 1 25 dD

Table 2. The norm 4 vectors of 11 5.

There is a natural 1:1 correspondence between the elements of the following sets:
) Orbits of norm 4 vectors w in 11 o5 under Aut(/1; 25).
) Orbits of norm 4 vectors in the fundamental domain D of I]; 25 under Aut(D).
) Orbits of norm 1 vectors v of I; 35 under Aut(Iy 25).
) 25 dimensional unimodular positive definite lattices L.
) Unimodular lattices L; of dimension at most 25 with no vectors of norm 1.
) 25 dimensional even lattices Lo of determinant 4.
L, is the orthogonal complement of the norm 1 vectors of L, Lo is the lattice of
elements of L of even norm, Ly(—1) is isomorphic to u*, and L(—1) is isomorphic to v*.
Table 2 lists the 665 elements of any of these sets.

(1
(2
(3
(4
(5
(6
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The height is the height of the norm 4 vector u of D, in other words (u,w) where w is
the Weyl vector of D. The things in table 2 are listed in increasing order of their height.

Dim is the dimension of the lattice L. A capital E after the dimension means that
L, is even.

The column “roots” gives the Dynkin diagram of the norm 2 vectors of Ly arranged
into orbits under Aut(Ls).

“Group” gives the order of the subgroup of Aut(D) fixing u. The group Aut(L) =
Aut(Ls) is of the form 2 x R.G where R is the group generated by the reflections of norm
2 vectors of L, GG is the group described in the column “group”, and 2 is the group of
order 2 generated by —1. If dim(L;) < 24 then Aut(L;) is of the form R.G where R is the
reflection group of L; and G is as above.

For any root r of ut the vector v = u — r is a norm 2 vector of 11, 25. This vector v
can be found as follows. Let X be the component of the Dynkin diagram of v to which
u belongs and let h be the Coxeter number of X. Then u — r is conjugate to a norm 2
vector of 11 o5 in D of height ¢ — h+ 1 (or ¢t — h if the entry under “Dim” is 24F) whose
letter is the letter corresponding to X in the column headed “norm 2”. For example let u
be the vector of height 6 and root system a3ai®. Then the norm 2 vectors corresponding
to roots from the components as or a; have heights 6 — 3+ 1 and 6 — 2 + 1 and letters a
and b, so they are the vectors 4a and 5b of table 1.

If dim(L;) < 24 then the column “neighbors” gives the two even neighbors of
Ly + 1?4=dim(L1) - 1f dim(L;) < 23 then both neighbors are isomorphic so only one is
listed, and if L; is a Niemeier lattice then the neighbor is preceded by 2 (to indicate that
the corresponding norm 0 vector is twice a primitive vector). If the two neighbors are
isomorphic then there is an automorphism of L exchanging them.

Tables 1 and 2 were originally calculated by hand. Most of the lattices were found
several times, once for each orbit of roots, and this gave a large number of checks for
most entries. I later ran a computer version of the algorithm of this paper, which turned
up about 20 minor errors (mostly errors in column 5, and a few misprints in the group
order and root systems which were due to copying errors). I also checked the Minkowski-
Siegel mass formula. Any errors remaining are probably either copying errors (the tables
are based on computer output, but have had some hand editing to turn them into nice
looking TEX) or an error where a lattice should be split into 2 lattices each with twice the
automorphism group. The second possibility cannot be detected by mass formulas but I
think it unlikely that it occurs in these tables. (It becomes an irritating problem when
classifying the 26-dimensional even lattices of determinant 3.)

Height Dim Roots Group norm 2 Neighbors
1 24E None 8315553613086720000 2A
2 23 a? 84610842624000 a A
2 24 None 1002795171840 A A%
3 25 a? 88704000 a
4 24 a$ 20643840 a A A%
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