Richard E. Borcherds, *
Mathematics department, Evans Hall \#3840, University of California at Berkeley, CA 94720-3840 U.S.A.
e-mail: reb@math.berkeley.edu
www home page www.math.berkeley.edu/ ${ }^{\text {reb }}$

Contents.

1. An algorithm for classifying vectors in some Lorentzian lattices.
2. Vectors in the lattice $I I_{1,25}$.
3. Lattices with no roots.

Table 0: Primitive norm 0 vectors in $I I_{1,25}$.
Table 1: Norm 2 vectors in $I I_{1,25}$.
Table 2: Norm 4 vectors in $I I_{1,25}$.

1. Classification of positive norm vectors.

In this paper we describe an algorithm for classifying orbits of vectors in Lorentzian lattices. The main point of this is that isomorphism classes of positive definite lattices in some genus often correspond to orbits of vectors in some Lorentzian lattice, so we can classify some positive definite lattices. Section 1 gives an overview of this algorithm, and in section 2 we describe this algorithm more precisely for the case of $I I_{1,25}$, and as an application we give the classification of the 66525 -dimensional unimodular positive definite lattices and the 121 even 25 dimensional positive definite lattices of determinant 2 (see tables 1 and 2). In section 3 we use this algorithm to show that there is a unique 26 dimensional unimodular positive definite lattice with no roots. Most of the results of this paper are taken from the unpublished manuscript [B], which contains more details and examples. For general facts about lattices used in this paper see [C-S], especially chapters $15-18$ and 23-28.

Some previous enumerations of unimodular lattices include Kneser's list of the unimodular lattices of dimension at most $16[\mathrm{~K}]$, Conway and Sloane's extension of this to dimensions at most 23 [C-S chapter 16], and Niemeier's enumeration [N] of the even 24 dimensional ones. All of these used some variation of Kneser's neighborhood method [K], but this becomes very hard to use for odd lattices of dimension 24 , and seems impractical for dimension at least 25 (at least for hand calculations; computers could probably push this further). The method used in this paper works well up to 25 dimensions, could be pushed to work for 26 dimensions, and does not seem to work at all beyond this.

We use the " $(+,-,-, \cdots,-)$ " sign convention for Lorentzian lattices L, so that the reflection we are interested in are (usually) those of negative norm vectors of L. We fix one of the two cones of positive norm vectors and call it the positive cone. The norm 1 vectors in the positive cone form a copy of hyperbolic space in the usual way. We assume that we are given a group G of automorphisms of a Lorentzian lattice L, such that G is the semidirect product of a normal subgroup R generated by reflections of some negative

[^0]norm vectors, and a group $\operatorname{Aut}(D)$ of automorphisms preserving a fundamental domain domain D of R in hyperbolic space. We assume that all elements of $u \in L$ having nonnegative inner product with all simple roots of R have norm (u, u) at least 0 (this is just to eliminate some degenerate cases). If L is a lattice then $L(-1)$ is the lattice L with all norms multiplied by -1 . We use Conway's convention of using small letters a_{n}, d_{n}, e_{n} for the spherical Dynkin diagrams, and capital letters A_{n}, D_{n}, E_{n} for the corresponding affine Dynkin diagrams. The Weyl vector of a root system is the vector ρ such that $(\rho, r)=-r^{2} / 2$ for any simple root r.

We want to find the orbits of positive norm vectors of the positive cone of L under the group G. Every positive norm vector of the positive cone of L is conjugate under R to a unique vector in D, so it is enough to classify orbits of vectors u in D under $\operatorname{Aut}(D)$.

The algorithm works by trying to reduce a vector u of D to a vector of smaller norm by adding a root of u^{\perp} to u. There are three possible cases we need to consider:
(1) There are no roots in u^{\perp}.
(2) There is a root r in u^{\perp} such that $u+r \in D$.
(3) There is at least one root in u^{\perp}, but if r is a root in u^{\perp} then $u+r$ is never in D.

We try to deal with these three cases as follows.
If there are no roots in u^{\perp}, then we assume that D contains a non-zero vector w such that $(r, w) \leq(r, u)$ for any simple root r and any vector $u \in L$ in the interior of D. Then $u-w$ has inner product at least 0 with all simple roots, so it also lies in D and has smaller norm than u unless u is a multiple of w and $w^{2}=0$. So we can reduce u to a vector of smaller norm in D. The existence of a vector w with these properties is a very strong condition on the lattice L.
Example 1.1. The lattices $I I_{1,9}$ and $I I_{1,17}$ have properties 1 and 2 ; this follows easily from Vinberg's description [V85] of their automorphism groups. Conway showed that the lattice $I I_{1,25}$ also has these properties; see the next section. The lattices $I I_{1,8 n+1}$ for $n \geq 4$ do not have these properties; but the Minkowski-Siegel mass formula shows that these lattices have such vast numbers of orbits of positive norm vectors that there seems little point in classifying them.
Example 1.2. It follows from [B90] that several lattices that are fixed points of finite groups acting on $I I_{1,25}$ also have a suitable vector w. For example the lattice $I I_{1,1} \oplus$ $B W(-1)$, where $B W$ is the Barnes-Wall lattice, has this property. Some of the norm 0 vectors correspond to the 24 lattices in the genus of $B W$ classified in $[\mathrm{S}-\mathrm{V}]$; the remaining orbits of norm 0 vectors should not be hard to find.
Example 1.3. Take L to be the lattice $I_{1,9}$ and R to be the group generated by reflections of norm -1 vectors. (This has infinite index in the full reflection group.) Then the lattice has a Weyl vector for the reflection group as in [B90], so we can apply the algorithm to this reflection group. (However it is not entirely clear what the point of doing this is, as it is easier to use the full reflection group of the lattice!)

Next we look at the second case when u^{\perp} has a root r such that $v=u-r$ is in D. Then $-r$ is in the fundamental domain of the finite reflection group of u^{\perp}, so r is a sum of the simple roots of u^{\perp} with the usual multiplicities.

For u in D we let $R_{i}(u)$ be the simple roots u of D that have inner product $i(r, r) / 2$ with u, so $R_{i}(u)$ is empty for $i<0$ and $R_{0}(u)$ is the Dynkin diagram of u^{\perp}. We write
$S(u)$ for $R_{0}(u) \cup R_{1}(u) \cup R_{2}(u)$. Then given $S(v)$ we can find all vectors u of D that come from v as in (3) above, and $S(u)$ is contained in $S(v)$. By keeping track of the action of Aut (D, v) on $S(v)$ for vectors v of D we can find all possible vectors v constructed in this way from v, together with the sets $S(u)$.

Finally, the third case, when there is at least one root in u^{\perp}, but if r is a root in u^{\perp} then $v-r$ is never in D, has to be dealt with separately for each lattice L. In practice it does not present too much difficulty for lattices with a vector w as in case 1 . See the next section for the example of $L=I I_{1,25}$.

The following two lemmas will be used later to prove some properties of the root systems of 25 dimensional lattices.

Lemma 1.4. Suppose that reflection in u^{\perp} is an automorphism of L. Then there is an automorphism σ of L (of order 1 or 2) with the following properties:
(1) σ fixes D.
(2) If σ fixes w, then w is a linear combination of u and the roots of L in u^{\perp}.

Proof. There is an automorphism of L acting as 1 on u and as -1 on u^{\perp}, given by the product of -1 and reflection in u^{\perp}. As this automorphism fixes $u \in D$, we can multiply it by some (unique) element of the reflection group of u^{\perp} so that the product σ fixes D. The element σ acts as -1 on the space orthogonal to u, z, and all roots of R in u^{\perp}, which implies assertion (2) of the lemma 1.4.

Lemma 1.5. Suppose that there is a norm 0 vector z such that $(z, u)=2$, where u is a vector in D. Then there is an automorphism σ of L with the following properties:
(1) σ fixes D.
(2) If σ fixes w, then w is a linear combination of u, z, and the roots of L in u^{\perp}.

Proof. If M is the lattice spanned by z and u then M has the property that all elements of M^{\prime} / M have order 1 or 2 . So there is an automorphism of L acting as 1 on M and -1 on M^{\perp}. The result now follows as in the proof of lemma 1.4. This proves lemma 1.5.

Remark. It is usually easy to classify all orbits of negative norm vectors u in Lorentzian lattices, because this is closely related to the classification of the indefinite lattices u^{\perp}, and by Eichler's theorem [E] indefinite lattices in dimension at least 3 are classified by the spinor genus (which in practice is often determined by the genus). For example, it is easy to give a proof along these lines that if $n>0$ and $m>0$ then $I I_{1,8 n+1}$ has a unique orbit of primitive vectors of norm $-2 m$.

2. Vectors in the lattice $I I_{1,25}$.

In this section we specialize the algorithm of the previous section to the lattice $I I_{1,25}$.
Note that orbits norm 4 vectors u of $I I_{1,25}$ correspond naturally to 25 dimensional positive definite unimodular lattices, because u^{\perp} is isomorphic to the lattice of even vectors in a 25 dimensional unimodular negative definite lattice. In particular we can classify the 665 positive definite 25 dimensional unimodular lattices, as in table 2 ; this is the main application of the algorithm of the previous section. Similarly norm 2 vectors of $I I_{1,25}$ correspond to 25 dimensional even positive definite lattices of determinant 2. (Another
interpretation of the vectors of $I I_{25,1}$ of norm at least -2 is that they are the roots of the fake monster Lie algebra.)

First we have to show the existence of a vector w satisfying the property of section 1 . This follows from Conway's theorem [C85] stating that the reflection group of $I I_{1,25}$ has a Weyl vector w of norm 0 , with the property that $(w, r)=1$ for all simple roots r of the reflection group. Conway's proof depends on the rather hard classification of the "deep holes" in the Leech lattice in [C-P-S]; there is a proof avoiding these long calculations in [B85]. It seems likely that 26 is the largest possible dimension of a lattice with a suitable vector w.

Next we have to classify the vectors u of D such that u^{\perp} has roots but $u+r$ is not in D for any root $r \in u^{\perp}$. One obvious way this can happen is if u has norm 0 , so we have to classify the norm 0 vectors in $I I_{1,25}$. In any lattice $L=I I_{8 n+1,1}$ the orbits of primitive norm 0 vectors z correspond to the $8 n$-dimensional even negative definite unimodular lattices z^{\perp} / z. So the orbits of primitive norm 0 vectors of $I I_{1,25}$ correspond to the 24 Niemeier lattices ([C-S]). The non-primitive norm 0 vectors are of course either 0 or a positive integer multiple of a primitive norm 0 vector, so this gives the classification of all orbits of norm 0 vectors in $I I_{1,25}$; see table 0 .

Next suppose that u is a positive norm vector of D with $(u, u)=2 n$ and r is a highest root in u^{\perp} such that $u-r$ is not in D. Then $u-r$ is conjugate under the reflection group to some vector v such that $(v, u)<(u-r, u)$. But $(v, u)^{2} \geq(u, u)(v, v)=2 n(2 n-2)$ and $(v, u)<(u-r, u)=2 n$, so $(v, u)=2 n-1$. So if $z=u-v$ then $(z, u)=1$ and $z^{2}=0$. If we put $z^{\prime}=u-n z$ then z and z^{\prime} are norm 0 vectors with $\left(z, z^{\prime}\right)=1$ and $u=n z+z^{\prime}$. So $I I_{1,25}=B \oplus\left\langle z, z^{\prime}\right\rangle$ for some Niemeier lattice B. If this Niemeier lattice has roots, then adding some of these roots to r gives a vector in D by the previous argument, so B must be the Leech lattice so we can assume that z is in the orbit of w. If $n>1$ then there are no roots in u^{\perp}, and if $n<1$ then $(u, u) \leq 0$, so we must have $n=1$. So the only possibility for u is that it is a norm 2 vector in the orbit of $w+w^{\prime}=2 w+r$, where r is a simple root.

Putting everything together gives the following list of the vectors $u \in D$ such that u^{\perp} has roots but $u-r$ is not in D for any root $r \in u^{\perp}$:

1. The zero vector.
2. The norm 0 vectors $n z$ for $n \geq 1$ and z a primitive norm 0 vector of D corresponding to some Niemeier lattice other than the Leech lattice. The vectors for a given Niemeier lattice and a given value of n are all conjugate under $\operatorname{Aut}(D)$.
3. The norm 2 vectors of the form $2 w+r$ for a simple root r of D. These form one orbit under $\operatorname{Aut}(D)$.
Lemma 2.1. Suppose $u, v \in D, u^{2}=2 n, v^{2}=2(n-1)$ and $(v, u)=2 n$. Then

$$
\begin{aligned}
& R_{0}(u) \subseteq R_{0}(v) \cup R_{1}(v) \cup R_{2}(v)=S(v) \\
& R_{i}(u) \subseteq R_{0}(v) \cup R_{1}(v) \cup \cdots \cup R_{i}(v) \text { for } i \geq 1
\end{aligned}
$$

Proof. The vector v is in D, so $v=u+r$ for some highest root r of u^{\perp}. The vector r has inner product 0,1 , or 2 with all simple roots of u^{\perp}, and $-r$ is a sum of roots of $R_{0}(u)$ with positive coefficients, so r has inner product ≥ 0 with all simple roots of D not in $R_{0}(u)$. The lemma follows from this and the fact that $(v, s)=(u, s)+(r, s)$ for any simple root s of D. This proves lemma 2.1.

We now start with a vector v of norm $2(n-1)$ and try to reconstruct u from it. The vector $u-v$ is a highest root of some component of $R_{0}(u)$, and $R_{0}(u)$ is contained in $S(v)$, so we should be able to find u from $S(v)$. By lemma $2.1 S(u)$ is contained in $S(v)$, so we can repeat this process with u instead of v. The following theorem shows how to construct all possible vectors u as in lemma 2.1 from v and $S(v)$.

Theorem 2.2. Suppose that v has norm $2(n-1)$ and is in D (so $n \geq 1$). Then there are bijections between
(1) Norm $2 n$ vectors u of D with $(u, v)=2 n$.
(2) Simple spherical Dynkin diagrams C contained in the Dynkin diagram Λ of D such that if r is the highest root of C and c in C satisfies $(c, r)=i$, then c is in $R_{i}(v)$.
(3) Dynkin diagrams C satisfying one of the following three conditions:

Either C is an a_{1} and is contained in $R_{2}(v)$,
or C is an $a_{n}(n \geq 2)$ and the two endpoints of C are in $R_{1}(v)$ while the other points of C are in $R_{0}(v)$,
or C is $d_{n}(n \geq 4), e_{6}, e_{7}$, or e_{8} and the unique point of C that has inner product 1 with the highest root of C is in $R_{1}(v)$ while the other points of C are in $R_{0}(v)$.

Proof. Let u be as in (1) and put $r=u-v$. The vector r is orthogonal to u and has inner product ≤ 0 with all roots of R_{0} (because $-v$ does) so it is a highest root of some component C of $R_{0}(u)$. The vector r therefore determines some simple spherical Dynkin diagram C contained in Λ. Any root c of C has $(c, v+r)=(c, u)=0$, so c is in $R_{i}(v)$ where $i=(c, r)$. This gives a map from (1) to (2).

Conversely if we start with a Dynkin diagram C satisfying (2) and put $u=v+r$ (where r is the highest root of C) then $(c, u)=0$ for all c in C, so $(r, u)=0$ as r is a sum of the c 's. This implies that $u^{2}=2 n$ and $(u, v)=2 n$. We now have to show that u is in D. Let s be any simple root of D. If s is in C then $(s, r)=-(s, v)$ and if s is not in C then $(s, r) \geq 0$, so in any case $(s, u)=(s, v+r) \geq 0$ and hence u is in D. This gives a map from (2) to (1) and shows that (1) and (2) are equivalent.

Condition (3) is just the condition (2) written out explicitly for each possible C, so (2) and (3) are also equivalent. This proves theorem 2.2.

We define the height of a vector u in $I I_{1,25}$ to be (u, w). We show how to calculate the heights of vectors of $I I_{1,25}$ that have been found with the algorithm above.

Lemma 2.3. Suppose u, v are vectors in D of norms $2 n, 2(n-1)$ with $(u, v)=2 n$ and suppose that $v=u-r$ for some root r of u^{\perp} corresponds to the component C of $R_{0}(u)$. Then

$$
\operatorname{height}(u)=\operatorname{height}(v)+h-1
$$

where h is the Coxeter number of the component C.
Proof. We have $v=u-r$ where r is the highest root of C, so height $(u)=\operatorname{height}(v)+$ (r, w). We have $r=\sum_{i} m_{i} c_{i}$ where the c_{i} are the simple roots of C with weights m_{i} and $\sum_{i} m_{i}=h-1$. All the c_{i} have inner product 1 with w, so $(r, w)=h-1$. This proves lemma 2.3.

Lemma 2.4. Let u be a primitive vector of D such that there is a norm 0 vector z with $(z, u)=0$ or 1 , and suppose that z corresponds to a Niemeier lattice B with Coxeter number h.
(1) If u has norm 0 then its height is h. The Dynkin diagram of u^{\perp} is the extended Dynkin diagram of B.
(2) If u has positive norm then height $(u)=1+\left(1+u^{2} / 2\right) h$. The Dynkin diagram of u^{\perp} is the Dynkin diagram of B if $u^{2}>2$ and the Dynkin diagram of B plus an a_{1} if $u^{2}=2$.

Proof.
(1) The Dynkin diagram of u^{\perp} is a union of extended Dynkin diagrams. If this union is empty then u must be w and therefore has height $0=h$. If not then let C be one of the components. We have $u=\sum_{i} m_{i} c_{i}$ where the c_{i} 's are the simple roots of C with weights m_{i}. Also $\sum_{i} m_{i}=h$ because C is an extended Dynkin diagram and all the c_{i} 's have height 1 , so u has height h.
(2) As u has inner product 1 with a norm 0 vector z of D we can put $u=n z+z^{\prime}$ with $u^{2}=2 n$ and $z^{\prime 2}=0,\left(z, z^{\prime}\right)=1$. By part (1) z has height h. We have $z^{\prime}=z+r$ where r is a simple root of D, so height $\left(z^{\prime}\right)=\operatorname{height}(z)+\operatorname{height}(r)=h+1$. Hence $\operatorname{height}(u)=n h+h+1=1+\left(1+u^{2} / 2\right) h$. The lattice u^{\perp} is $B \oplus N$ where N is a one dimensional lattice of determinant $2 n$, so the Dynkin diagram is that of B plus that of N, and the Dynkin diagram of (norm 2 roots of) N is empty unless $2 n=2$ in which case it is a_{1}. This proves that the Dynkin diagram of u^{\perp} is what it is stated to be. This proves lemma 2.4.
Orbits of norm 2 vectors $u \in I I_{1,25}$ correspond to even 25 dimensional positive definite lattices B of determinant 2 , where $B(-1) \cong u^{\perp}$. One part of the algorithm for finding vectors of norm $2 n$ consists of finding the vectors u such that there are no roots in u^{\perp}. For norm 2 vectors u the following lemma shows that there are no such vectors.
Lemma 2.5. If $u \in I I_{1,25}$ has norm 2 then u^{\perp} contains roots. In other words every 25 dimensional even positive definite lattice of determinant 2 has a root.

Proof. If u^{\perp} contains no roots then, by the algorithm of section $1, u=w+u_{1}$ for some u_{1} in D. We have $u_{1}^{2}=u^{2}-2 \operatorname{height}(u)$, so $u_{1}^{2}=0$ and u has height 1 because $u_{1}^{2} \geq 0$, $u^{2}=2$ and the height of u is positive. Then $\operatorname{height}\left(u_{1}\right)=\operatorname{height}(u)=1$, so u is a norm 0 vector in D that has inner product 1 with the norm 0 vector w of D, but this is impossible as $u-w$ would be a norm -2 vector separating the two vectors u and w of D. This proves lemma 2.5.

Theorem 2.6. Suppose that $u \in D$ has norm 2. Then

$$
w=\rho+\operatorname{height}(u) u / 2
$$

where ρ is the Weyl vector of the root system of u^{\perp}. Also $-2 \rho^{2}=\operatorname{height}(u)^{2}$.
Proof. The vector w is fixed by any automorphism fixing D, so by lemma 1.4 the vector w must be in the space spanned by u and the roots of u^{\perp}. However w also has inner product 1 with all simple roots of u^{\perp} and has inner product height (u) with u, so w must be $\rho+\operatorname{height}(u) u / 2$. Taking norms of both sides of $w=\rho+\operatorname{height}(u) u / 2$, and using the
facts that $w^{2}=0,(u, \rho)=0$, and $(u, u)=2$, shows that $-2 \rho^{2}=\operatorname{height}(u)^{2}$. This proves theorem 2.6.

In particular we find the strange consequence that the norm of the Weyl vector of any 25 dimensional even positive definite lattice of determinant 2 must be a half a square.

Norm 4 vectors in the fundamental domain D of $I I_{1,25}$ correspond to 25 dimensional unimodular lattices $A=A_{1} \oplus I^{n}$, where u^{\perp} is the lattice of even elements of $A(-1)$ and A_{1} has no norm 1 vectors. The odd vectors of $A(-1)$ can be taken as the projections of the vectors y with $(y, u)=2$ into u^{\perp}. A norm 4 vector u can behave in 4 different ways, depending on whether the unimodular lattice A_{1} with no norm 1 vectors corresponding to u is at most 23 dimensional, or 24 dimensional and odd, or 24 dimensional and even, or 25 dimensional.

Theorem 2.7. Norm 1 vectors of A correspond to norm 0 vectors z of $I I_{1,25}$ with $(z, u)=$ 2. Write $A=A_{1} \oplus I^{n}$ where A_{1} has no vectors of norm 1 . Then u is in exactly one of the following four classes:
(1) u has inner product 1 with a norm 0 vector. The lattice A_{1} is a Niemeier lattice.
(2) A has at least 4 vectors of norm 1 , so that A_{1} is at most 23 dimensional (but may be even). There is a unique norm 0 vector z of D with $(z, u)=2$ and this vector z is of the same type as either of the two even neighbors of $A_{1} \oplus I^{n-1}$.
(3) A_{1} is 24 dimensional and odd. There are exactly two norm 0 vectors that have inner product 2 with u, and they are both in D. They have the types of the two even neighbors of A_{1}.
(4) $A=A_{1}$ has no vectors of norm 1 .

Proof. The vector z is a norm 0 vector with $(z, u)=2$ if and only if $u / 2-z$ is a norm 1 vector of A. Most of 2.7 follows from this. The only non-trivial things to check are the statements about norm 0 vectors that are in D.

If u does not have inner product 1 with any norm 0 vector then a norm 0 vector z with $(z, u)=2$ is in D if and only if it has inner product ≥ 0 with all simple roots of u^{\perp}, so there is one such vector in D for each orbit of such norm 0 vectors under the reflection group of u^{\perp}. If A has at least 4 vectors of norm 1 then they form a single orbit under the Weyl group of (the norm 2 vectors of) u^{\perp}, which proves (2), while if A has only two vectors of norm 1 then they are both orthogonal to all norm 2 vectors of A and so form two orbits under they Weyl group of u^{\perp}. This proves theorem 2.7.

Theorem 2.8. Suppose that u is a norm 4 vector corresponding to a unimodular 25 dimensional lattice $A=A_{1} \oplus I^{25-n}$ with $2 n \geq 4$ vectors of norm 1 . Let ρ be the Weyl vector of the root system of norm -2 roots of u^{\perp} (which is the Weyl vector of the norm -2 vectors of $A(-1)$) and let let h be the Coxeter number of the even neighbors of the 24 dimensional unimodular lattice $A_{1} \oplus I^{24-n}$. Then height $(u)=(w, u)=2(h+n-1)$, $w=\rho+\operatorname{height}(u) u / 4$, and $-\rho^{2}=(h+n-1)^{2}$.

Proof. There is a unique norm 2 vector z of D with $(z, u)=2$; we let i be its projection into u^{\perp}. The lattice A has at least 4 vectors of norm 1 , so any vector of norm 1 and in particular i is in the vector space generated by vectors of norm -2 of u^{\perp}. Hence by lemma 1.5 and the same argument as in theorem 2.6 we have $w=\rho+\operatorname{height}(u) u / 4$. The norm -4
vector $2 i$ of u^{\perp} is the sum of $-2(n-1)$ simple roots of the d_{n} component of the Dynkin diagram of u^{\perp}, so $(2 i, w)=(2 i, \rho)=-2(n-1)$.

The vector i is the projection of z into u^{\perp}, so $i=z-u / 2$, and hence

$$
\begin{aligned}
\operatorname{height}(u) & =(w, u) \\
& =2(w, z-i) \\
& =2(\operatorname{height}(z)+n-1) \\
& =2(h+n-1)
\end{aligned}
$$

If we calculate the norms of both sides of $w=\rho+\operatorname{height}(u) u / 4$ we find that $-\rho^{2}=$ $(h+n-1)^{2}$. This proves theorem 2.8.
Example 2.9. Suppose u corresponds to the lattice I^{25}. The number n is then 25 and the root system of the norm 2 vectors is D_{25}, so the Weyl vector ρ can be taken as $(0,1,2, \ldots, 24)$. The even neighbors of I^{24} are both D_{24} with Coxeter number $h=46$, so we find that $0^{2}+1^{2}+2^{2}+\cdots+24^{2}=\rho^{2}=(h+n-1)^{2}=70^{2}$. Watson [W] showed that the only solution of $0^{2}+1^{2}+\cdots+k^{2}=m^{2}$ with $k \geq 2$ is $k=24$. See [C-S Chapter 26] for a construction of the Leech lattice using this equality.

Theorem 2.10. Suppose that u is a norm 4 vector of D with exactly two norm 0 vectors z_{1}, z_{2} that have inner product 2 with u, and suppose that there are no norm 0 vectors that have inner product 1 with u. Then z_{1} and z_{2} are both in D and have Coxeter numbers h_{1}, h_{2} where $h_{i}=\left(z_{i}, w\right)$. Then

$$
w=\rho+\left(h_{1} z_{2}+h_{2} z_{1}\right) / 2
$$

where ρ is the Weyl vector of the norm -2 vectors of u^{\perp}. Also $u=z_{1}+z_{2}$, height $(u)=$ $h_{1}+h_{2},-\rho^{2}=h_{1} h_{2}$, and u^{\perp} has $8\left(h_{1}+h_{2}-2\right)$ roots.

Proof. The vector $u-z_{1}$ is a norm 0 vector which has inner product 2 with u and so must be z_{2}. Hence $u=z_{1}+z_{2}$ and $\operatorname{height}(u)=\operatorname{height}\left(z_{1}\right)+\operatorname{height}\left(z_{2}\right)=h_{1}+h_{2}$.

There is a norm 0 vector that has inner product 2 with u, and any automorphism of L fixing D also fixes w, so by lemma $1.5 w$ is a linear combination of z_{1}, z_{2}, and the roots of R in u^{\perp}. Using the facts that $\left(w, z_{1}\right)=h_{1},\left(w, z_{2}\right)=h_{2}$, and $(w, r)=-r^{2} / 2$ for any simple root r in u^{\perp} shows that w must then be $\rho+\left(h_{1} z_{2}+h_{2} z_{1}\right) / 2$. Using the fact that $w^{2}=0$ this shows immediately that $-\rho^{2}=h_{1} h_{2}$. The number of roots follows from remark 2.12 below. This proves theorem 2.10.
Corollary 2.11. If A_{1} is an odd 24 dimensional positive definite unimodular lattice with no vectors of norm 1 and whose even neighbors have Coxeter numbers h_{1} and h_{2}, then $\rho^{2}=h_{1} h_{2}$ where ρ is the Weyl vector of A_{1}.

Proof. This follows immediately from theorem 2.10, using the fact that $A_{1} \oplus I$ is the 25 dimensional unimodular lattice corresponding to u as in 2.10.

Remark. Let B_{1}, B_{2} be the two even neighbors of A_{1}. Then it is not hard to show that $h_{2} \leq 2 h_{1}+2$, and there are several lattices A_{1} for which equality holds.
Remark 2.12. Theorem 13.1 and corollary 13.2 of [B95] show that the height of a vector in the fundamental domain of $I I_{1,25}$ can be written as an explicit linear combination of
the theta functions of cosets of the lattice u^{\perp}. In particular we find that if u is a norm 2 vector then

$$
12 \operatorname{height}(u)=18-4 z_{1}+r
$$

where r is the number of norm -2 vectors of u^{\perp} and z_{i} is the number of norm 0 vectors having inner product i with u (so z_{1} is 0 or 2 and is 2 if and only if the lattice u^{\perp} is the sum of a one dimensional lattice and an even lattice). Similarly if u has norm 4 and corresponds to a 25 dimensional unimodular lattice A then

$$
8 t=20-2 z_{2}-8 z_{1}+r
$$

where r is the number of norm 2 vectors of A, z_{2} is the number of norm 1 vectors of A, and z_{1} is 1 if A is the sum of a Niemeier lattice and a one dimensional lattice and is 0 otherwise. Note that these relations give congruences for the numbers of roots that immediately imply that 25 dimensional even lattices of determinant 2 and 25 dimensional unimodular lattices always have roots. There are similar relations and congruences for larger norm vectors of $I I_{1,25}$.

There are several other genuses of lattices that can be classified using $I I_{1,25}$. Most of these do not seem important enough to be worth publishing, but here is a summary of what is available just in case anyone finds a use for any of these. The 24 dimensional even positive definite lattices of determinant 5 are easy to classify as they turn out to correspond to pairs consisting of a norm 2 vector u of $I I_{1,25}$ together with a norm -2 root r with $(r, u)=1$, and these can easily be read off from the list of norm 2 vectors. The 25 dimensional positive definite even lattices of determinant 6 correspond to the norm 6 vectors in $I I_{1,25}$ and can be classified from the norm 4 vectors using the algorithm; there are 2825 orbits if I have made no mistakes. A list of them is available from my home page. These can be used to classify the 26 dimensional even positive definite lattices of determinant 3 , because the norm 2 roots of such lattices correspond to the norm 6 vectors of $I I_{1,25}$. (There is a unique such lattice with no roots; see the next section.) There are between 677 and 681 such lattices, and a provisional list is available from my home page (there are a few small ambiguities that I have not yet got around to resolving). If such a lattice has no norm 6 roots then the number of norm 2 vectors is divisible by 6 . With a lot more effort it should be possible to classify the 26 dimensional unimodular lattices by finding the (roughly 50000 ?) orbits of norm 10 vectors of $I I_{1,25}$; see the next section.

3. Lattices with no roots.

In this section we show that there is a unique 26 dimensional positive definite unimodular lattice with no roots. Conway and Sloane use this result in their proof [C-S98] that there is a positive definite unimodular lattice with no roots in all dimensions greater than 25 . We also show that the number of norm 2 vectors of a 26 dimensional unimodular lattice is divisible by 4 , and sketch a construction of a 27 dimensional unimodular lattice with no roots.

Lemma 3.1. A 26-dimensional unimodular lattice L with no vectors of norm 1 has a characteristic vector of norm 10.

Proof. If L has a characteristic vector x of norm 2 then x^{\perp} is a 25 dimensional even lattice of determinant 2 and therefore has a root r by theorem $2.6 ; 2 r+x$ is a characteristic
vector of norm 10. If the lemma is not true we can therefore assume that L has no vectors of norm 1 and no characteristic vectors of norm 2 or 10. Its theta function is determined by these conditions and turns out to be $1-156 q^{2}+\cdots$ which is impossible as the coefficient of q^{2} is negative. This proves lemma 3.1.

Lemma 3.2. There is a bijection between isomorphism classes of
(1) Norm 10 characteristic vectors c in 26-dimensional positive definite unimodular lattices L, and
(2) Norm 10 vectors u in $I I_{1,25}$
given by $c^{\perp}(-1) \cong u^{\perp}$.
We have $\operatorname{Aut}(L, c)=\operatorname{Aut}\left(I I_{1,25}, u\right)$.
Proof. Routine. Note that -1 is a square mod 10. This proves lemma 3.2.
Lemmas 3.1 and 3.2 give an algorithm for finding 26 dimensional unimodular lattices L. It is probably not hard to implement this on a computer if one is given a computer algorithm for deciding when 2 vectors of the Leech lattice are conjugate under its automorphism group; such an algorithm has been described by Allcock in [A]. The main remaining open problem is to find a use for these lattices! We now apply this algorithm to find the unique such lattice with no roots.

Lemma 3.3. Take notation as in lemma 3.2. The lattice L has no roots if and only if u^{\perp} has no roots and u does not have inner product 1,2 , 3, or 4 with any norm 0 vector.

Proof. If u^{\perp} has roots then obviously L has too. If there is a norm 0 vector z that has inner product $1,2,3$, or 4 with u then the projection z_{u} of z into u^{\perp} has norm $-1 / 10$, $-4 / 10,-9 / 10$, or $-16 / 10$. The lattice $L(-1)$ contains $u^{\perp}+c$, and the vector $z_{u} \pm 3 c / 10$, $z_{u} \pm 4 c / 10, z_{u} \pm c / 10$, or $z_{u} \pm 2 c / 10$ is in L for some choice of sign and has norm $-1,-2$, -1 , or -2 . Hence if u has inner product $1,2,3$, or 4 with some norm 0 vector then L has roots. Conversely if L has a root r then either r has norm 2 and inner product $0, \pm 2, \pm 4$ with c or it has norm 1 and inner product $\pm 1, \pm 3$ with c, and each of these cases implies that u^{\perp} has roots or that u has inner product $1,2,3$, or 4 with some norm 0 vector by reversing the argument above. This proves lemma 3.3.

Now let L be a 26 dimensional unimodular lattice with no roots containing a characteristic vector c of norm 10, and let u be a norm 10 vector of D corresponding to it as in 3.2 .

Lemma 3.4. $u=z+w$, where z is a norm 0 vector of D corresponding to a Niemeier lattice with root system A_{4}^{6}, and w is the Weyl vector of D. In particular u is determined up to conjugacy under $\operatorname{Aut}(D)$.

Proof. The lattice u^{\perp} has no roots so $u=w+z$ for some vector z of D. By lemma 3.3 u does not have inner product $1,2,3$, or 4 with any norm 0 vector, so $(z, w)=(u, w) \geq 5$. Hence

$$
10=u^{2}=z^{2}+2(z, w) \geq 2(z, w) \geq 10
$$

so $(z, w)=5$ and $z^{2}=0$. The only norm 0 vectors z in D with $(z, w)=5$ are the primitive ones corresponding to A_{4}^{6} Niemeier lattices, which form one orbit under $\operatorname{Aut}(D)$. This proves lemma 3.4.

Lemma 3.5. If $u=z+w$ is as in lemma 3.4 then the 26 dimensional unimodular lattice corresponding to u has no roots.

Proof. The lattice u^{\perp} obviously has no roots so by lemma 3.3 we have to check that there are no norm 0 vectors that have inner product $1,2,3$, or 4 with u. Let x be any norm 0 vector in the positive cone. If x has type A_{4}^{6} then $(x, u) \geq(x, w) \geq 5$; if x has Leech type then $(x, u) \geq(x, z) \geq 5$; if x has type A_{1}^{24} then $(x, u)=(x, w)+(x, z) \geq 2+3=5$ ((x, z) cannot be 2 as there are no pairs of norm 0 vectors of types A_{1}^{24} and A_{4}^{6} that have inner product 2 by the classification of 24 dimensional unimodular lattices); and if x has any other type then $(x, u)=(x, w)+(x, z) \geq 3+2=5$. This proves lemma 3.5.

Theorem 3.6. There is a unique 26 dimensional positive definite unimodular lattice L with no roots. Its automorphism group is isomorphic to the group $O_{5}(5)=2 . G .2$ of order $2^{8} .3^{2} .5^{4} .13$ and acts transitively on the 624 characteristic norm 10 vectors of L.

Proof. By lemma 3.1 L has a characteristic vector of norm 10 , so by lemmas 3.3 and $3.4 L$ is unique and its automorphism group acts transitively on the characteristic vectors of norm 10. By lemma $3.5 L$ exists. The theta function is determined by the conditions that L has no vectors of norm 1 or 2 and no characteristic vectors of norm 2 , and it turns out that the number of characteristic vectors of norm 10 is 624 . The stabilizer of such a vector is isomorphic to $\operatorname{Aut}\left(I I_{1,25}, u\right)$, which is a group of the form $5^{3} .2 . S_{5}$ where S_{5} is the symmetric group on 5 letters. This determines the order of the automorphism group of the lattice. From this it is not difficult to determine it precisely; we omit the details. This proves theorem 3.6.

We now show that the number of norm 2 vectors of any 26 dimensional even positive definite unimodular lattice is divisible by 4 . There are strictly 26 dimensional unimodular lattices with no roots or with 4 roots, so this is the best possible congruence. For unimodular lattices of dimension less than 26 there are congruences modulo higher powers of 2 for the number of roots.

Lemma 3.7. If L is a 25 -dimensional positive definite lattice of determinant 2 then the number of norm 2 roots of L is $2 \bmod 4$.

Proof. The even vectors of L form a lattice isomorphic to the vectors that have even inner product with some vector b in an even 25 -dimensional lattice B of determinant 2 . (Note that b is not in $B^{\prime}-B$.) The number of roots of B is $12 t-10$ or $12 t-18$ where t is the height of the norm 2 vector of D corresponding to B by remark 2.12 , so it is sufficient to prove that the number of norm 2 vectors of B that have odd inner product with b is divisible by 4 .

The vector b has zero inner product with u and integral inner product with w, so by theorem $2.6 b$ has integral inner product with ρ. Hence b has even inner product with the sum of the positive roots of B, so it has odd inner product with an even number of positive roots. This implies that the number of roots of B that have odd inner product with b is divisible by 4 . This proves lemma 3.7.

Corollary 3.8. If L is a 26 dimensional unimodular lattice then the number of norm 2 vectors of L is divisible by 4 .

Proof. The result is obvious if L has no norm 2 roots, so let r be a norm 2 vector of L. The lattice r^{\perp} is a 25 dimensional even lattice of determinant so by remark 2.12 the number of roots of r^{\perp} is $2 \bmod 4$. The number of roots of L not in r^{\perp} is $4 h-6$ where h is the Coxeter number of the component of L containing r, so the number of norm 2 vectors of L is divisible by 4 . This proves corollary 3.8.

Remark. A similar but more complicated argument can be used to show that there is a unique even 26 dimensional positive definite lattice of determinant 3 with no roots. Gluing on a one dimensional lattice to this gives a unique 27 dimensional unimodular lattice with no roots and a characteristic vector of norm 3. As a different proof of this has already been published in $[E-Z]$ we will just give a brief sketch of the proof from $[B]$. (The preprint $[\mathrm{B}-\mathrm{V}]$ shows that there are exactly three 27 dimensional positive definite unimodular lattices with no roots.) Let L be a 27 dimensional positive definite unimodular lattice with no roots and a characteristic vector c of norm 3 . The theta function of L is determined by these conditions and this implies that L has vectors of norm 5 ; let v be such a vector. Then $\langle v, c\rangle^{\perp}$ is a 25 dimensional even lattice X of determinant 14 such that X^{\prime} / X is generated by an element of norm $1 / 14 \bmod 2$. Such lattices X correspond to norm 14 vectors x in the fundamental domain D of $I I_{1,25}$, and the condition that L has no vectors of norm 1 or 2 implies that there are exactly two possibilities for $x: x$ is either the sum of w and a norm 0 vector of height 7 corresponding to A_{6}^{4}, or x is the sum of w and a norm 2 vector of height 6 corresponding to the 25 dimensional lattice of determinant 2 with root system a_{2}^{9}. Both of these x 's turn out to give the same lattice L, which therefore has two orbits of norm 5 vectors and is the unique 27 dimensional positive definite unimodular lattice with no roots and with characteristic vectors of norm 3 .

Table 0 . The primitive norm 0 vectors of $I I_{1,25}$.
We list the set of orbits of primitive norm 0 vectors z of $I I_{1,25}$, which is of course more or less the same as the well known list of Niemeier lattices (see [C-S table 16.1]). The height is just (w, z) where w is the Weyl vector of a fundamental domain containing z. The letter after the height is just a name to distinguish vectors of the same height, and is the letter referred to in the column headed "Norm 0 vectors" of table 1. The column headed "Group" is the order of the subgroup of $\operatorname{Aut}(D)$ fixing the primitive norm 0 vector. However note that the group order is not (usually) the order of the quotient of the automorphism group of the Niemeier lattice by the reflection group; see [C-S chapter 16] for a description of the relation between these groups. For the vector w of height 0 the group is the infinite group of automorphisms of the affine Leech lattice and is an extension of a finite group of the order given by the group of translations of the Leech lattice Λ.

Height	Roots	Group
0x	None	$\Lambda \cdot 8315553613086720000$
2a	A_{1}^{24}	1002795171840
3a	A_{2}^{12}	138568320
4a	A_{3}^{8}	688128
5a	A_{4}^{6}	30000
6d	D_{4}^{6}	138240

6 a	$A_{5}^{4} D_{4}$	3456
7 a	A_{6}^{4}	1176
8 a	$A_{7}^{2} D_{5}^{2}$	256
9 a	A_{8}^{3}	324
10 d	D_{6}^{4}	384
10 a	$A_{9}^{2} D_{6}$	80
12 e	E_{6}^{4}	432
12 a	$A_{11} D_{7} E_{6}$	24
13a	A_{12}^{2}	52
14d	D_{8}^{3}	48
16a	$A_{15} D_{9}$	16
18d	$D_{10} E_{7}^{2}$	8
18a	$A_{17} E_{7}$	12
22d	D_{12}^{2}	8
25a	A_{24}	10
30e	E_{8}^{3}	6
30d	$D_{16} E_{8}$	2
46d	D_{24}	2

Table 1. The norm 2 vectors of $I I_{1,25}$.
The following sets are in natural 1:1 correspondence:
(1) Orbits of norm 2 vectors in $I I_{1,25}$ under $\operatorname{Aut}\left(I I_{1,25}\right)$.
(2) Orbits of norm 2 vectors u of D under $\operatorname{Aut}(D)$.
(3) 25 dimensional even bimodular lattices L.

The lattice $L(-1)$ is isomorphic to u^{\perp}. Table 1 lists the 121 elements of any of these three sets.

The height is the height of the norm 2 vector u of D, in other words (u, w) where w is the Weyl vector of D. The letter after the height is just a name to distinguish vectors of the same height, and is the letter referred to in the column headed "Norm 2" of table 2. An asterisk after the letter means that the vector u is of type 1 , in other words the lattice L is the sum of a Niemeier lattice and a_{1}.

The column "Roots" gives the Dynkin diagram of the norm 2 vectors of L arranged into orbits under $\operatorname{Aut}(L)$. "Group" is the order of the subgroup of $\operatorname{Aut}(D)$ fixing u. The group $\operatorname{Aut}(L)$ is a split extension R.G where R is the Weyl group of the Dynkin diagram and G is isomorphic to the subgroup of $\operatorname{Aut}(D)$ fixing u.
" S " is the maximal number of pairwise orthogonal roots of L.
The column headed "Norm 0 vectors" describes the norm 0 vectors z corresponding to each orbit of roots of u^{\perp} where u is in D. A capital letter indicates that the corresponding norm 0 vector is twice a primitive vector, otherwise the norm 0 vector is primitive. x stands for a norm 0 vector of type the Leech lattice. Otherwise the letter a, d, or e is the first letter of the Dynkin diagram of the norm 0 vector, and its height is given by height $(u)-h+1$ where h is the Coxeter number of the component of the Dynkin diagram of u.

For example, the norm 2 vector of type $23 a$ has 3 components in its root system, of Coxeter numbers 12,12 , and 6 , and the letters are e, a, and d, so the corresponding norm

0 vectors have Coxeter numbers 12,12 , and 18 and hence are norm 0 vectors with Dynkin diagrams $E_{6}^{4}, A_{11} D_{7} E_{6}$, and $D_{10} E_{7}^{2}$.

For some remarks on the reliability of table 1 see the introduction to table 2 .
Height Roots Group S Norm 0 vectors
$\left.\begin{array}{crrrr}1 \mathrm{a}^{*} & a_{1} & 8315553613086720000 & 1 & \mathrm{X} \\ \text { 2a } & & a_{2} & 991533312000 & 1\end{array}\right] \mathrm{x}$

11e	$a_{5}^{2} d_{4} a_{3}^{2} a_{1}^{2} a_{1}$	8	17	aaaad
11f	$a_{5}^{3} a_{2}^{4}$	48	13	aa
11g	$d_{5} a_{3}^{6} a_{1}$	48	17	aad
11h	$a_{6} a_{4}^{2} a_{3}^{2} a_{2} a_{1}$	4	13	aаaaa
12a	$a_{5}^{4} a_{2}$	24	13	ad
12b	$d_{5} a_{4}^{4} a_{2}$	8	13	aa
12c	$a_{6} d_{4} a_{4}^{3}$	6	13	aa
12d	$a_{6} a_{5}^{2} a_{3} a_{2}^{2}$	4	13	aaaa
13a*	$a_{5}^{4} d_{4} a_{1}$	48	17	aaA
13b	$d_{5} a_{5}^{2} d_{4} a_{3} a_{1}$	4	17	aaada
13c	$d_{5} a_{5}^{3} a_{1}^{3} a_{1}$	12	17	aaae
13d*	$d_{4}^{6} a_{1}$	2160	25	dD
13 e	$a_{6}^{2} a_{5} a_{4} a_{1}^{2}$	4	13	аааа
13f	$a_{7} a_{5} a_{4}^{2} a_{3}$	4	13	aаaa
13g	$a_{7} a_{5} d_{4} a_{3}^{2} a_{1}^{2}$	4	17	aаaaa
14a	$a_{6} a_{6} d_{5} a_{4} a_{2}$	2	13	aаaaa
14b	$a_{6}^{3} d_{4}$	12	13	aa
14c	$a_{7} a_{6} a_{5} a_{4} a_{1}$	2	13	ааааа
15a*	$a_{6}^{4} a_{1}$	24	13	aA
15b	$d_{5}^{3} a_{5} a_{3}$	12	17	ade
15c	$d_{6} d_{4}^{4} a_{1}^{3}$	24	25	ddd
15d	$d_{6} a_{5}^{2} a_{5} a_{3}$	4	17	aada
15 e	$a_{7} d_{5}^{2} a_{3}^{2} a_{1}$	4	17	aaad
15 f	$a_{7}^{2} d_{4}^{2} a_{1}$	8	17	aad
15 g	$a_{8} a_{5}^{3}$	6	13	aa
15h	$a_{8} a_{6} a_{5} a_{3} a_{2}$	2	13	aаaaa
16a	$a_{7}^{3} a_{2}$	12	13	ad
16b	$a_{8} a_{6} d_{5} a_{4}$	2	13	аaaa
17a*	$a_{7}^{2} d_{5}^{2} a_{1}$	8	17	aaA
17b	$e_{6} a_{5}^{3} d_{4}$	12	17	aae
17c	$a_{7} d_{6} d_{5} a_{5}$	2	17	daaa
17d	$a_{7}^{2} d_{6} a_{3} a_{1}$	4	17	aada
17e	$a_{8} a_{7}^{2} a_{1}$	4	13	aaa
17 f	$a_{9} d_{5} a_{5} d_{4} a_{1}$	2	17	aаaaa
17 g	$a_{9} a_{7} a_{4}^{2}$	4	13	aaa
18a	$e_{6} a_{6}^{3}$	6	13	aa
18b	$a_{9} a_{8} a_{5} a_{2}$	2	13	aaaa

19a*	$a_{8}^{3} a_{1}$	12	13	aA
19b	$d_{6}^{3} d_{4} a_{1}^{3}$	6	25	ddd
19c	$a_{7} e_{6} d_{5}^{2} a_{1}$	4	17	eaad
19d	$d_{7} a_{7} d_{5} a_{5}$	2	17	aaad
19e	$d_{7} a_{7}^{2} a_{3} a_{1}$	4	17	aaad
19 f	$a_{9} a_{7} d_{6} a_{1} a_{1}$	2	17	aaaad
19 g	$a_{10} a_{7} a_{6} a_{1}$	2	13	aaaa
20a	$a_{8}^{2} e_{6} a_{2}$	4	13	aaa
20b	$a_{10} a_{8} d_{5}$	2	13	aaa
21a*	$a_{9}^{2} d_{6} a_{1}$	4	17	aaA
21b	$a_{11} d_{6} a_{5} a_{3}$	2	17	aaaa
21c	$a_{11} a_{8} a_{5}$	2	13	aaa
$21{ }^{*}$	$d_{6}^{4} a_{1}$	24	25	dD
21 e	$a_{9} e_{6} d_{6} a_{3}$	2	17	aaad
23a	$d_{7} e_{6}^{2} a_{5}$	4	17	ead
23b	$d_{8} d_{6}^{2} d_{4} a_{1}$	2	25	dddd
23c	$a_{9} d_{7}^{2}$	4	17	da
23d	$a_{9} d_{8} a_{7}$	2	17	daa
23 e	$a_{11} d_{7} d_{5} a_{1}$	2	17	aaad
24 a	$a_{11}^{2} a_{2}$	4	13	ad
24b	$a_{12} e_{6} a_{6}$	2	13	aaa
25a*	$a_{11} d_{7} e_{6} a_{1}$	2	17	aaaA
25b	$a_{13} d_{6} d_{5}$	2	17	aaa
$25 \mathrm{e}^{*}$	$e_{6}^{4} a_{1}$	48	17	eE
26a	$a_{13} a_{10} a_{1}$	2	13	aaa
27a*	$a_{12}^{2} a_{1}$	4	13	aA
27 b	$e_{7} d_{6}^{3}$	3	25	dd
27c	$a_{9} a_{9} e_{7}$	2	17	ada
27d	$d_{9} a_{9} e_{6}$	2	17	ada
27 e	$a_{11} d_{9} a_{5}$	2	17	aad
27 f	$a_{14} a_{9} a_{2}$	2	13	aaa
29a	$a_{11} e_{7} e_{6}$	2	17	daa
29d*	$d_{8}^{3} a_{1}$	6	25	dD
31a	$d_{8}^{2} e_{7} a_{1} a_{1}$	2	25	ddde

31b	$d_{10} d_{8} d_{6} a_{1}$		25	dddd
31c	$a_{15} d_{8} a_{1}$	2	17	aad
$33 a^{*}$	$a_{15} d_{9} a_{1}$	2	17	aaA
33b	$a_{15} e_{7} a_{3}$	2	17	aad
33 c	$a_{17} a_{8}$	2	13	aa
35 a	$e_{7}^{3} d_{4}$	6	25	de
35b	$a_{13} d_{11}$	2	17	da
36 a	$a_{18} e_{6}$	2	13	aa
37a*	$a_{17} e_{7} a_{1}$	2	17	aaA
37d*	$d_{10} e_{7}^{2} a_{1}$	2	25	ddD
39 a	$d_{12} e_{7} d_{6}$	1	25	ddd
45d*	$d_{12}^{2} a_{1}$	2	25	dD
47a	$d_{10} e_{8} e_{7}$	1	25	edd
47 b	$d_{14} d_{10} a_{1}$	1	25	ddd
47c	$a_{17} e_{8}$	2	17	da
48a	$a_{23} a_{2}$	2	13	ad
51a*	$a_{24} a_{1}$	2	13	aA
$61{ }^{*}$	$d_{16} e_{8} a_{1}$	1	25	ddD
$61{ }^{*}$	$e_{8}^{3} a_{1}$	6	25	eE
63 a	$d_{18} e_{7}$	1	25	dd
93d*	$d_{24} a_{1}$	1	25	dD

Table 2. The norm 4 vectors of $I I_{1,25}$.
There is a natural 1:1 correspondence between the elements of the following sets:
(1) Orbits of norm 4 vectors u in $I I_{1,25}$ under $\operatorname{Aut}\left(I I_{1,25}\right)$.
(2) Orbits of norm 4 vectors in the fundamental domain D of $I I_{1,25}$ under $\operatorname{Aut}(D)$.
(3) Orbits of norm 1 vectors v of $I_{1,25}$ under $\operatorname{Aut}\left(I_{1,25}\right)$.
(4) 25 dimensional unimodular positive definite lattices L.
(5) Unimodular lattices L_{1} of dimension at most 25 with no vectors of norm 1.
(6) 25 dimensional even lattices L_{2} of determinant 4.
L_{1} is the orthogonal complement of the norm 1 vectors of L, L_{2} is the lattice of elements of L of even norm, $L_{2}(-1)$ is isomorphic to u^{\perp}, and $L(-1)$ is isomorphic to v^{\perp}. Table 2 lists the 665 elements of any of these sets.

The height is the height of the norm 4 vector u of D, in other words (u, w) where w is the Weyl vector of D. The things in table 2 are listed in increasing order of their height.

Dim is the dimension of the lattice L_{1}. A capital E after the dimension means that L_{1} is even.

The column "roots" gives the Dynkin diagram of the norm 2 vectors of L_{2} arranged into orbits under $\operatorname{Aut}\left(L_{2}\right)$.
"Group" gives the order of the subgroup of $\operatorname{Aut}(D)$ fixing u. The group $\operatorname{Aut}(L) \cong$ $\operatorname{Aut}\left(L_{2}\right)$ is of the form $2 \times R . G$ where R is the group generated by the reflections of norm 2 vectors of L, G is the group described in the column "group", and 2 is the group of order 2 generated by -1 . If $\operatorname{dim}\left(L_{1}\right) \leq 24$ then $\operatorname{Aut}\left(L_{1}\right)$ is of the form $R . G$ where R is the reflection group of L_{1} and G is as above.

For any root r of u^{\perp} the vector $v=u-r$ is a norm 2 vector of $I I_{1,25}$. This vector v can be found as follows. Let X be the component of the Dynkin diagram of u^{\perp} to which u belongs and let h be the Coxeter number of X. Then $u-r$ is conjugate to a norm 2 vector of $I I_{1,25}$ in D of height $t-h+1$ (or $t-h$ if the entry under "Dim" is $24 E$) whose letter is the letter corresponding to X in the column headed "norm 2". For example let u be the vector of height 6 and root system $a_{2}^{2} a_{1}^{10}$. Then the norm 2 vectors corresponding to roots from the components a_{2} or a_{1} have heights $6-3+1$ and $6-2+1$ and letters a and b, so they are the vectors $4 a$ and $5 b$ of table 1 .

If $\operatorname{dim}\left(L_{1}\right) \leq 24$ then the column "neighbors" gives the two even neighbors of $L_{1}+I^{24-\operatorname{dim}\left(L_{1}\right)}$. If $\operatorname{dim}\left(L_{1}\right) \leq 23$ then both neighbors are isomorphic so only one is listed, and if L_{1} is a Niemeier lattice then the neighbor is preceded by 2 (to indicate that the corresponding norm 0 vector is twice a primitive vector). If the two neighbors are isomorphic then there is an automorphism of L exchanging them.

Tables 1 and 2 were originally calculated by hand. Most of the lattices were found several times, once for each orbit of roots, and this gave a large number of checks for most entries. I later ran a computer version of the algorithm of this paper, which turned up about 20 minor errors (mostly errors in column 5, and a few misprints in the group order and root systems which were due to copying errors). I also checked the MinkowskiSiegel mass formula. Any errors remaining are probably either copying errors (the tables are based on computer output, but have had some hand editing to turn them into nice looking $\mathrm{T}_{\mathrm{E}} \mathrm{X}$) or an error where a lattice should be split into 2 lattices each with twice the automorphism group. The second possibility cannot be detected by mass formulas but I think it unlikely that it occurs in these tables. (It becomes an irritating problem when classifying the 26 -dimensional even lattices of determinant 3.)

Height Dim		Roots	Group	norm 2	bors	
1	24 E	None 8315553613086720000		2Λ		
2	23	a_{1}^{2}	84610842624000	a	Λ	
2	24	None	1002795171840		Λ	A_{1}^{24}
3	25	a_{1}^{2}	88704000	a		
4	24	a_{1}^{8}	20643840	a	A_{1}^{24}	A_{1}^{24}

4	25	a_{2}^{2}	26127360	a		
4	25	a_{1}^{6}	138240	a		
5	24	a_{1}^{12}	190080	a	A_{1}^{24}	A_{2}^{12}
5	25	$a_{2} a_{1}^{7}$	5040	aa		
5	25	a_{1}^{10}	1920	a		
6	23	$a_{1}^{16} a_{1}^{2}$	645120	ca	A_{1}^{24}	
6	24	$a_{2}^{2} a_{1}^{10}$	5760	ab	A_{2}^{12}	A_{2}^{12}
6	24	a_{1}^{16}	43008	c	A_{1}^{24}	A_{3}^{8}
6	25	$a_{3} a_{1}^{8}$	21504	ac		
6	25	$a_{2}^{2} a_{1}^{8}$	128	ab		
6	25	$a_{2} a_{1}^{10} a_{1}$	120	abc		
6	25	$a_{1}^{8} a_{1}^{6}$	1152	bc		
7	24	$a_{2}^{4} a_{1}^{8}$	384	bb	A_{2}^{12}	A_{3}^{8}
7	24 E	a_{1}^{24}	244823040	a	$2 A_{1}^{24}$	
7	25	$a_{2}^{5} a_{1}^{3}$	720	bb		
7	25	$a_{3} a_{2} a_{1}^{9}$	72	acb		
7	25	$a_{2}^{4} a_{1}^{4} a_{1}^{2}$	24	bba		
7	25	$a_{3} a_{1}^{12}$	1440	ab		
7	25	$a_{2}^{3} a_{1}^{6} a_{1}^{3}$	12	bbb		
7	25	$a_{2}^{2} a_{1}^{12}$	144	cb		
8	22	$a_{3} a_{1}^{22}$	887040	ae	A_{1}^{24}	
8	23	$a_{2}^{6} a_{1}^{6} a_{1}^{2}$	1440	bda	A_{2}^{12}	
8	24	$a_{3}^{2} a_{1}^{12}$	768	cc	A_{3}^{8}	A_{3}^{8}
8	24	$a_{3} a_{2}^{4} a_{1}^{6}$	96	bbb	A_{3}^{8}	A_{3}^{8}
8	24	a_{2}^{8}	672	a	A_{3}^{8}	A_{3}^{8}
8	24	$a_{2}^{6} a_{1}^{6}$	240	bd	A_{2}^{12}	A_{4}^{6}
8	24	a_{1}^{24}	138240	e	A_{1}^{24}	D_{4}^{6}
8	25	$a_{4} a_{1}^{12}$	1440	ad		
8	25	$a_{3} a_{2}^{4} a_{1}^{4}$	16	bbb		
8	25	$a_{3}^{2} a_{1}^{8} a_{1}^{2}$	64	cbc		
8	25	$a_{3} a_{2}^{3} a_{1}^{6} a_{1}$	12	bbbc		
8	25	$a_{3} a_{2}^{3} a_{1}^{3} a_{1}^{3} a_{1}$	6	bbbbd		
8	25	$a_{2}^{4} a_{2}^{2} a_{1}^{4}$	8	bab		
8	25	$a_{3} a_{2}^{2} a_{1}^{4} a_{1}^{4} a_{1}^{2}$	16	bbcbd		
8	25	$a_{2}^{4} a_{2} a_{1}^{4} a_{1}^{2} a_{1}$	8	bbbdb		
8	25	$a_{2}^{4} a_{1}^{8} a_{1}^{2}$	48	bdc		
8	25	$a_{3} a_{1}^{15} a_{1}$	720	cce		
9	24	$a_{3}^{2} a_{2}^{4} a_{1}^{4}$	16	bbb	A_{3}^{8}	A_{4}^{6}
9	24	$a_{2}^{8} a_{1}^{4}$	384	dc	A_{2}^{12}	$A_{5}^{4} D_{4}$

9	25	$a_{4} a_{2}^{3} a_{1}^{6} a_{1}$	12	bdbb		
9	25	$a_{3}^{2} a_{2}^{4} a_{1}^{2}$	16	bba		
9	25	$a_{3}^{2} a_{2}^{2} a_{2} a_{1}^{4} a_{1}$	4	bbcba		
9	25	$a_{3} a_{3} a_{2}^{2} a_{2} a_{1}^{2} a_{1}^{2} a_{1}$	2	bbbbbbb		
9	25	$a_{3} a_{2}^{6} a_{1}^{2}$	6	abb		
9	25	$a_{3}^{2} a_{2}^{2} a_{1}^{4} a_{1}^{4}$	8	bcbb		
9	25	$a_{3} a_{2}^{4} a_{2} a_{1}^{4} a_{1}$	8	bbbbc		
9	25	$a_{3} a_{2}^{2} a_{2}^{2} a_{2} a_{1}^{2} a_{1}^{2} a_{1}$	2	bbbdbbb		
10	22	$a_{3} a_{2}^{10}$	2880	ac	A_{2}^{12}	
10	23	$a_{3}^{4} a_{1}^{8} a_{1}^{2}$	384	cfa	A_{3}^{8}	
10	23	$a_{3}^{3} a_{2}^{4} a_{1}^{2} a_{1}^{2}$	48	bbea	A_{3}^{8}	
10	24	$a_{3}^{4} a_{2}^{2} a_{1}^{2}$	32	bab	A_{4}^{6}	A_{4}^{6}
10	24	$a_{4} a_{3} a_{2}^{4} a_{1}^{4}$	16	bdbc	A_{4}^{6}	A_{4}^{6}
10	24	$a_{3}^{2} a_{3} a_{2}^{4} a_{1}^{2}$	16	bbbe	A_{3}^{8}	$A_{5}^{4} D_{4}$
10	24	$a_{3}^{4} a_{1}^{4} a_{1}^{4}$	48	cdf	A_{3}^{8}	$A_{5}^{4} D_{4}$
10	24	$a_{3}^{4} a_{1}^{8}$	384	cd	A_{3}^{8}	D_{4}^{6}
10	24 E	a_{2}^{12}	190080	a	$2 A_{2}^{12}$	
10	25	a_{3}^{5}	1920	c		
10	25	$d_{4} a_{2}^{4} a_{1}^{6}$	144	bcd		
10	25	$d_{4} a_{3} a_{1}^{12}$	576	ced		
10	25	$a_{5} a_{1}^{15}$	720	cf		
10	25	$a_{4} a_{3} a_{2}^{4} a_{1}^{2}$	8	bdbb		
10	25	$a_{3}^{3} a_{3} a_{2} a_{1}^{3}$	6	bcbb		
10	25	$a_{4} a_{3} a_{2}^{2} a_{2} a_{1}^{2} a_{1}^{2} a_{1}$	2	bdbbbce		
10	25	$a_{3}^{3} a_{3} a_{1}^{4} a_{1}^{2}$	24	bcce		
10	25	$a_{3}^{2} a_{3}^{2} a_{1}^{4} a_{1}^{2}$	16	cbbd		
10	25	$a_{4} a_{2}^{6} a_{1}^{2}$	6	abe		
10	25	$a_{4} a_{3} a_{2}^{2} a_{1}^{4} a_{1}^{2} a_{1}^{2}$	4	bdbccf		
10	25	$a_{3}^{2} a_{3} a_{2}^{2} a_{2} a_{1}^{2} a_{1}$	2	bbbbbc		
10	25	$a_{3}^{2} a_{3} a_{2}^{2} a_{2} a_{1} a_{1} a_{1}$	2	bbbadbc		
10	25	$a_{4} a_{2}^{5} a_{1}^{5}$	10	bbc		
10	25	$a_{3}^{2} a_{2}^{6}$	48	da		
10	25	$a_{3}^{2} a_{2}^{4} a_{2}^{2}$	8	bba		
10	25	$a_{3}^{3} a_{2}^{2} a_{1}^{3} a_{1}^{2} a_{1}$	12	bbdcf		
10	25	$a_{3} a_{3} a_{3} a_{2}^{2} a_{1}^{2} a_{1} a_{1} a_{1} a_{1}$	2	cbbbcebfd		
10	25	$a_{3} a_{3} a_{2}^{2} a_{2}^{2} a_{2} a_{1}^{2} a_{1}$	2	bbbbbee		
10	25	$a_{3}^{2} a_{2}^{4} a_{1}^{4} a_{1}^{2}$	8	dbcf		
10	25	$a_{3}^{3} a_{1}^{12}$	48	cf		
10	25	$a_{3} a_{2}^{6} a_{2} a_{1}^{3}$	12	dbce		
11	24	$a_{4} a_{3}^{2} a_{3} a_{2}^{2} a_{1}^{2}$	4	bbbbb	A_{4}^{6}	$A_{5}^{4} D_{4}$
11	24	$a_{4}^{2} a_{2}^{4} a_{1}^{4}$	16	dca	A_{4}^{6}	$A_{5}^{4} D_{4}$
11	24	a_{3}^{6}	240	a	A_{4}^{6}	D_{4}^{6}

11	24	$a_{3}^{4} a_{2}^{4}$	24	be	A_{3}^{8}	A_{6}^{4}
11	25	$a_{5} a_{2}^{4} a_{2} a_{1}^{4}$	8	befb		
11	25	$d_{4} a_{3} a_{2}^{4} a_{1}^{4}$	8	bcda		
11	25	$a_{4} a_{3}^{2} a_{3} a_{2} a_{1}^{2} a_{1}$	2	bbbcba		
11	25	$a_{4}^{2} a_{2}^{2} a_{2} a_{1}^{4} a_{1}$	4	dcbbb		
11	25	$a_{4} a_{3}^{2} a_{2}^{4}$	4	bbb		
11	25	$a_{4} a_{3}^{3} a_{1}^{6}$	6	cbb		
11	25	$a_{4} a_{3}^{2} a_{2}^{2} a_{2} a_{1}^{2} a_{1}$	2	bbbfab		
11	25	$a_{4} a_{3} a_{3} a_{2} a_{2} a_{2} a_{1} a_{1} a_{1}$	1	bbbbccbba		
11	25	$a_{4} a_{3} a_{3} a_{2} a_{2} a_{2} a_{1} a_{1} a_{1}$	1	bbbbecbbb		
11	25	$a_{3}^{4} a_{3} a_{1}^{4}$	8	bab		
11	25	$a_{3}^{2} a_{3}^{2} a_{2}^{2} a_{2} a_{1}$	2	bbbbb		
11	25	$a_{3}^{2} a_{3} a_{3} a_{2}^{2} a_{2} a_{1}$	2	bbabda		
11	25	$a_{4} a_{3} a_{2}^{2} a_{2}^{2} a_{2} a_{1}^{2} a_{1}$	2	bbeccba		
11	25	$a_{3}^{2} a_{3}^{2} a_{2}^{2} a_{1}^{4}$	4	bbdb		
12	22	$a_{3}^{6} a_{3} a_{1}^{2}$	96	dag	A_{3}^{8}	
12	23	$a_{4}^{2} a_{3}^{2} a_{2}^{2} a_{1}^{2} a_{1}^{2}$	8	bcbha	A_{4}^{6}	
12	23	$a_{4} a_{3}^{5} a_{1}^{2}$	40	aba	A_{4}^{6}	
12	24	$d_{4} a_{4} a_{2}^{6}$	24	dca	$A_{5}^{4} D_{4}$	$A_{5}^{4} D_{4}$
12	24	$d_{4} a_{3}^{4} a_{1}^{4}$	32	cde	$A_{5}^{4} D_{4}$	$A_{5}^{4} D_{4}$
12	24	$a_{5} a_{3}^{3} a_{1}^{6} a_{1}$	24	cfec	$A_{5}^{4} D_{4}$	$A_{5}^{4} D_{4}$
12	24	$a_{4}^{2} a_{3}^{2} a_{3} a_{1}^{2}$	8	bbbd	$A_{5}^{4} D_{4}$	$A_{5}^{4} D_{4}$
12	24	$a_{5} a_{3}^{2} a_{2}^{4} a_{1}$	16	bebf	$A_{5}^{4} D_{4}$	$A_{5}^{4} D_{4}$
12	24	$d_{4} a_{3}^{4} a_{1}^{4}$	48	cdc	D_{4}^{6}	$A_{5}^{4} D_{4}$
12	24	$d_{4}^{2} a_{1}^{16}$	1152	eb	D_{4}^{6}	D_{4}^{6}
12	24	$a_{4}^{2} a_{3}^{2} a_{2}^{2} a_{1}^{2}$	4	bcbh	A_{4}^{6}	A_{6}^{4}
12	24	$a_{3}^{4} a_{3}^{2} a_{1}^{4}$	32	fdg	A_{3}^{8}	$A_{7}^{2} D_{5}^{2}$
12	25	$a_{5} a_{3}^{2} a_{3} a_{1}^{4} a_{1}$	8	cefdc		
12	25	$a_{5} a_{3}^{2} a_{2}^{2} a_{2} a_{1} a_{1}$	2	bebbdh		
12	25	$d_{4} a_{3}^{2} a_{3} a_{2}^{2} a_{1}^{2}$	4	bddac		
12	25	$d_{4} a_{4} a_{2}^{4} a_{1}^{4}$	8	dcae		
12	25	$a_{5} a_{3}^{2} a_{2}^{2} a_{1}^{2} a_{1}^{2} a_{1}$	4	bfbdhf		
12	25	$a_{5} a_{3} a_{3} a_{2}^{2} a_{1}^{2} a_{1} a_{1} a_{1}$	2	bfebhdee		
12	25	$a_{4}^{2} a_{3} a_{3} a_{2} a_{1}^{2} a_{1}$	2	bbcade		
12	25	$a_{4} a_{4} a_{3} a_{3} a_{2} a_{1} a_{1} a_{1}$	1	bbccbddd		
12	25	$a_{4}^{2} a_{3} a_{2}^{4}$	4	bbb		
12	25	$a_{4}^{2} a_{3}^{2} a_{1}^{4} a_{1}^{2}$	4	bche		
12	25	$d_{4} a_{3}^{2} a_{2}^{4} a_{1} a_{1}$	8	bdaeg		
12	25	$d_{4} a_{3}^{3} a_{1}^{6} a_{1} a_{1}$	12	cdegb		
12	25	$a_{4} a_{3}^{2} a_{3}^{2} a_{2} a_{1}$	2	abcbc		
12	25	$a_{4}^{2} a_{3} a_{2}^{2} a_{2} a_{1} a_{1} a_{1}$	2	bcbbfdh		
12	25	$a_{4} a_{4} a_{3} a_{2} a_{2} a_{2} a_{1} a_{1} a_{1}$		bcabbhhd		
12	25	$a_{4} a_{3}^{4} a_{1}^{4}$	8	ach		

12	25	$a_{4} a_{3}^{2} a_{3} a_{3} a_{1}^{2} a_{1}^{2}$	2	bbcfde		
12	25	$a_{4} a_{3}^{3} a_{2}^{3} a_{1}$	6	bbag		
12	25	$a_{4} a_{3} a_{3} a_{3} a_{2} a_{2} a_{2} a_{1}$	1	bbbebbah		
12	25	$a_{3}^{4} a_{3} a_{3} a_{1}^{2}$	8	bfdc		
12	25	$a_{4} a_{3}^{2} a_{3} a_{2}^{2} a_{1}^{2} a_{1} a_{1}$	2	bccbhge		
12	25	$a_{4} a_{3}^{2} a_{3} a_{2}^{2} a_{1}^{2} a_{1}^{2}$	2	bcfbhh		
12	25	$a_{3}^{2} a_{3}^{2} a_{3} a_{2}^{2} a_{1}^{2}$	4	edbbh		
13	24	$a_{4}^{4} a_{1}^{4}$	24	cc	$A_{5}^{4} D_{4}$	A_{6}^{4}
13	24	$a_{5} a_{4} a_{3} a_{3} a_{2} a_{2} a_{1}$	2	bebbddd	$A_{5}^{4} D_{4}$	A_{6}^{4}
13	24	$a_{4}^{2} a_{3}^{4}$	16	bb	A_{4}^{6}	$A_{7}^{2} D_{5}^{2}$
13	24	$a_{4}^{2} a_{4} a_{3} a_{2}^{2} a_{1}^{2}$	4	ccahb	A_{4}^{6}	$A_{7}^{2} D_{5}^{2}$
13	24 E	a_{3}^{8}	2688	a	$2 A_{3}^{8}$	
13	25	$a_{6} a_{2}^{6} a_{1}^{3}$	12	dhd		
13	25	$a_{4}^{4} a_{1}^{2}$	24	ca		
13	25	$a_{5} a_{4} a_{3}^{2} a_{2} a_{1}^{2}$	2	bfbdc		
13	25	$d_{4} a_{4} a_{3}^{3} a_{1}^{2}$	6	bdac		
13	25	$d_{4}^{2} a_{2}^{6}$	72	cc		
13	25	$a_{5} a_{4} a_{3} a_{2} a_{2} a_{2} a_{1} a_{1}$	1	bebhdeda		
13	25	$a_{5} a_{4} a_{3} a_{2} a_{2} a_{2} a_{1} a_{1}$	1	bebhdddd		
13	25	$d_{4} a_{4} a_{3} a_{3} a_{2} a_{2} a_{1} a_{1}$	1	bdaaeccb		
13	25	$a_{4}^{2} a_{4} a_{3} a_{2}^{2}$	2	bcbd		
13	25	$a_{4} a_{4} a_{4} a_{3} a_{2} a_{1} a_{1} a_{1}$	1	bccbdbed		
13	25	$a_{5} a_{3}^{3} a_{2}^{3}$	6	bbd		
13	25	$a_{5} a_{3}^{2} a_{3} a_{2}^{2} a_{2}$	2	abbhc		
13	25	$a_{5} a_{4} a_{2}^{2} a_{2}^{2} a_{2} a_{1}^{2}$	2	behdfd		
13	25	$a_{5} a_{3}^{2} a_{3} a_{2}^{2} a_{1}^{2} a_{1}$	2	bbbedd		
13	25	$a_{4} a_{4} a_{3} a_{3} a_{3} a_{2} a_{1}$	1	bcbbbdc		
13	25	$a_{4} a_{4} a_{3} a_{3} a_{3} a_{2} a_{1}$	1	bbbabdb		
13	25	$a_{4}^{3} a_{2}^{3} a_{1}^{3}$	6	cdb		
13	25	$d_{4} a_{3}^{3} a_{2}^{3} a_{2}$	6	bacg		
13	25	$a_{4}^{2} a_{3} a_{3} a_{2}^{2} a_{2} a_{1}$	2	ebaddd		
13	25	$a_{5} a_{2}^{9}$	72	cf		
14	21	$d_{4} a_{3}^{7}$	336	ag	A_{3}^{8}	
14	22	$a_{4}^{4} a_{3} a_{2}^{2}$	16	aab	A_{4}^{6}	
14	23	$a_{5} a_{4}^{2} a_{3} a_{3} a_{1}^{2} a_{1}$	4	bbddaf	$A_{5}^{4} D_{4}$	
14	23	$d_{4} a_{4}^{3} a_{2}^{2} a_{1}^{2}$	12	caca	$A_{5}^{4} D_{4}$	
14	23	$a_{5} d_{4} a_{3}^{3} a_{1}^{3} a_{1}^{2}$	12	dfega	$A_{5}^{4} D_{4}$	
14	23	$a_{5}^{2} a_{3} a_{2}^{4} a_{1}^{2}$	16	efda	$A_{5}^{4} D_{4}$	
14	23	$d_{4}^{2} a_{3}^{4} a_{1}^{2}$	96	dcd	D_{4}^{6}	
14	24	$a_{5} a_{4}^{3} a_{1}^{3}$	12	cbe	A_{6}^{4}	A_{6}^{4}
14	24	$a_{5}^{2} a_{3}^{2} a_{2}^{2}$	8	eda	A_{6}^{4}	A_{6}^{4}
14	24	$a_{6} a_{3}^{3} a_{2}^{3}$	12	bhd	A_{6}^{4}	A_{6}^{4}

14	24	$d_{4} a_{4}^{2} a_{4} a_{2}^{2}$	4	caac	$A_{5}^{4} D_{4}$	$A_{7}^{2} D_{5}^{2}$
14	24	$a_{5} d_{4} a_{3}^{2} a_{3} a_{1}^{2} a_{1}$	4	dfecbg	$A_{5}^{4} D_{4}$	$A_{7}^{2} D_{5}^{2}$
14	24	$a_{5}^{2} a_{3}^{2} a_{1}^{2} a_{1}^{2} a_{1}^{2}$	8	febcg	$A_{5}^{4} D_{4}$	$A_{7}^{2} D_{5}^{2}$
14	24	$a_{5} a_{4}^{2} a_{3} a_{3} a_{1}$	4	bbddf	$A_{5}^{4} D_{4}$	$A_{7}^{2} D_{5}^{2}$
14	24	$d_{4}^{2} a_{3}^{4}$	32	dc	D_{4}^{6}	$A_{7}^{2} D_{5}^{2}$
14	24	$a_{4}^{3} a_{3}^{3}$	12	bh	A_{4}^{6}	A_{8}^{3}
14	24	a_{3}^{8}	384	g	A_{3}^{8}	D_{6}^{4}
14	25	$d_{5} a_{3}^{2} a_{2}^{4} a_{1}^{2}$	8	bgbb		
14	25	$d_{5} a_{3}^{3} a_{1}^{8}$	48	cgc		
14	25	$a_{6} a_{3}^{2} a_{3} a_{2}^{2} a_{1}$	2	bhhcf		
14	25	$a_{5}^{2} a_{3} a_{3} a_{1}^{4}$	8	efee		
14	25	$a_{6} a_{3}^{2} a_{3} a_{2} a_{1}^{2} a_{1}^{2}$	2	bhhdeg		
14	25	$d_{4} a_{4}^{3} a_{1}^{3} a_{1}$	6	cabc		
14	25	$a_{5} d_{4} a_{3} a_{3} a_{2}^{2} a_{1}$	2	deeccb		
14	25	$a_{5} a_{5} a_{3} a_{2}^{2} a_{1}^{2} a_{1} a_{1}$	2	efddefg		
14	25	$a_{5} a_{4}^{2} a_{3} a_{2} a_{1}^{2}$	2	bbfdf		
14	25	$a_{5} a_{4} a_{4} a_{3} a_{2} a_{1} a_{1}$	1	cbbdabe		
14	25	$d_{4} a_{4}^{2} a_{3}^{2} a_{1}^{2}$	4	baeb		
14	25	$d_{4}^{2} a_{3}^{2} a_{3} a_{1}^{4}$	8	dcbb		
14	25	$a_{5} a_{4}^{2} a_{3} a_{1}^{2} a_{1}^{2} a_{1}$	2	cbhcee		
14	25	$a_{5} d_{4} a_{3}^{2} a_{1}^{4} a_{1}^{2} a_{1}$	4	dfegcg		
14	25	$a_{5} a_{4} a_{3} a_{3} a_{3} a_{2}$	1	bbhddc		
14	25	$a_{5} a_{4} a_{3} a_{3} a_{3} a_{2}$	1	bbeddc		
14	25	$a_{5} a_{4}^{2} a_{2}^{2} a_{2} a_{1}^{2}$	2	cbddf		
14	25	$a_{4}^{4} a_{2}^{2}$	8	ba		
14	25	$d_{4} a_{4} a_{4} a_{3} a_{2} a_{2} a_{1} a_{1}$	1	caaecbbg		
14	25	$a_{5} a_{4} a_{3} a_{3} a_{3} a_{1} a_{1} a_{1}$	1	bbhedbfg		
14	25	$a_{5} a_{3}^{2} a_{3}^{2} a_{3} a_{1}$	4	dddcg		
14	25	$a_{5} a_{3}^{2} a_{3} a_{3} a_{3} a_{1}$	2	bheddf		
14	25	$a_{5} a_{4} a_{3}^{2} a_{2}^{2} a_{1}^{2} a_{1}$	2	cbhdge		
14	25	$a_{4}^{2} a_{4} a_{3}^{2} a_{2} a_{1}$	2	bbdbf		
14	25	$a_{4} a_{4} a_{4} a_{3} a_{3} a_{2} a_{1}$	1	abbdhcf		
14	25	$a_{4}^{2} a_{4} a_{3} a_{2}^{2} a_{2} a_{1}$	2	bahbdf		
14	25	$d_{4} a_{3}^{4} a_{3} a_{1}^{4}$	8	fegg		
15	24	$a_{5}^{2} a_{4}^{2} a_{1}^{2}$	4	bdc	A_{6}^{4}	$A_{7}^{2} D_{5}^{2}$
15	24	$a_{6} a_{4} a_{4} a_{3} a_{2} a_{1} a_{1}$	2	chhceaa	A_{6}^{4}	$A_{7}^{2} D_{5}^{2}$
15	24	$a_{5}^{2} a_{4} a_{3} a_{2}^{2}$	4	bfdf	$A_{5}^{4} D_{4}$	A_{8}^{3}
15	24	$a_{4}^{4} a_{3}^{2}$	16	hb	A_{4}^{6}	$A_{9}^{2} D_{6}$
15	25	$d_{5} a_{3}^{5}$	20	ab		
15	25	$d_{5} a_{4} a_{3}^{2} a_{2}^{2} a_{1}^{2}$	2	bgbba		
15	25	$a_{6} a_{4}^{2} a_{3} a_{1}^{2} a_{1}$	2	chdcb		
15	25	$a_{6} a_{4} a_{4} a_{2} a_{2} a_{1} a_{1} a_{1}$	1	chhefacc		
15	25	$a_{5} d_{4} a_{4}^{2} a_{1}^{2} a_{1}$	2	abeab		

15	25	$a_{5} a_{5} a_{4} a_{3} a_{2} a_{1}$	1	bbddea		
15	25	$a_{6} a_{4} a_{3} a_{3} a_{2} a_{2} a_{1}$	1	bhdcfga		
15	25	$a_{6} a_{4} a_{3}^{2} a_{2}^{2} a_{1}$	2	bhdfc		
15	25	$d_{4}^{2} a_{4}^{2} a_{2}^{2}$	4	acb		
15	25	$a_{5}^{2} a_{4} a_{3} a_{1}^{2} a_{1}^{2}$	2	bedcc		
15	25	$a_{5} d_{4} a_{4} a_{3} a_{2} a_{2} a_{1}$	1	abecbba		
15	25	$a_{5}^{2} a_{3}^{2} a_{3} a_{1}^{2}$	2	bdac		
15	25	$a_{5} a_{4}^{2} a_{4} a_{2} a_{1}^{2}$	2	adfec		
15	25	$a_{5} a_{4}^{2} a_{4} a_{2} a_{1}^{2}$	2	addca		
15	25	$a_{5} a_{4} a_{4} a_{4} a_{2} a_{1} a_{1}$	1	bhddeca		
15	25	a_{4}^{5}	5	d		
15	25	$a_{5} a_{4} a_{4} a_{3} a_{3} a_{2}$	1	bhdcab		
15	25	$d_{4} a_{4}^{2} a_{3}^{2} a_{3}$	2	bccb		
16	21	$d_{4} a_{4}^{5}$	40	ab	A_{4}^{6}	
16	22	$a_{5}^{2} d_{4} a_{3}^{2} a_{3}$	8	ceba	$A_{5}^{4} D_{4}$	
16	22	$a_{5}^{3} a_{3} a_{3} a_{1}^{3}$	12	ecad	$A_{5}^{4} D_{4}$	
16	22	$d_{4}^{4} a_{3} a_{1}^{6}$	144	bdc	D_{4}^{6}	
16	23	$a_{6} a_{5} a_{4} a_{3} a_{2} a_{1}^{2} a_{1}$	2	bhdecah	A_{6}^{4}	
16	23	$a_{5}^{3} a_{4} a_{1}^{2} a_{1}$	6	daag	A_{6}^{4}	
16	24	$d_{5} d_{4} a_{3}^{4}$	16	dgb	$A_{7}^{2} D_{5}^{2}$	$A_{7}^{2} D_{5}^{2}$
16	24	$d_{5} a_{5} a_{3}^{2} a_{3} a_{1}^{2} a_{1}$	4	fgbceb	$A_{7}^{2} D_{5}^{2}$	$A_{7}^{2} D_{5}^{2}$
16	24	$a_{5}^{2} d_{4}^{2} a_{1}^{2}$	16	cef	$A_{7}^{2} D_{5}^{2}$	$A_{7}^{2} D_{5}^{2}$
16	24	$a_{7} a_{3}^{4} a_{1}^{4}$	16	fge	$A_{7}^{2} D_{5}^{2}$	$A_{7}^{2} D_{5}^{2}$
16	24	$d_{5} a_{4} a_{4}^{2} a_{2}^{2}$	4	cbba	$A_{7}^{2} D_{5}^{2}$	$A_{7}^{2} D_{5}^{2}$
16	24	$a_{6} d_{4} a_{4}^{2} a_{2}$	4	ahcb	$A_{7}^{2} D_{5}^{2}$	$A_{7}^{2} D_{5}^{2}$
16	24	$a_{6} a_{5} a_{4} a_{3} a_{2} a_{1}$	2	bhdech	A_{6}^{4}	A_{8}^{3}
16	24	$a_{5}^{2} d_{4} a_{3}^{2} a_{1}^{2}$	4	eegd	$A_{5}^{4} D_{4}$	$A_{9}^{2} D_{6}$
16	24	$a_{5} a_{5} a_{4}^{2} a_{3}$	4	dddf	$A_{5}^{4} D_{4}$	$A_{9}^{2} D_{6}$
16	24	$a_{5}^{2} d_{4} a_{3}^{2} a_{1}^{2}$	8	eebd	$A_{5}^{4} D_{4}$	D_{6}^{4}
16	24	$d_{4}^{4} a_{1}^{8}$	48	bc	D_{4}^{6}	D_{6}^{4}
16	24 E	a_{4}^{6}	240	a	$2 A_{4}^{6}$	
16	25	$a_{7} a_{3}^{4} a_{1}^{2}$	8	fff		
16	25	$a_{7} a_{3} a_{3} a_{3} a_{2}^{2} a_{1}^{2}$	2	efggch		
16	25	$a_{5} d_{4}^{3} a_{1}^{3}$	36	bcb		
16	25	$d_{5} a_{4}^{2} a_{3} a_{3} a_{1} a_{1}$	2	bbcbdb		
16	25	$d_{5} d_{4} a_{3}^{3} a_{1}^{3} a_{1}$	6	dgbec		
16	25	$d_{5} a_{5} a_{3} a_{2}^{4} a_{1}$	4	egcad		
16	25	$a_{6} a_{5} a_{4} a_{2} a_{2} a_{1} a_{1}$	1	bhdcagh		
16	25	$d_{5} a_{4} a_{3}^{4}$	4	bbb		
16	25	$d_{5} a_{4}^{2} a_{3} a_{2}^{2} a_{1}^{2}$	2	cbcae		
16	25	$a_{6} d_{4} a_{4} a_{3} a_{2} a_{1} a_{1}$	1	ahcgafe		
16	25	$a_{5}^{2} a_{5} a_{3} a_{2}$	2	deeb		
16	25	$a_{6} a_{5} a_{3} a_{3} a_{2} a_{2}$	1	bhfebc		

16	25	$a_{6} a_{5} a_{3} a_{3} a_{2} a_{1} a_{1} a_{1}$	1	bhegchhh		
16	25	$a_{6} a_{4}^{2} a_{3}^{2} a_{1}$	2	bcee		
16	25	$a_{5} a_{5} a_{5} a_{2}^{2} a_{1}^{2} a_{1}$	2	defchd		
16	25	$a_{5}^{2} d_{4} a_{3} a_{2}^{2}$	4	cfcb		
16	25	$a_{5} a_{5} d_{4} a_{3} a_{2}^{2}$	2	ccdga		
16	25	$a_{6} d_{4} a_{3}^{2} a_{2}^{2} a_{2}$	2	ahgab		
16	25	$a_{5} a_{5} a_{4} a_{4} a_{2} a_{1}$	1	ddddcg		
16	25	$a_{5} a_{5} a_{4} a_{4} a_{2} a_{1}$	1	ddadad		
16	25	$a_{6} a_{4} a_{4} a_{3} a_{2} a_{2} a_{1}$	1	bddecah		
16	25	$a_{5} d_{4} a_{4}^{2} a_{3} a_{1}$	2	edccb		
16	25	$a_{5} d_{4}^{2} a_{3}^{2} a_{1} a_{1} a_{1}$	2	cebecf		
16	25	$a_{5}^{2} a_{4} a_{3}^{2} a_{1}^{2}$	2	haeh		
16	25	$a_{5}^{2} a_{4} a_{3} a_{3} a_{1}^{2}$	2	ddebd		
16	25	$a_{5} a_{5} a_{4} a_{3} a_{3} a_{1} a_{1}$	1	eddefdg		
16	25	$a_{5}^{2} a_{3}^{4}$	8	cf		
16	25	$a_{5}^{2} a_{4} a_{3} a_{2}^{2} a_{1}^{2}$	2	hdcch		
16	25	$d_{4} a_{4}^{2} a_{4} a_{3}^{2}$	2	hcbb		
17	24	$a_{7} a_{4}^{2} a_{3}^{2}$	4	bfc	$A_{7}^{2} D_{5}^{2}$	A_{8}^{3}
17	24	$a_{6}^{2} a_{4} a_{3} a_{1}^{2}$	4	hebb	$A_{7}^{2} D_{5}^{2}$	A_{8}^{3}
17	24	$a_{6} a_{5} a_{5} a_{3} a_{2}$	2	dddcg	A_{6}^{4}	$A_{9}^{2} D_{6}$
17	24	$a_{6}^{2} a_{3}^{2} a_{2}^{2}$	4	hah	A_{6}^{4}	$A_{9}^{2} D_{6}$
17	24	a_{5}^{4}	24	a	A_{6}^{4}	D_{6}^{4}
17	25	$a_{7} a_{4} a_{4} a_{3} a_{2} a_{1}$	1	bfgcgb		
17	25	$a_{6}^{2} a_{3}^{2} a_{2} a_{1}$	2	hcfa		
17	25	$a_{7} a_{4}^{2} a_{2}^{2} a_{2} a_{1}$	2	bfhea		
17	25	$d_{5} d_{4} a_{4}^{2} a_{2}^{2}$	2	abbb		
17	25	$d_{5} a_{5} a_{4} a_{3} a_{3} a_{1}$	1	bbbaab		
17	25	$d_{5} a_{5} a_{4} a_{3} a_{2} a_{2} a_{1}$	1	bbbaedb		
17	25	$a_{6} a_{5} d_{4} a_{3} a_{2} a_{1}$	1	ecdafb		
17	25	$a_{6} a_{5} a_{4}^{2} a_{1}^{2}$	2	ddeb		
17	25	$a_{6} a_{5} a_{4} a_{3} a_{3}$	1	dcgbc		
17	25	$a_{6} a_{5} a_{4} a_{3} a_{3}$	1	dcfcc		
17	25	$a_{6} a_{5} a_{4} a_{3} a_{3}$	1	dceac		
17	25	$a_{5}^{2} d_{4} a_{4} a_{3}$	2	cdbb		
17	25	$a_{6} a_{4} a_{4} a_{4} a_{3} a_{1}$	1	deffab		
18	21	$a_{5}^{3} d_{4} d_{4} a_{1}$	12	bcab	$A_{5}^{4} D_{4}$	
18	22	$a_{6}^{2} a_{4}^{2} a_{3}$	4	caa	A_{6}^{4}	
18	23	$a_{6} d_{5} a_{4} a_{4} a_{2} a_{1}^{2}$	2	bhaaba	$A_{7}^{2} D_{5}^{2}$	
18	23	$a_{6}^{2} d_{4} a_{4} a_{1}^{2}$	4	ceba	$A_{7}^{2} D_{5}^{2}$	
18	23	$d_{5} a_{5}^{2} d_{4} a_{1}^{2} a_{1}^{2}$	4	ebcfa	$A_{7}^{2} D_{5}^{2}$	
18	23	$a_{7} a_{5} a_{4}^{2} a_{1}^{2} a_{1}$	4	dfcag	$A_{7}^{2} D_{5}^{2}$	
18	23	$a_{7} d_{4}^{2} a_{3}^{2} a_{1}^{2}$	8	cgfa	$A_{7}^{2} D_{5}^{2}$	

18	23	$d_{5}^{2} a_{3}^{4} a_{1}^{2}$	16	gea	$A_{7}^{2} D_{5}^{2}$	
18	24	$a_{7} a_{5}^{2} a_{2}^{2}$	8	ffa	A_{8}^{3}	A_{8}^{3}
18	24	$a_{7} a_{5} a_{4}^{2} a_{1}$	4	dfcg	$A_{7}^{2} D_{5}^{2}$	$A_{9}^{2} D_{6}$
18	24	$a_{7} a_{5} d_{4} a_{3} a_{1} a_{1} a_{1}$	2	eggfdfc	$A_{7}^{2} D_{5}^{2}$	$A_{9}^{2} D_{6}$
18	24	$a_{6} d_{5} a_{4} a_{4} a_{2}$	2	bhaab	$A_{7}^{2} D_{5}^{2}$	$A_{9}^{2} D_{6}$
18	24	$d_{5}^{2} a_{3}^{4}$	16	gb	$A_{7}^{2} D_{5}^{2}$	D_{6}^{4}
18	24	$d_{5} a_{5}^{2} d_{4} a_{1}^{2}$	4	ebbc	$A_{7}^{2} D_{5}^{2}$	D_{6}^{4}
18	24	$a_{5}^{2} a_{5} d_{4} a_{3} a_{1}$	4	gbcdb	$A_{5}^{4} D_{4}$	${ }_{1} D_{7} E_{6}$
18	24	$a_{5}^{4} a_{1}^{4}$	48	cb	$A_{5}^{4} D_{4}$	E_{6}^{4}
18	25	$d_{6} a_{3}^{4} a_{3} a_{1}^{2}$	8	ddcd		
18	25	$a_{7} a_{5}^{2} a_{1}^{4}$	8	fge		
18	25	$a_{7} a_{5} d_{4} a_{2}^{2} a_{1}$	2	egfbc		
18	25	$a_{7} d_{4}^{2} a_{3} a_{1}^{4}$	4	cgef		
18	25	$a_{7} a_{5} a_{4} a_{3} a_{2}$	1	dfchb		
18	25	$a_{6}^{2} a_{5} a_{2} a_{1} a_{1}$	2	deaed		
18	25	$a_{7} a_{5} a_{4} a_{3} a_{1} a_{1} a_{1}$	1	dgchfeg		
18	25	$a_{6} d_{5} a_{4} a_{3} a_{2} a_{1} a_{1}$	1	bhaebfd		
18	25	$d_{5} a_{5} a_{5} a_{4} a_{1} a_{1}$	1	dbcacc		
18	25	$a_{7} a_{5} a_{3}^{2} a_{3} a_{1}$	2	dggfd		
18	25	$a_{7} a_{5} a_{3}^{2} a_{3} a_{1}$	2	dfhfg		
18	25	$a_{6} a_{6} a_{4} a_{3} a_{2} a_{1}$	1	cdchbg		
18	25	$a_{6} a_{5} a_{5} a_{4} a_{1}$	1	aeecc		
18	25	$d_{5} a_{5} d_{4} a_{3}^{2} a_{1}^{2} a_{1}$	2	ebcefb		
18	25	$d_{5} d_{4}^{2} a_{3}^{2} a_{3}$	4	cbbc		
18	25	$d_{5} a_{5} a_{4}^{2} a_{3} a_{1}$	2	dbadf		
18	25	$d_{5} a_{5} a_{4}^{2} a_{3} a_{1}$	2	dbabb		
18	25	$a_{6} a_{5} d_{4} a_{4} a_{2} a_{1}$	1	cgeabf		
18	25	$a_{6} a_{5} a_{4} a_{4} a_{3}$	1	cfacg		
18	25	$a_{5}^{2} d_{4}^{2} a_{3} a_{1}^{2}$	2	bgff		
18	25	$a_{6} a_{4}^{2} a_{4}^{2} a_{1}$	2	bcag		
19	24	$a_{8} a_{4}^{2} a_{3}^{2}$	4	hhb	A_{8}^{3}	$A_{9}^{2} D_{6}$
19	24	$a_{7} a_{6} a_{5} a_{2} a_{1}$	2	dfceb	A_{8}^{3}	$A_{9}^{2} D_{6}$
19	24	$a_{6} a_{6} a_{5} a_{4} a_{1}$	2	eeaha		${ }_{1} D_{7} E_{6}$
19	24 E	d_{4}^{6}	2160	d	$2 D_{4}^{6}$	
19	24 E	$a_{5}^{4} d_{4}$	48	aa	$2 A_{5}^{4} D_{4}$	
19	25	$d_{6} a_{4}^{2} a_{4} a_{2}^{2}$	2	addc		
19	25	$a_{8} a_{4} a_{4} a_{3} a_{2} a_{1}$	1	hghbfb		
19	25	$a_{8} a_{4}^{2} a_{2}^{2} a_{2} a_{1}$	2	hhgeb		
19	25	$a_{7} a_{6} a_{4} a_{2} a_{2} a_{1}$	1	dfheeb		
19	25	$d_{5}^{2} a_{4} a_{4} a_{2}^{2}$	2	bbec		
19	25	$a_{6} d_{5} d_{4} a_{4} a_{2}$	1	bcaec		
19	25	$a_{6} d_{5} a_{5} a_{3} a_{2} a_{1}$	1	bdabca		
19	25	$a_{7} a_{5}^{2} a_{3} a_{1}^{2}$	2	dcab		

19	25	$d_{5} a_{5}^{3} a_{1}$	3	aaa	
19	25	$a_{7} a_{5}^{2} a_{2}^{2} a_{1}^{2}$	2	dcdb	
19	25	$a_{7} a_{5} a_{4} a_{4} a_{2}$	1	achgc	
19	25	$a_{7} d_{4} a_{4} a_{4} a_{3}$	1	ccefb	
19	25	$a_{6}^{2} a_{5} a_{3} a_{2}$	2	fbad	
19	25	$a_{6} a_{5}^{3}$	6	cb	
19	25	$a_{6} a_{5}^{2} a_{5}$	2	ecb	
19	25	$a_{6} a_{5} a_{5} d_{4} a_{2}$	1	babcc	
19	25	$d_{5} a_{5}^{2} a_{4} a_{2}^{2}$	2	dadc	
20	20	$d_{5} a_{5}^{4}$	16	ad	$A_{5}^{4} D_{4}$
20	20	$d_{5} d_{4}^{5}$	120	dc	D_{4}^{6}
20	21	$a_{6}^{3} d_{4} a_{2}$	6	aaa	A_{6}^{4}
20	22	$a_{7} d_{5} a_{5} a_{3} a_{3} a_{1}$	2	bgecad	$A_{7}^{2} D_{5}^{2}$
20	22	$d_{5}^{2} a_{5}^{2} a_{3}$	8	bba	$A_{7}^{2} D_{5}^{2}$
20	22	$a_{7}^{2} a_{3}^{2} a_{3} a_{1}^{2}$	8	gdae	$A_{7}^{2} D_{5}^{2}$
20	23	$a_{7} a_{6}^{2} a_{1}^{2} a_{1}^{2}$	4	ecga	A_{8}^{3}
20	23	$a_{7}^{2} a_{4} a_{3} a_{1}^{2}$	4	faea	A_{8}^{3}
20	23	$a_{8} a_{5}^{2} a_{2}^{2} a_{1}^{2}$	4	dhba	A_{8}^{3}
20	24	$a_{7}^{2} d_{4} a_{1}^{4}$	8	gff	$A_{9}^{2} D_{6} \quad A_{9}^{2} D_{6}$
20	24	$d_{6} a_{5}^{2} a_{3}^{2}$	8	edd	$A_{9}^{2} D_{6} \quad A_{9}^{2} D_{6}$
20	24	$a_{8} a_{5}^{2} a_{3}$	4	dge	$A_{9}^{2} D_{6} \quad A_{9}^{2} D_{6}$
20	24	$d_{6} a_{5}^{2} a_{3}^{2}$	4	edc	$D_{6}^{4} \quad A_{9}^{2} D_{6}$
20	24	$d_{6} d_{4}^{3} a_{1}^{6}$	12	bcb	$D_{6}^{4} \quad D_{6}^{4}$
20	24	$a_{7} d_{5} a_{5} a_{3} a_{1} a_{1} a_{1}$	2	cgefecd	$A_{7}^{2} D_{5}^{2} A_{11} D_{7} E_{6}$
20	24	$d_{5} d_{5} a_{5}^{2} a_{1}^{2}$	4	bced	$A_{7}^{2} D_{5}^{2} A_{11} D_{7} E_{6}$
20	24	$a_{7} d_{5} d_{4} a_{3} a_{3}$	2	bgecf	$A_{7}^{2} D_{5}^{2} A_{11} D_{7} E_{6}$
20	24	$a_{6} a_{6} d_{5} a_{4}$	2	aaeb	$A_{7}^{2} D_{5}^{2} A_{11} D_{7} E_{6}$
20	24	$d_{5}^{2} a_{5}^{2} a_{1}^{2}$	8	cbc	$A_{7}^{2} D_{5}^{2} \quad E_{6}^{4}$
20	24	$a_{6}^{2} a_{5}^{2}$	4	ch	$A_{6}^{4} \quad A_{12}^{2}$
20	24	d_{4}^{6}	48	c	$D_{4}^{6} \quad D_{8}^{3}$
20	25	$a_{8} a_{5}^{2} a_{1}^{2} a_{1}^{2}$	2	dhfg	
20	25	$d_{6} a_{5}^{2} a_{3} a_{1}^{2} a_{1} a_{1}$	2	eddfeb	
20	25	$d_{6} a_{5} d_{4} a_{3}^{2} a_{1}$	2	ccded	
20	25	$a_{7} a_{7} a_{3} a_{2}^{2} a_{1}^{2}$	2	fggbg	
20	25	$a_{8} d_{4} a_{4} a_{3} a_{3}$	1	chbff	
20	25	$d_{5}^{2} a_{5} d_{4} a_{1}^{2} a_{1}$	2	bbecb	
20	25	$a_{7} d_{5} a_{4}^{2} a_{1} a_{1}$	2	cfbcf	
20	25	$a_{7} a_{6} a_{5} a_{3}$	1	ecfe	
20	25	$a_{6}^{2} d_{5} a_{3} a_{1}^{2}$	2	aedd	
20	25	$a_{7} d_{5} a_{4} a_{3} a_{3}$	1	bfbfc	
20	25	$a_{7} a_{6} a_{5} a_{2} a_{1} a_{1} a_{1}$	1	echbgfe	
20	25	$a_{7} a_{6} a_{4} a_{4} a_{1}$	1	ecbad	
20	25	$a_{6}^{2} a_{6} a_{3} a_{1}$	2	abee	

20	25	$a_{6} a_{6} a_{6} a_{3} a_{1}$	1	caceg	
20	25	$a_{6} d_{5} a_{5} a_{4} a_{2} a_{1}$	1	aeebad	
20	25	$a_{6} a_{6} a_{5} d_{4} a_{1}$	1	abfhd	
20	25	$a_{7} a_{5}^{2} a_{4} a_{1}^{2}$	2	ehag	
20	25	$d_{5} a_{5} a_{5} a_{4}^{2}$	2	fbdb	
21	24	$a_{8} a_{6} a_{5} a_{2} a_{1}$	2	ehbga	$A_{8}^{3} A_{11} D_{7} E_{6}$
21	24	$a_{7}^{2} a_{4}^{2}$	4	cg	$A_{7}^{2} D_{5}^{2} \quad A_{12}^{2}$
21	25	$d_{6} a_{6} a_{4} a_{4} a_{2}$	1	cdcdd	
21	25	$a_{8} a_{6} a_{4} a_{3} a_{1}$	1	eggbb	
21	25	$a_{7} a_{6} d_{5} a_{2} a_{1} a_{1}$	1	aecfba	
21	25	$a_{6} d_{5} d_{5} a_{4} a_{2}$	1	baacc	
21	25	$a_{7} d_{5} a_{5} a_{4} a_{1}$	1	acbdb	
21	25	$a_{7} a_{6} a_{5} a_{4}$	1	cgbe	
22	21	$a_{7} d_{5}^{2} d_{4} a_{3}$	4	beac	$A_{7}^{2} D_{5}^{2}$
22	22	$a_{8} a_{6}^{2} a_{3}$	4	bba	A_{8}^{3}
22	23	$a_{8} a_{7} a_{5} a_{1}^{2} a_{1}$	2	cgeac	$A_{9}^{2} D_{6}$
22	23	$a_{8} a_{6} d_{5} a_{2} a_{1}^{2}$	2	abhba	$A_{9}^{2} D_{6}$
22	23	$a_{7} d_{6} a_{5} a_{3} a_{1}^{2} a_{1}$	2	dgdfab	$A_{9}^{2} D_{6}$
22	23	$a_{9} a_{5} a_{4}^{2} a_{1}^{2}$	4	fgba	$A_{9}^{2} D_{6}$
22	23	$d_{6} d_{5} a_{5}^{2} a_{1}^{2}$	4	bded	D_{6}^{4}
22	23	$d_{5}^{4} a_{1}^{2}$	48	bd	D_{6}^{4}
22	24	$a_{9} a_{5} d_{4} a_{3} a_{1} a_{1}$	2	gfffeb	$A_{9}^{2} D_{6} A_{11} D_{7} E_{6}$
22	24	$a_{7} d_{6} a_{5} a_{3} a_{1}$	2	dgcfe	$A_{9}^{2} D_{6} A_{11} D_{7} E_{6}$
22	24	$a_{8} a_{6} d_{5} a_{2}$	2	abhb	$A_{9}^{2} D_{6} A_{11} D_{7} E_{6}$
22	24	$d_{6} d_{5} a_{5}^{2}$	4	bdc	$D_{6}^{4} A_{11} D_{7} E_{6}$
22	24	d_{5}^{4}	48	b	$D_{6}^{4} \quad E_{6}^{4}$
22	24	$a_{8} a_{7} a_{4} a_{3}$	2	chbg	$A_{8}^{3} \quad A_{12}^{2}$
22	24	$a_{7} d_{5}^{2} a_{3}^{2}$	4	eed	$A_{7}^{2} D_{5}^{2} \quad D_{8}^{3}$
22	24	$a_{7}^{2} d_{4}^{2}$	8	fd	$A_{7}^{2} D_{5}^{2} \quad D_{8}^{3}$
22	24 E	a_{6}^{4}	24	a	$2 A_{6}^{4}$
22	25	$e_{6} d_{4}^{2} a_{3}^{3}$	12	cbc	
22	25	$e_{6} a_{5} a_{4}^{2} a_{3} a_{1}$	2	dbace	
22	25	$e_{6} a_{5}^{2} a_{2}^{4}$	8	fba	
22	25	$d_{7} a_{3}^{6}$	24	ge	
22	25	$a_{9} a_{5} d_{4} a_{2}^{2}$	2	gfgb	
22	25	$a_{9} a_{5} a_{4} a_{3} a_{1} a_{1}$	1	ffbgbc	
22	25	$a_{9} a_{5} a_{3}^{2} a_{3}$	2	fggf	
22	25	$a_{8} a_{7} a_{4} a_{2} a_{1}$	1	chbbc	
22	25	$d_{6} d_{5} a_{5} a_{3} a_{3} a_{1}$	1	bdcdbe	
22	25	$a_{7} d_{6} a_{3}^{2} a_{3} a_{1}^{2}$	2	dgfeb	
22	25	$a_{8} d_{5} a_{5} a_{3} a_{1}$	1	agffe	
22	25	$a_{8} d_{5} a_{5} a_{2} a_{2} a_{1}$	1	ahfbab	

22	25	$a_{8} a_{6} a_{5} a_{3}$	1	bbgg	
22	25	$a_{8} a_{6} a_{5} a_{3}$	1	cbef	
22	25	$d_{6} a_{5}^{2} d_{4} a_{3}$	2	bcdb	
22	25	$d_{6} a_{5}^{3} a_{1}^{3}$	6	cdb	
22	25	$a_{8} a_{5}^{2} d_{4}$	2	bfe	
22	25	$a_{8} a_{6} a_{4} a_{4} a_{1}$	1	cbbbc	
22	25	$a_{7} a_{7} a_{5} a_{3} a_{1}$	1	ghefc	
22	25	$d_{5}^{3} a_{3}^{3}$	6	ec	
22	25	$a_{7} d_{5} d_{4}^{2} a_{3}$	2	bffc	
23	24	$a_{8}^{2} a_{3}^{2}$	4	hb	$A_{9}^{2} D_{6}$

24	25	$a_{7}^{2} d_{5} a_{4}$	2	cea		
25	24	$a_{10} a_{6} a_{5} a_{1}$	2	hgbb	$A_{11} D_{7} E_{6}$	A_{12}^{2}
25	24	$a_{8} a_{7}^{2}$	4	eb	A_{8}^{3}	$A_{15} D_{9}$
25	24 E	$a_{7}^{2} d_{5}^{2}$	8	aa	$2 A_{7}^{2} D_{5}^{2}$	
25	25	$d_{7} a_{6} a_{6} a_{2} a_{2}$	1	adedc		
25	25	$a_{10} a_{6} a_{4} a_{2} a_{1}$	1	hgcea		
25	25	$e_{6} a_{6} d_{5} a_{4} a_{2}$	1	acaea		
25	25	$e_{6} a_{6}^{2} d_{4}$	2	bca		
25	25	$a_{7} e_{6} a_{5} a_{4} a_{1}$	1	acaeb		
25	25	$a_{10} a_{5} a_{4} a_{4}$	1	gbcb		
25	25	$a_{8} d_{6} a_{6} a_{2}$	1	dbfc		
25	25	$a_{9} a_{6} d_{5} a_{2} a_{1}$	1	bfbeb		
25	25	$a_{9} a_{6}^{2} a_{2}$	2	agc		
25	25	$a_{9} d_{5} a_{5} a_{4}$	1	bbbe		
26	19	$a_{7}^{2} d_{6} d_{5}$	4	dae	$A_{7}^{2} D_{5}^{2}$	
26	21	$a_{9} d_{6} a_{5} d_{4}$	2	cfea	$A_{9}^{2} D_{6}$	
26	23	$a_{9} d_{6} d_{5} a_{1}^{2} a_{1}$	2	cffab	$A_{11} D_{7} E_{6}$	
26	23	$a_{10} a_{6} d_{5} a_{1}^{2}$	2	bbga	$A_{11} D_{7} E_{6}$	
26	23	$a_{8} e_{6} a_{6} a_{2} a_{1}^{2}$	2	ahaba	$A_{11} D_{7} E_{6}$	
26	23	$d_{7} a_{7} d_{5} a_{3} a_{1}^{2}$	2	edeea	$A_{11} D_{7} E_{6}$	
26	23	$e_{6} d_{6} a_{5}^{2} a_{1}^{2}$	4	dbea	$A_{11} D_{7} E_{6}$	
26	23	$e_{6} d_{5}^{3} a_{1}^{2}$	12	bce	E_{6}^{4}	
26	24	$a_{9}^{2} a_{2}^{2}$	8	ga	A_{12}^{2}	A_{12}^{2}
26	24	$d_{7} a_{7} d_{5} a_{3}$	2	eddc	$A_{11} D_{7} E_{6}$	D_{8}^{3}
26	24	$a_{9} d_{6} a_{5} a_{3}$	2	dfbd	$A_{9}^{2} D_{6}$	$A_{15} D_{9}$
26	24	$a_{9} a_{8} a_{5}$	2	ebc	$A_{9}^{2} D_{6}$	$A_{15} D_{9}$
26	24	$a_{7}^{2} d_{5}^{2}$	8	ce	$A_{7}^{2} D_{5}^{2}$	$D_{10} E_{7}^{2}$
26	25	$d_{7} d_{5}^{2} a_{3} a_{3}$	2	bdba		
26	25	$a_{10} d_{5} a_{5} a_{2} a_{1}$	1	bgbbb		
26	25	$a_{7} d_{6}^{2} a_{3}$	2	bcc		
26	25	$a_{9} d_{6} d_{4} a_{3} a_{1}$	1	cfbeb		
26	25	$a_{9} a_{7} a_{6}$	1	egb		
26	25	$a_{9} a_{7} a_{6}$	1	efb		
26	25	$a_{7} d_{6} d_{5} a_{5} a_{1}$	1	dffeb		
27	24	$a_{8}^{2} a_{7}$	4	ga	A_{8}^{3}	$A_{17} E_{7}$
27	25	$a_{8} d_{7} a_{4} a_{4}$	1	dbde		
27	25	$a_{9}^{2} a_{3} a_{1}^{2}$	2	baa		
27	25	$a_{10} a_{6}^{2} a_{1}$	2	eca		
28	20	$a_{9}^{2} d_{5} a_{1}^{2}$	4	fac	$A_{9}^{2} D_{6}$	
28	20	$d_{6}^{3} d_{5} a_{1}^{2}$	6	bdb	D_{6}^{4}	

28	22	$a_{9} e_{6} d_{5} a_{3} a_{1}$	2	cfead	$A_{11} D_{7} E_{6}$	
28	22	$a_{9} d_{7} a_{5} a_{3}$	2	dfca	$A_{11} D_{7} E_{6}$	
28	22	$a_{11} d_{5} a_{5} a_{3} a_{1}$	2	fbeae	$A_{11} D_{7} E_{6}$	
28	22	$e_{6}^{2} a_{5}^{2} a_{3}$	8	bae	E_{6}^{4}	
28	23	$a_{10} a_{9} a_{2} a_{1}^{2} a_{1}$	2	bgaaf	A_{12}^{2}	
28	23	$a_{11} a_{7} a_{4} a_{1}^{2}$	2	gcaa	A_{12}^{2}	
28	24	$d_{8} d_{4}^{4}$	8	cb	D_{8}^{3}	D_{8}^{3}
28	24	$a_{9} d_{7} a_{5} a_{1} a_{1}$	2	efede	$A_{11} D_{7} E_{6}$	$A_{15} D_{9}$
28	24	$a_{11} d_{5} d_{4} a_{3}$	2	fbeb	$A_{11} D_{7} E_{6}$	$A_{15} D_{9}$
28	24	$a_{9} a_{7} d_{6} a_{1}$	2	fefc	$A_{9}^{2} D_{6}$	$A_{17} E_{7}$
28	24	$a_{9} a_{7} d_{6} a_{1}$	2	fbfc	$A_{9}^{2} D_{6}$	$D_{10} E_{7}^{2}$
28	24	$d_{6}^{2} d_{6} d_{4} a_{1}^{2}$	2	bbbb	D_{6}^{4}	$D_{10} E_{7}^{2}$
28	24 E	a_{8}^{3}	12	a	$2 A_{8}^{3}$	
28	25	$d_{8} a_{5}^{2} a_{5} a_{1}$	2	ddbe		
28	25	$a_{11} a_{7} a_{2}^{2} a_{1}^{2}$	2	gbaf		
28	25	$a_{11} d_{5} a_{4} a_{3}$	1	fcbb		
28	25	$e_{6} d_{6} d_{5} a_{5} a_{1}$	1	cceab		
28	25	$d_{7} d_{6} a_{5} a_{5}$	1	cdcb		
28	25	$a_{8} a_{7} e_{6} a_{1} a_{1}$	1	aeedc		
28	25	$a_{9} e_{6} a_{4}^{2} a_{1}$	2	cgbc		
28	25	$a_{10} a_{8} a_{4} a_{1}$	1	bbae		
28	25	$a_{9}^{2} a_{4} a_{1}^{2}$	2	gaf		
28	25	$a_{9} a_{8} d_{5} a_{1}$,	fbcd		
29	24	$a_{11} a_{8} a_{3}$	2	bca	A_{12}^{2}	$A_{15} D_{9}$
29	25	$a_{10} d_{6} a_{6}$	1	fbe		
30	21	$d_{7} a_{7} e_{6} d_{4}$	2	cada	$A_{11} D_{7} E_{6}$	
30	22	$a_{10}^{2} a_{3}$	4	ba	A_{12}^{2}	
30	23	$d_{7}^{2} a_{7} a_{1}^{2}$	4	dcd	D_{8}^{3}	
30	23	$d_{8} a_{7}^{2} a_{1}^{2}$	4	ddd	D_{8}^{3}	
30	24	$d_{8} a_{7}^{2}$	4	dd	D_{8}^{3}	$A_{15} D_{9}$
30	24	$a_{11} d_{6} a_{5} a_{1}$	2	fbba	$A_{11} D_{7} E_{6}$	$A_{17} E_{7}$
30	24	$a_{10} e_{6} a_{6}$	2	agb	$A_{11} D_{7} E_{6}$	$A_{17} E_{7}$
30	24	$d_{7} a_{7} e_{6} a_{3}$	2	caed	$A_{11} D_{7} E_{6}$	$D_{10} E_{7}^{2}$
30	24	$a_{9} e_{6} d_{6} a_{1}$	2	efea	$A_{11} D_{7} E_{6}$	$D_{10} E_{7}^{2}$
30	24	$e_{6}^{2} d_{5}^{2}$	8	ca	E_{6}^{4}	$D_{10} E_{7}^{2}$
30	25	$d_{8} a_{7} d_{5} a_{3}$	1	cbdd		
30	25	$a_{10} a_{9} a_{4}$	1	bca		
30	25	$d_{7} a_{7} d_{5}^{2}$,	cae		
31	24	$a_{12} a_{7} a_{4}$	2	gbf	A_{12}^{2}	$A_{17} E_{7}$
31	24 E	d_{6}^{4}	24	d	$2 D_{6}^{4}$	
31	24 E	$a_{9}^{2} d_{6}$	4	aa	$2 A_{9}^{2} D_{6}$	

$\left.\begin{array}{lrrrrrr}31 & 25 & a_{12} a_{6} a_{5} & 1 & \text { gba } & & \\ 31 & 25 & a_{8} e_{6}^{2} a_{2}^{2} & 2 & \text { aaa } & & \\ 31 & 25 & a_{10} e_{6} d_{5} a_{2} & 1 & \text { ebba } & & \\ 31 & 25 & a_{11} a_{8} d_{4} & 1 & \text { bea } & & \\ 31 & 25 & a_{11} a_{7} d_{5} & 1 & \text { bba } & & \\ 31 & 25 & a_{8} a_{8} d_{7} & 1 & \text { dcb } & & \\ 31 & 25 & a_{8}^{2} d_{7} & 2 & \text { ca } & & \\ & & & & & \\ 32 & 18 & a_{9}^{2} d_{7} & 4 & \text { da } & A_{9}^{2} D_{6} & \\ 32 & 18 & d_{7} d_{6}^{3} & 6 & \text { db } & D_{6}^{4} & \\ 32 & 20 & a_{11} e_{6} d_{5} a_{3} & 2 & \text { ebaa } & A_{11} D_{7} E_{6} & \\ 32 & 21 & a_{12} a_{8} d_{4} & 2 & \text { bba } & A_{12}^{2} & \\ 32 & 22 & d_{8} d_{6}^{2} a_{3} a_{1}^{2} & 2 & \text { bbdb } & D_{8}^{3} & \\ 32 & 24 & d_{8} d_{6}^{2} a_{1}^{2} a_{1}^{2} & d_{6}^{4} & 8 & \text { bbba } & D_{8}^{3}\end{array} D_{10} E_{7}^{2}\right)$

37	24E	e_{6}^{4}	48	e	$2 E_{6}^{4}$	
37	24 E	$a_{11} d_{7} e_{6}$	2		$2 A_{11} D_{7} E_{6}$	
37	25	$a_{13} e_{6} a_{4} a_{1}$	1	baba		
38	17	$a_{11} d_{8} e_{6}$	2	dae	$A_{11} D_{7} E_{6}$	
38	21	$a_{11} d_{9} d_{4}$	2	dea	$A_{15} D_{9}$	
38	23	$d_{9} e_{6}^{2} a_{1}^{2}$	4	add	$D_{10} E_{7}^{2}$	
38	23	$a_{9} e_{7} e_{6} a_{1}^{2}$	2	aecd	$D_{10} E_{7}^{2}$	
38	23	$a_{14} e_{6} a_{2} a_{1}^{2}$	2	bfaa	$A_{17} E_{7}$	
38	23	$a_{11} e_{7} a_{5} a_{1}^{2}$	2	cbba	$A_{17} E_{7}$	
38	24	$a_{11} d_{9} a_{3}$	2	eeb	$A_{15} D_{9}$	D_{12}^{2}
38	24	$a_{12} a_{11}$	2	af	A_{12}^{2}	A_{24}
38	25	$d_{9} d_{7} a_{7}$	1	cdb		
38	25	$a_{11} d_{8} d_{5}$	1	dbc		
40	20	$a_{15} d_{5} d_{5}$	2	bba	$A_{15} D_{9}$	
40	22	$d_{8} e_{7} d_{6} a_{3} a_{1}$	1	bbada	$D_{10} E_{7}^{2}$	
40	22	$d_{10} d_{6}^{2} a_{3}$	2	bbd	$D_{10} E_{7}^{2}$	
40	22	$a_{15} d_{6} a_{3}$	2	bca	$A_{17} E_{7}$	
40	24	$d_{10} d_{6}^{2} a_{1}^{2}$	2	bba	$D_{10} E_{7}^{2}$	D_{12}^{2}
40	24 E	a_{12}^{2}	4	a	$2 A_{12}^{2}$	
40	25	$d_{10} a_{9} a_{5}$	1	dbb		
40	25	$a_{15} d_{5} a_{4}$	1	bca		
40	25	$e_{7} e_{6}^{2} a_{5}$	2	aaa		
40	25	$a_{9} e_{7} d_{7}$	1	aca		
40	25	$a_{11} e_{7} d_{5} a_{1}$	1	aeba		
40	25	$a_{14} a_{9}$	1	ac		
41	24	$a_{15} a_{8}$	2	ac	$A_{15} D_{9}$	A_{24}
42	21	$a_{13} e_{7} d_{4}$	2	aba	$A_{17} E_{7}$	
43	24	$a_{16} a_{7}$	2	fa	$A_{17} E_{7}$	A_{24}
43	24 E	d_{8}^{3}	6	d	$2 D_{8}^{3}$	
44	16	$d_{9} d_{8}^{2}$	2	db	D_{8}^{3}	
44	20	$e_{7}^{2} d_{6} d_{5}$	2	bad	$D_{10} E_{7}^{2}$	
44	24	$d_{8}^{2} d_{8}$	2	ba	D_{8}^{3}	$D_{16} E_{8}$
44	24	d_{8}^{3}	6	a	D_{8}^{3}	E_{8}^{3}
46	23	$d_{11} a_{11} a_{1}^{2}$	2	ebd	D_{12}^{2}	
46	24	$a_{15} d_{8}$	2	cb	$A_{15} D_{9}$	$D_{16} E_{8}$
46	25	$d_{11} a_{7} e_{6}$	1	dab		

47	25	$a_{16} d_{7}$	1	ca		
48	18	$d_{10} e_{7} d_{7} a_{1}$	1	abda	$D_{10} E_{7}^{2}$	
48	18	$a_{17} d_{7} a_{1}$	2	cac	$A_{17} E_{7}$	
48	22	$d_{10}^{2} a_{3} a_{1}^{2}$	2	bdb	D_{12}^{2}	
48	24	$a_{15} e_{7} a_{1}$	2	bcc	$A_{17} E_{7}$	$D_{16} E_{8}$
48	24	$d_{10} e_{7} d_{6} a_{1}$	1	abaa	$D_{10} E_{7}^{2}$	$D_{16} E_{8}$
48	24	$d_{8} e_{7}^{2} a_{1}^{2}$	2	aaa	$D_{10} E_{7}^{2}$	$D_{16} E_{8}$
48	25	$a_{13} d_{10} a_{1}$	1	bcb		
49	24 E	$a_{15} d_{9}$	2	aa	$2 A_{15} D_{9}$	
50	15	$a_{15} d_{10}$	2	ba	$A_{15} D_{9}$	
52	20	$d_{12} d_{8} d_{5}$	1	bad	D_{12}^{2}	
52	23	$a_{19} a_{4} a_{1}^{2}$	2	caa	A_{24}	
52	24	$d_{12} d_{8} d_{4}$	1	bab	D_{12}^{2}	$D_{16} E_{8}$
55	24 E	$d_{10} e_{7}^{2}$	2	dd	$2 D_{10} E_{7}^{2}$	
55	24 E	$a_{17} e_{7}$	2	aa	$2 A_{17} E_{7}$	
55	25	$a_{19} d_{5}$	1	aa		
56	14	$d_{11} e_{7}^{2}$	2	da	$D_{10} E_{7}^{2}$	
56	21	$a_{20} d_{4}$	2	aa	A_{24}	
58	25	$e_{8} a_{11} e_{6}$	1	aac		
58	25	$a_{11} d_{13}$	1	bb		
60	24	$e_{8} d_{8}^{2}$	2	aa	E_{8}^{3}	$D_{16} E_{8}$
62	23	$a_{15} e_{8} a_{1}^{2}$	2	cbd	$D_{16} E_{8}$	
64	22	$e_{8} e_{7}^{2} a_{3}$	2	aae	E_{8}^{3}	
64	22	$d_{14} e_{7} a_{3} a_{1}$	1	abda	$D_{16} E_{8}$	
67	24E	d_{12}^{2}	2	d	$2 D_{12}^{2}$	
68	12	$d_{13} d_{12}$	1	db	D_{12}^{2}	
68	20	$d_{12} e_{8} d_{5}$	1	aad	$D_{16} E_{8}$	
68	24	d_{12}^{2}	2	b	D_{12}^{2}	D_{24}
71	24	a_{23}	2	a	A_{24}	D_{24}

76	16 E	$d_{16} d_{9}$	1	bd	$D_{16} E_{8}$	
76	16 E	$d_{9} e_{8}^{2}$	2	ea	E_{8}^{3}	
76	24	$d_{16} d_{8}$	1	ba	$D_{16} E_{8}$	D_{24}
76	24 E	a_{24}	2	a	$2 A_{24}$	
91	24 E	e_{8}^{3}	$d_{16} e_{8}$	6	e	$2 E_{8}^{3}$
91	24 E	$d_{17} e_{8}$	1	dd	$2 D_{16} E_{8}$	
92	8 E	$d_{20} d_{5}$	1	da	$D_{16} E_{8}$	
100	20	d_{24}	1	ad	D_{24}	
139	24 E		1	d	$2 D_{24}$	
140	0 E	d_{25}	1	d	D_{24}	

References.

[A] Allcock, Daniel. Recognizing equivalence of vectors in the Leech lattice. Preprint 1996, available from http://www.math.utah.edu/~allcock
[B-V] Bacher, R.; Venkov, B. B. Reseaux entiers unimodulaires sans racines en dimension 27 et 28 , Preprint 322, Inst. Fourier, Grenoble 1996. Available from http://www-fourier.ujf-grenoble.fr/PREP/html/a332/a332.html
[B] Borcherds, Richard E. The Leech lattice and other lattices, 1985 PhD thesis, preprint math.NT/9911195
[B85] Borcherds, R. E. The Leech lattice. Proc. Roy. Soc. London Ser. A 398 (1985), no. 1815, 365-376.
[B90] Borcherds, Richard E. Lattices like the Leech lattice. J. Algebra 130 (1990), no. 1, 219-234.
[C85] Conway, J. H. The automorphism group of the 26-dimensional even unimodular Lorentzian lattice. J. Algebra 80 (1983), no. 1, 159-163
[C-P-S] Conway, J. H.; Parker, R. A.; Sloane, N. J. A. The covering radius of the Leech lattice. Proc. Roy. Soc. London Ser. A 380 (1982), no. 1779, 261-290
[C-S] Conway, J. H.; Sloane, N. J. A. Sphere packings, lattices and groups. Third edition. Grundlehren der Mathematischen Wissenschaften 290. Springer-Verlag, New York, 1999. ISBN: 0-387-98585-9
[C-S98] Conway, J. H.; Sloane, N. J. A. A Note on Optimal Unimodular Lattices J. Number Theory, 72 (1998), pp. 357-362.
[E] Eichler, M. "Quadratische Formen und Orthogonal gruppen", Springer-Verlag, 1952.
[E-G] Elkies, Noam D.; Gross, Benedict H. The exceptional cone and the Leech lattice. Internat. Math. Res. Notices 1996, no. 14, 665-698.
[K] Kneser, Martin. Klassenzahlen definiter quadratischer Formen. Arch. Math. 8 (1957), 241-250.
[N] Niemeier, H.-V. Definite quadratische Formen der Dimension 24 und Diskriminante 1, J. Number theory 5 (1973), 142-178.
[S-V] Scharlau, Rudolf; Venkov, Boris B. The genus of the Barnes-Wall lattice. Comment. Math. Helv. 69 (1994), no. 2, 322-333.
[V75] Vinberg, È. B. Some arithmetical discrete groups in Lobačevskiĭ spaces. Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973), pp. 323-348. Oxford Univ. Press, Bombay, 1975.
[W] Watson, G. N. The problem of the square pyramid. Messenger Math. 48 (1919), 1-22.

[^0]: * Supported by NSF grant DMS-9970611.

