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1. Classification of positive norm vectors.

In this paper we describe an algorithm for classifying orbits of vectors in Lorentzian
lattices. The main point of this is that isomorphism classes of positive definite lattices
in some genus often correspond to orbits of vectors in some Lorentzian lattice, so we
can classify some positive definite lattices. Section 1 gives an overview of this algorithm,
and in section 2 we describe this algorithm more precisely for the case of II1,25, and as
an application we give the classification of the 665 25-dimensional unimodular positive
definite lattices and the 121 even 25 dimensional positive definite lattices of determinant
2 (see tables 1 and 2). In section 3 we use this algorithm to show that there is a unique 26
dimensional unimodular positive definite lattice with no roots. Most of the results of this
paper are taken from the unpublished manuscript [B], which contains more details and
examples. For general facts about lattices used in this paper see [C-S], especially chapters
15–18 and 23–28.

Some previous enumerations of unimodular lattices include Kneser’s list of the uni-
modular lattices of dimension at most 16 [K], Conway and Sloane’s extension of this to
dimensions at most 23 [C-S chapter 16], and Niemeier’s enumeration [N] of the even 24
dimensional ones. All of these used some variation of Kneser’s neighborhood method [K],
but this becomes very hard to use for odd lattices of dimension 24, and seems impractical
for dimension at least 25 (at least for hand calculations; computers could probably push
this further). The method used in this paper works well up to 25 dimensions, could be
pushed to work for 26 dimensions, and does not seem to work at all beyond this.

We use the “(+,−,−, · · · ,−)” sign convention for Lorentzian lattices L, so that the
reflection we are interested in are (usually) those of negative norm vectors of L. We fix
one of the two cones of positive norm vectors and call it the positive cone. The norm 1
vectors in the positive cone form a copy of hyperbolic space in the usual way. We assume
that we are given a group G of automorphisms of a Lorentzian lattice L, such that G is
the semidirect product of a normal subgroup R generated by reflections of some negative
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norm vectors, and a group Aut(D) of automorphisms preserving a fundamental domain
domain D of R in hyperbolic space. We assume that all elements of u ∈ L having non-
negative inner product with all simple roots of R have norm (u, u) at least 0 (this is just
to eliminate some degenerate cases). If L is a lattice then L(−1) is the lattice L with all
norms multiplied by −1. We use Conway’s convention of using small letters an, dn, en for
the spherical Dynkin diagrams, and capital letters An, Dn, En for the corresponding affine
Dynkin diagrams. The Weyl vector of a root system is the vector ρ such that (ρ, r) = −r2/2
for any simple root r.

We want to find the orbits of positive norm vectors of the positive cone of L under
the group G. Every positive norm vector of the positive cone of L is conjugate under R to
a unique vector in D, so it is enough to classify orbits of vectors u in D under Aut(D).

The algorithm works by trying to reduce a vector u of D to a vector of smaller norm
by adding a root of u⊥ to u. There are three possible cases we need to consider:
(1) There are no roots in u⊥.
(2) There is a root r in u⊥ such that u + r ∈ D.
(3) There is at least one root in u⊥, but if r is a root in u⊥ then u + r is never in D.

We try to deal with these three cases as follows.
If there are no roots in u⊥, then we assume that D contains a non-zero vector w such

that (r, w) ≤ (r, u) for any simple root r and any vector u ∈ L in the interior of D. Then
u−w has inner product at least 0 with all simple roots, so it also lies in D and has smaller
norm than u unless u is a multiple of w and w2 = 0. So we can reduce u to a vector
of smaller norm in D. The existence of a vector w with these properties is a very strong
condition on the lattice L.
Example 1.1. The lattices II1,9 and II1,17 have properties 1 and 2; this follows easily
from Vinberg’s description [V85] of their automorphism groups. Conway showed that the
lattice II1,25 also has these properties; see the next section. The lattices II1,8n+1 for n ≥ 4
do not have these properties; but the Minkowski-Siegel mass formula shows that these
lattices have such vast numbers of orbits of positive norm vectors that there seems little
point in classifying them.
Example 1.2. It follows from [B90] that several lattices that are fixed points of finite
groups acting on II1,25 also have a suitable vector w. For example the lattice II1,1 ⊕
BW (−1), where BW is the Barnes-Wall lattice, has this property. Some of the norm 0
vectors correspond to the 24 lattices in the genus of BW classified in [S-V]; the remaining
orbits of norm 0 vectors should not be hard to find.
Example 1.3. Take L to be the lattice I1,9 and R to be the group generated by reflections
of norm −1 vectors. (This has infinite index in the full reflection group.) Then the lattice
has a Weyl vector for the reflection group as in [B90], so we can apply the algorithm to
this reflection group. (However it is not entirely clear what the point of doing this is, as it
is easier to use the full reflection group of the lattice!)

Next we look at the second case when u⊥ has a root r such that v = u − r is in D.
Then −r is in the fundamental domain of the finite reflection group of u⊥, so r is a sum
of the simple roots of u⊥ with the usual multiplicities.

For u in D we let Ri(u) be the simple roots u of D that have inner product i(r, r)/2
with u, so Ri(u) is empty for i < 0 and R0(u) is the Dynkin diagram of u⊥. We write
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S(u) for R0(u)∪R1(u)∪R2(u). Then given S(v) we can find all vectors u of D that come
from v as in (3) above, and S(u) is contained in S(v). By keeping track of the action of
Aut(D, v) on S(v) for vectors v of D we can find all possible vectors v constructed in this
way from v, together with the sets S(u).

Finally, the third case, when there is at least one root in u⊥, but if r is a root in u⊥

then v − r is never in D, has to be dealt with separately for each lattice L. In practice it
does not present too much difficulty for lattices with a vector w as in case 1. See the next
section for the example of L = II1,25.

The following two lemmas will be used later to prove some properties of the root
systems of 25 dimensional lattices.

Lemma 1.4. Suppose that reflection in u⊥ is an automorphism of L. Then there is an
automorphism σ of L (of order 1 or 2) with the following properties:
(1) σ fixes D.
(2) If σ fixes w, then w is a linear combination of u and the roots of L in u⊥.

Proof. There is an automorphism of L acting as 1 on u and as −1 on u⊥, given by the
product of −1 and reflection in u⊥. As this automorphism fixes u ∈ D, we can multiply
it by some (unique) element of the reflection group of u⊥ so that the product σ fixes D.
The element σ acts as −1 on the space orthogonal to u, z, and all roots of R in u⊥, which
implies assertion (2) of the lemma 1.4.

Lemma 1.5. Suppose that there is a norm 0 vector z such that (z, u) = 2, where u is a
vector in D. Then there is an automorphism σ of L with the following properties:
(1) σ fixes D.
(2) If σ fixes w, then w is a linear combination of u, z, and the roots of L in u⊥.

Proof. If M is the lattice spanned by z and u then M has the property that all
elements of M ′/M have order 1 or 2. So there is an automorphism of L acting as 1 on M
and −1 on M⊥. The result now follows as in the proof of lemma 1.4. This proves lemma
1.5.

Remark. It is usually easy to classify all orbits of negative norm vectors u in
Lorentzian lattices, because this is closely related to the classification of the indefinite
lattices u⊥, and by Eichler’s theorem [E] indefinite lattices in dimension at least 3 are
classified by the spinor genus (which in practice is often determined by the genus). For
example, it is easy to give a proof along these lines that if n > 0 and m > 0 then II1,8n+1

has a unique orbit of primitive vectors of norm −2m.

2. Vectors in the lattice II1,25.

In this section we specialize the algorithm of the previous section to the lattice II1,25.
Note that orbits norm 4 vectors u of II1,25 correspond naturally to 25 dimensional

positive definite unimodular lattices, because u⊥ is isomorphic to the lattice of even vectors
in a 25 dimensional unimodular negative definite lattice. In particular we can classify the
665 positive definite 25 dimensional unimodular lattices, as in table 2; this is the main
application of the algorithm of the previous section. Similarly norm 2 vectors of II1,25

correspond to 25 dimensional even positive definite lattices of determinant 2. (Another
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interpretation of the vectors of II25,1 of norm at least −2 is that they are the roots of the
fake monster Lie algebra.)

First we have to show the existence of a vector w satisfying the property of section 1.
This follows from Conway’s theorem [C85] stating that the reflection group of II1,25 has
a Weyl vector w of norm 0, with the property that (w, r) = 1 for all simple roots r of the
reflection group. Conway’s proof depends on the rather hard classification of the “deep
holes” in the Leech lattice in [C-P-S]; there is a proof avoiding these long calculations in
[B85]. It seems likely that 26 is the largest possible dimension of a lattice with a suitable
vector w.

Next we have to classify the vectors u of D such that u⊥ has roots but u + r is
not in D for any root r ∈ u⊥. One obvious way this can happen is if u has norm 0, so
we have to classify the norm 0 vectors in II1,25. In any lattice L = II8n+1,1 the orbits
of primitive norm 0 vectors z correspond to the 8n-dimensional even negative definite
unimodular lattices z⊥/z. So the orbits of primitive norm 0 vectors of II1,25 correspond
to the 24 Niemeier lattices ([C-S]). The non-primitive norm 0 vectors are of course either
0 or a positive integer multiple of a primitive norm 0 vector, so this gives the classification
of all orbits of norm 0 vectors in II1,25; see table 0.

Next suppose that u is a positive norm vector of D with (u, u) = 2n and r is a highest
root in u⊥ such that u− r is not in D. Then u− r is conjugate under the reflection group
to some vector v such that (v, u) < (u− r, u). But (v, u)2 ≥ (u, u)(v, v) = 2n(2n− 2) and
(v, u) < (u− r, u) = 2n, so (v, u) = 2n− 1. So if z = u− v then (z, u) = 1 and z2 = 0. If
we put z′ = u− nz then z and z′ are norm 0 vectors with (z, z′) = 1 and u = nz + z′. So
II1,25 = B ⊕ 〈z, z′〉 for some Niemeier lattice B. If this Niemeier lattice has roots, then
adding some of these roots to r gives a vector in D by the previous argument, so B must
be the Leech lattice so we can assume that z is in the orbit of w. If n > 1 then there are no
roots in u⊥, and if n < 1 then (u, u) ≤ 0, so we must have n = 1. So the only possibility
for u is that it is a norm 2 vector in the orbit of w +w′ = 2w + r, where r is a simple root.

Putting everything together gives the following list of the vectors u ∈ D such that u⊥

has roots but u− r is not in D for any root r ∈ u⊥:
1. The zero vector.
2. The norm 0 vectors nz for n ≥ 1 and z a primitive norm 0 vector of D corresponding

to some Niemeier lattice other than the Leech lattice. The vectors for a given Niemeier
lattice and a given value of n are all conjugate under Aut(D).

3. The norm 2 vectors of the form 2w + r for a simple root r of D. These form one orbit
under Aut(D).

Lemma 2.1. Suppose u, v ∈ D, u2 = 2n, v2 = 2(n− 1) and (v, u) = 2n. Then

R0(u) ⊆ R0(v) ∪R1(v) ∪R2(v) = S(v)
Ri(u) ⊆ R0(v) ∪R1(v) ∪ · · · ∪Ri(v) for i ≥ 1.

Proof. The vector v is in D, so v = u + r for some highest root r of u⊥. The vector r
has inner product 0, 1, or 2 with all simple roots of u⊥, and −r is a sum of roots of R0(u)
with positive coefficients, so r has inner product ≥ 0 with all simple roots of D not in
R0(u). The lemma follows from this and the fact that (v, s) = (u, s)+ (r, s) for any simple
root s of D. This proves lemma 2.1.
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We now start with a vector v of norm 2(n− 1) and try to reconstruct u from it. The
vector u−v is a highest root of some component of R0(u), and R0(u) is contained in S(v),
so we should be able to find u from S(v). By lemma 2.1 S(u) is contained in S(v), so we
can repeat this process with u instead of v. The following theorem shows how to construct
all possible vectors u as in lemma 2.1 from v and S(v).

Theorem 2.2. Suppose that v has norm 2(n− 1) and is in D (so n ≥ 1). Then there are
bijections between

(1) Norm 2n vectors u of D with (u, v) = 2n.

(2) Simple spherical Dynkin diagrams C contained in the Dynkin diagram Λ of D such
that if r is the highest root of C and c in C satisfies (c, r) = i, then c is in Ri(v).

(3) Dynkin diagrams C satisfying one of the following three conditions:

Either C is an a1 and is contained in R2(v),
or C is an an (n ≥ 2) and the two endpoints of C are in R1(v) while the other points

of C are in R0(v),
or C is dn (n ≥ 4), e6, e7, or e8 and the unique point of C that has inner product 1

with the highest root of C is in R1(v) while the other points of C are in R0(v).

Proof. Let u be as in (1) and put r = u− v. The vector r is orthogonal to u and has
inner product ≤ 0 with all roots of R0 (because −v does) so it is a highest root of some
component C of R0(u). The vector r therefore determines some simple spherical Dynkin
diagram C contained in Λ. Any root c of C has (c, v + r) = (c, u) = 0, so c is in Ri(v)
where i = (c, r). This gives a map from (1) to (2).

Conversely if we start with a Dynkin diagram C satisfying (2) and put u = v + r
(where r is the highest root of C) then (c, u) = 0 for all c in C, so (r, u) = 0 as r is a sum
of the c’s. This implies that u2 = 2n and (u, v) = 2n. We now have to show that u is in
D. Let s be any simple root of D. If s is in C then (s, r) = −(s, v) and if s is not in C
then (s, r) ≥ 0, so in any case (s, u) = (s, v + r) ≥ 0 and hence u is in D. This gives a map
from (2) to (1) and shows that (1) and (2) are equivalent.

Condition (3) is just the condition (2) written out explicitly for each possible C, so
(2) and (3) are also equivalent. This proves theorem 2.2.

We define the height of a vector u in II1,25 to be (u, w). We show how to calculate
the heights of vectors of II1,25 that have been found with the algorithm above.

Lemma 2.3. Suppose u, v are vectors in D of norms 2n, 2(n − 1) with (u, v) = 2n and
suppose that v = u − r for some root r of u⊥ corresponds to the component C of R0(u).
Then

height(u) = height(v) + h− 1

where h is the Coxeter number of the component C.

Proof. We have v = u− r where r is the highest root of C, so height(u) = height(v)+
(r, w). We have r =

∑
i mici where the ci are the simple roots of C with weights mi and∑

i mi = h − 1. All the ci have inner product 1 with w, so (r, w) = h − 1. This proves
lemma 2.3.
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Lemma 2.4. Let u be a primitive vector of D such that there is a norm 0 vector z with
(z, u) = 0 or 1, and suppose that z corresponds to a Niemeier lattice B with Coxeter
number h.
(1) If u has norm 0 then its height is h. The Dynkin diagram of u⊥ is the extended

Dynkin diagram of B.
(2) If u has positive norm then height(u) = 1+(1+u2/2)h. The Dynkin diagram of u⊥ is

the Dynkin diagram of B if u2 > 2 and the Dynkin diagram of B plus an a1 if u2 = 2.

Proof.
(1) The Dynkin diagram of u⊥ is a union of extended Dynkin diagrams. If this union is

empty then u must be w and therefore has height 0 = h. If not then let C be one of
the components. We have u =

∑
i mici where the ci’s are the simple roots of C with

weights mi. Also
∑

i mi = h because C is an extended Dynkin diagram and all the
ci’s have height 1, so u has height h.

(2) As u has inner product 1 with a norm 0 vector z of D we can put u = nz + z′ with
u2 = 2n and z′2 = 0, (z, z′) = 1. By part (1) z has height h. We have z′ = z + r
where r is a simple root of D, so height(z′) = height(z) + height(r) = h + 1. Hence
height(u) = nh + h + 1 = 1 + (1 + u2/2)h. The lattice u⊥ is B ⊕ N where N is a
one dimensional lattice of determinant 2n, so the Dynkin diagram is that of B plus
that of N , and the Dynkin diagram of (norm 2 roots of) N is empty unless 2n = 2 in
which case it is a1. This proves that the Dynkin diagram of u⊥ is what it is stated to
be. This proves lemma 2.4.
Orbits of norm 2 vectors u ∈ II1,25 correspond to even 25 dimensional positive definite

lattices B of determinant 2, where B(−1) ∼= u⊥. One part of the algorithm for finding
vectors of norm 2n consists of finding the vectors u such that there are no roots in u⊥.
For norm 2 vectors u the following lemma shows that there are no such vectors.

Lemma 2.5. If u ∈ II1,25 has norm 2 then u⊥ contains roots. In other words every 25
dimensional even positive definite lattice of determinant 2 has a root.

Proof. If u⊥ contains no roots then, by the algorithm of section 1, u = w + u1 for
some u1 in D. We have u2

1 = u2−2height(u), so u2
1 = 0 and u has height 1 because u2

1 ≥ 0,
u2 = 2 and the height of u is positive. Then height(u1) = height(u) = 1, so u is a norm 0
vector in D that has inner product 1 with the norm 0 vector w of D, but this is impossible
as u−w would be a norm −2 vector separating the two vectors u and w of D. This proves
lemma 2.5.

Theorem 2.6. Suppose that u ∈ D has norm 2. Then

w = ρ + height(u)u/2

where ρ is the Weyl vector of the root system of u⊥. Also −2ρ2 = height(u)2.

Proof. The vector w is fixed by any automorphism fixing D, so by lemma 1.4 the
vector w must be in the space spanned by u and the roots of u⊥. However w also has inner
product 1 with all simple roots of u⊥ and has inner product height(u) with u, so w must
be ρ + height(u)u/2. Taking norms of both sides of w = ρ + height(u)u/2, and using the
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facts that w2 = 0, (u, ρ) = 0, and (u, u) = 2, shows that −2ρ2 = height(u)2. This proves
theorem 2.6.

In particular we find the strange consequence that the norm of the Weyl vector of any
25 dimensional even positive definite lattice of determinant 2 must be a half a square.

Norm 4 vectors in the fundamental domain D of II1,25 correspond to 25 dimensional
unimodular lattices A = A1 ⊕ In, where u⊥ is the lattice of even elements of A(−1) and
A1 has no norm 1 vectors . The odd vectors of A(−1) can be taken as the projections of
the vectors y with (y, u) = 2 into u⊥. A norm 4 vector u can behave in 4 different ways,
depending on whether the unimodular lattice A1 with no norm 1 vectors corresponding to
u is at most 23 dimensional, or 24 dimensional and odd, or 24 dimensional and even, or
25 dimensional.

Theorem 2.7. Norm 1 vectors of A correspond to norm 0 vectors z of II1,25 with (z, u) =
2. Write A = A1 ⊕ In where A1 has no vectors of norm 1. Then u is in exactly one of the
following four classes:

(1) u has inner product 1 with a norm 0 vector. The lattice A1 is a Niemeier lattice.

(2) A has at least 4 vectors of norm 1, so that A1 is at most 23 dimensional (but may be
even). There is a unique norm 0 vector z of D with (z, u) = 2 and this vector z is of
the same type as either of the two even neighbors of A1 ⊕ In−1.

(3) A1 is 24 dimensional and odd. There are exactly two norm 0 vectors that have inner
product 2 with u, and they are both in D. They have the types of the two even
neighbors of A1.

(4) A = A1 has no vectors of norm 1.

Proof. The vector z is a norm 0 vector with (z, u) = 2 if and only if u/2− z is a norm
1 vector of A. Most of 2.7 follows from this. The only non-trivial things to check are the
statements about norm 0 vectors that are in D.

If u does not have inner product 1 with any norm 0 vector then a norm 0 vector z
with (z, u) = 2 is in D if and only if it has inner product ≥ 0 with all simple roots of u⊥,
so there is one such vector in D for each orbit of such norm 0 vectors under the reflection
group of u⊥. If A has at least 4 vectors of norm 1 then they form a single orbit under
the Weyl group of (the norm 2 vectors of) u⊥, which proves (2), while if A has only two
vectors of norm 1 then they are both orthogonal to all norm 2 vectors of A and so form
two orbits under they Weyl group of u⊥. This proves theorem 2.7.

Theorem 2.8. Suppose that u is a norm 4 vector corresponding to a unimodular 25
dimensional lattice A = A1 ⊕ I25−n with 2n ≥ 4 vectors of norm 1. Let ρ be the Weyl
vector of the root system of norm −2 roots of u⊥ (which is the Weyl vector of the norm
−2 vectors of A(−1)) and let let h be the Coxeter number of the even neighbors of the
24 dimensional unimodular lattice A1 ⊕ I24−n. Then height(u) = (w, u) = 2(h + n − 1),
w = ρ + height(u)u/4, and −ρ2 = (h + n− 1)2.

Proof. There is a unique norm 2 vector z of D with (z, u) = 2; we let i be its projection
into u⊥. The lattice A has at least 4 vectors of norm 1, so any vector of norm 1 and in
particular i is in the vector space generated by vectors of norm −2 of u⊥. Hence by lemma
1.5 and the same argument as in theorem 2.6 we have w = ρ+height(u)u/4. The norm −4
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vector 2i of u⊥ is the sum of −2(n − 1) simple roots of the dn component of the Dynkin
diagram of u⊥, so (2i, w) = (2i, ρ) = −2(n− 1).

The vector i is the projection of z into u⊥, so i = z − u/2, and hence

height(u) = (w, u)
= 2(w, z − i)
= 2(height(z) + n− 1)
= 2(h + n− 1).

If we calculate the norms of both sides of w = ρ + height(u)u/4 we find that −ρ2 =
(h + n− 1)2. This proves theorem 2.8.
Example 2.9. Suppose u corresponds to the lattice I25. The number n is then 25 and
the root system of the norm 2 vectors is D25, so the Weyl vector ρ can be taken as
(0, 1, 2, . . . , 24). The even neighbors of I24 are both D24 with Coxeter number h = 46, so
we find that 02 + 12 + 22 + · · ·+ 242 = ρ2 = (h + n− 1)2 = 702. Watson [W] showed that
the only solution of 02 + 12 + · · · + k2 = m2 with k ≥ 2 is k = 24. See [C-S Chapter 26]
for a construction of the Leech lattice using this equality.

Theorem 2.10. Suppose that u is a norm 4 vector of D with exactly two norm 0 vectors
z1, z2 that have inner product 2 with u, and suppose that there are no norm 0 vectors that
have inner product 1 with u. Then z1 and z2 are both in D and have Coxeter numbers h1,
h2 where hi = (zi, w). Then

w = ρ + (h1z2 + h2z1)/2

where ρ is the Weyl vector of the norm −2 vectors of u⊥. Also u = z1 + z2, height(u) =
h1 + h2, −ρ2 = h1h2, and u⊥ has 8(h1 + h2 − 2) roots.

Proof. The vector u− z1 is a norm 0 vector which has inner product 2 with u and so
must be z2. Hence u = z1 + z2 and height(u) = height(z1) + height(z2) = h1 + h2.

There is a norm 0 vector that has inner product 2 with u, and any automorphism
of L fixing D also fixes w, so by lemma 1.5 w is a linear combination of z1, z2, and the
roots of R in u⊥. Using the facts that (w, z1) = h1, (w, z2) = h2, and (w, r) = −r2/2 for
any simple root r in u⊥ shows that w must then be ρ + (h1z2 + h2z1)/2. Using the fact
that w2 = 0 this shows immediately that −ρ2 = h1h2. The number of roots follows from
remark 2.12 below. This proves theorem 2.10.

Corollary 2.11. If A1 is an odd 24 dimensional positive definite unimodular lattice with
no vectors of norm 1 and whose even neighbors have Coxeter numbers h1 and h2, then
ρ2 = h1h2 where ρ is the Weyl vector of A1.

Proof. This follows immediately from theorem 2.10, using the fact that A1 ⊕ I is the
25 dimensional unimodular lattice corresponding to u as in 2.10.

Remark. Let B1, B2 be the two even neighbors of A1. Then it is not hard to show
that h2 ≤ 2h1 + 2, and there are several lattices A1 for which equality holds.
Remark 2.12. Theorem 13.1 and corollary 13.2 of [B95] show that the height of a vector
in the fundamental domain of II1,25 can be written as an explicit linear combination of
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the theta functions of cosets of the lattice u⊥. In particular we find that if u is a norm 2
vector then

12height(u) = 18− 4z1 + r

where r is the number of norm −2 vectors of u⊥ and zi is the number of norm 0 vectors
having inner product i with u (so z1 is 0 or 2 and is 2 if and only if the lattice u⊥ is
the sum of a one dimensional lattice and an even lattice). Similarly if u has norm 4 and
corresponds to a 25 dimensional unimodular lattice A then

8t = 20− 2z2 − 8z1 + r

where r is the number of norm 2 vectors of A, z2 is the number of norm 1 vectors of A, and
z1 is 1 if A is the sum of a Niemeier lattice and a one dimensional lattice and is 0 otherwise.
Note that these relations give congruences for the numbers of roots that immediately imply
that 25 dimensional even lattices of determinant 2 and 25 dimensional unimodular lattices
always have roots. There are similar relations and congruences for larger norm vectors of
II1,25.

There are several other genuses of lattices that can be classified using II1,25. Most
of these do not seem important enough to be worth publishing, but here is a summary
of what is available just in case anyone finds a use for any of these. The 24 dimensional
even positive definite lattices of determinant 5 are easy to classify as they turn out to
correspond to pairs consisting of a norm 2 vector u of II1,25 together with a norm −2 root
r with (r, u) = 1, and these can easily be read off from the list of norm 2 vectors. The
25 dimensional positive definite even lattices of determinant 6 correspond to the norm 6
vectors in II1,25 and can be classified from the norm 4 vectors using the algorithm; there
are 2825 orbits if I have made no mistakes. A list of them is available from my home
page. These can be used to classify the 26 dimensional even positive definite lattices of
determinant 3, because the norm 2 roots of such lattices correspond to the norm 6 vectors
of II1,25. (There is a unique such lattice with no roots; see the next section.) There are
between 677 and 681 such lattices, and a provisional list is available from my home page
(there are a few small ambiguities that I have not yet got around to resolving). If such a
lattice has no norm 6 roots then the number of norm 2 vectors is divisible by 6. With a
lot more effort it should be possible to classify the 26 dimensional unimodular lattices by
finding the (roughly 50000?) orbits of norm 10 vectors of II1,25; see the next section.

3. Lattices with no roots.

In this section we show that there is a unique 26 dimensional positive definite uni-
modular lattice with no roots. Conway and Sloane use this result in their proof [C-S98]
that there is a positive definite unimodular lattice with no roots in all dimensions greater
than 25. We also show that the number of norm 2 vectors of a 26 dimensional unimodular
lattice is divisible by 4, and sketch a construction of a 27 dimensional unimodular lattice
with no roots.

Lemma 3.1. A 26-dimensional unimodular lattice L with no vectors of norm 1 has a
characteristic vector of norm 10.

Proof. If L has a characteristic vector x of norm 2 then x⊥ is a 25 dimensional even
lattice of determinant 2 and therefore has a root r by theorem 2.6; 2r+x is a characteristic
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vector of norm 10. If the lemma is not true we can therefore assume that L has no vectors
of norm 1 and no characteristic vectors of norm 2 or 10. Its theta function is determined
by these conditions and turns out to be 1−156q2+ · · · which is impossible as the coefficient
of q2 is negative. This proves lemma 3.1.

Lemma 3.2. There is a bijection between isomorphism classes of
(1) Norm 10 characteristic vectors c in 26-dimensional positive definite unimodular lattices

L, and
(2) Norm 10 vectors u in II1,25

given by c⊥(−1) ∼= u⊥.
We have Aut(L, c) = Aut(II1,25, u).

Proof. Routine. Note that −1 is a square mod 10. This proves lemma 3.2.
Lemmas 3.1 and 3.2 give an algorithm for finding 26 dimensional unimodular lattices

L. It is probably not hard to implement this on a computer if one is given a computer
algorithm for deciding when 2 vectors of the Leech lattice are conjugate under its automor-
phism group; such an algorithm has been described by Allcock in [A]. The main remaining
open problem is to find a use for these lattices! We now apply this algorithm to find the
unique such lattice with no roots.

Lemma 3.3. Take notation as in lemma 3.2. The lattice L has no roots if and only if u⊥

has no roots and u does not have inner product 1, 2, 3, or 4 with any norm 0 vector.

Proof. If u⊥ has roots then obviously L has too. If there is a norm 0 vector z that
has inner product 1, 2, 3, or 4 with u then the projection zu of z into u⊥ has norm −1/10,
−4/10, −9/10, or −16/10. The lattice L(−1) contains u⊥ + c, and the vector zu ± 3c/10,
zu ± 4c/10, zu ± c/10, or zu ± 2c/10 is in L for some choice of sign and has norm −1, −2,
−1, or −2. Hence if u has inner product 1, 2, 3, or 4 with some norm 0 vector then L has
roots. Conversely if L has a root r then either r has norm 2 and inner product 0, ±2, ±4
with c or it has norm 1 and inner product ±1, ±3 with c, and each of these cases implies
that u⊥ has roots or that u has inner product 1, 2, 3, or 4 with some norm 0 vector by
reversing the argument above. This proves lemma 3.3.

Now let L be a 26 dimensional unimodular lattice with no roots containing a charac-
teristic vector c of norm 10, and let u be a norm 10 vector of D corresponding to it as in
3.2.

Lemma 3.4. u = z + w, where z is a norm 0 vector of D corresponding to a Niemeier
lattice with root system A6

4, and w is the Weyl vector of D. In particular u is determined
up to conjugacy under Aut(D).

Proof. The lattice u⊥ has no roots so u = w+z for some vector z of D. By lemma 3.3
u does not have inner product 1, 2, 3, or 4 with any norm 0 vector, so (z, w) = (u, w) ≥ 5.
Hence

10 = u2 = z2 + 2(z, w) ≥ 2(z, w) ≥ 10

so (z, w) = 5 and z2 = 0. The only norm 0 vectors z in D with (z, w) = 5 are the primitive
ones corresponding to A6

4 Niemeier lattices, which form one orbit under Aut(D). This
proves lemma 3.4.
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Lemma 3.5. If u = z + w is as in lemma 3.4 then the 26 dimensional unimodular lattice
corresponding to u has no roots.

Proof. The lattice u⊥ obviously has no roots so by lemma 3.3 we have to check that
there are no norm 0 vectors that have inner product 1, 2, 3, or 4 with u. Let x be any norm
0 vector in the positive cone. If x has type A6

4 then (x, u) ≥ (x,w) ≥ 5; if x has Leech
type then (x, u) ≥ (x, z) ≥ 5; if x has type A24

1 then (x, u) = (x,w) + (x, z) ≥ 2 + 3 = 5
((x, z) cannot be 2 as there are no pairs of norm 0 vectors of types A24

1 and A6
4 that have

inner product 2 by the classification of 24 dimensional unimodular lattices); and if x has
any other type then (x, u) = (x,w) + (x, z) ≥ 3 + 2 = 5. This proves lemma 3.5.

Theorem 3.6. There is a unique 26 dimensional positive definite unimodular lattice L
with no roots. Its automorphism group is isomorphic to the group O5(5) = 2.G.2 of order
28.32.54.13 and acts transitively on the 624 characteristic norm 10 vectors of L.

Proof. By lemma 3.1 L has a characteristic vector of norm 10, so by lemmas 3.3 and
3.4 L is unique and its automorphism group acts transitively on the characteristic vectors
of norm 10. By lemma 3.5 L exists. The theta function is determined by the conditions
that L has no vectors of norm 1 or 2 and no characteristic vectors of norm 2, and it turns
out that the number of characteristic vectors of norm 10 is 624. The stabilizer of such a
vector is isomorphic to Aut(II1,25, u), which is a group of the form 53.2.S5 where S5 is the
symmetric group on 5 letters. This determines the order of the automorphism group of
the lattice. From this it is not difficult to determine it precisely; we omit the details. This
proves theorem 3.6.

We now show that the number of norm 2 vectors of any 26 dimensional even positive
definite unimodular lattice is divisible by 4. There are strictly 26 dimensional unimodular
lattices with no roots or with 4 roots, so this is the best possible congruence. For unimod-
ular lattices of dimension less than 26 there are congruences modulo higher powers of 2
for the number of roots.

Lemma 3.7. If L is a 25-dimensional positive definite lattice of determinant 2 then the
number of norm 2 roots of L is 2 mod 4.

Proof. The even vectors of L form a lattice isomorphic to the vectors that have even
inner product with some vector b in an even 25-dimensional lattice B of determinant 2.
(Note that b is not in B′−B.) The number of roots of B is 12t− 10 or 12t− 18 where t is
the height of the norm 2 vector of D corresponding to B by remark 2.12, so it is sufficient
to prove that the number of norm 2 vectors of B that have odd inner product with b is
divisible by 4.

The vector b has zero inner product with u and integral inner product with w, so by
theorem 2.6 b has integral inner product with ρ. Hence b has even inner product with the
sum of the positive roots of B, so it has odd inner product with an even number of positive
roots. This implies that the number of roots of B that have odd inner product with b is
divisible by 4. This proves lemma 3.7.

Corollary 3.8. If L is a 26 dimensional unimodular lattice then the number of norm 2
vectors of L is divisible by 4.
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Proof. The result is obvious if L has no norm 2 roots, so let r be a norm 2 vector of
L. The lattice r⊥ is a 25 dimensional even lattice of determinant so by remark 2.12 the
number of roots of r⊥ is 2 mod 4. The number of roots of L not in r⊥ is 4h− 6 where h is
the Coxeter number of the component of L containing r, so the number of norm 2 vectors
of L is divisible by 4. This proves corollary 3.8.

Remark. A similar but more complicated argument can be used to show that there
is a unique even 26 dimensional positive definite lattice of determinant 3 with no roots.
Gluing on a one dimensional lattice to this gives a unique 27 dimensional unimodular
lattice with no roots and a characteristic vector of norm 3. As a different proof of this
has already been published in [E-Z] we will just give a brief sketch of the proof from [B].
(The preprint [B-V] shows that there are exactly three 27 dimensional positive definite
unimodular lattices with no roots.) Let L be a 27 dimensional positive definite unimodular
lattice with no roots and a characteristic vector c of norm 3. The theta function of L is
determined by these conditions and this implies that L has vectors of norm 5; let v be
such a vector. Then 〈v, c〉⊥ is a 25 dimensional even lattice X of determinant 14 such
that X ′/X is generated by an element of norm 1/14 mod 2. Such lattices X correspond
to norm 14 vectors x in the fundamental domain D of II1,25, and the condition that L
has no vectors of norm 1 or 2 implies that there are exactly two possibilities for x: x is
either the sum of w and a norm 0 vector of height 7 corresponding to A4

6, or x is the
sum of w and a norm 2 vector of height 6 corresponding to the 25 dimensional lattice of
determinant 2 with root system a9

2. Both of these x’s turn out to give the same lattice L,
which therefore has two orbits of norm 5 vectors and is the unique 27 dimensional positive
definite unimodular lattice with no roots and with characteristic vectors of norm 3.

Table 0. The primitive norm 0 vectors of II1,25.

We list the set of orbits of primitive norm 0 vectors z of II1,25, which is of course
more or less the same as the well known list of Niemeier lattices (see [C-S table 16.1]).
The height is just (w, z) where w is the Weyl vector of a fundamental domain containing
z. The letter after the height is just a name to distinguish vectors of the same height,
and is the letter referred to in the column headed “Norm 0 vectors” of table 1. The
column headed “Group” is the order of the subgroup of Aut(D) fixing the primitive norm
0 vector. However note that the group order is not (usually) the order of the quotient of
the automorphism group of the Niemeier lattice by the reflection group; see [C-S chapter
16] for a description of the relation between these groups. For the vector w of height 0 the
group is the infinite group of automorphisms of the affine Leech lattice and is an extension
of a finite group of the order given by the group of translations of the Leech lattice Λ.

Height Roots Group

0x None Λ·8315553613086720000
2a A24

1 1002795171840
3a A12

2 138568320
4a A8

3 688128
5a A6

4 30000
6d D6

4 138240

12



6a A4
5D4 3456

7a A4
6 1176

8a A2
7D

2
5 256

9a A3
8 324

10d D4
6 384

10a A2
9D6 80

12e E4
6 432

12a A11D7E6 24
13a A2

12 52
14d D3

8 48
16a A15D9 16
18d D10E

2
7 8

18a A17E7 12
22d D2

12 8
25a A24 10
30e E3

8 6
30d D16E8 2
46d D24 2

Table 1. The norm 2 vectors of II1,25.

The following sets are in natural 1:1 correspondence:
(1) Orbits of norm 2 vectors in II1,25 under Aut(II1,25).
(2) Orbits of norm 2 vectors u of D under Aut(D).
(3) 25 dimensional even bimodular lattices L.

The lattice L(−1) is isomorphic to u⊥. Table 1 lists the 121 elements of any of these
three sets.

The height is the height of the norm 2 vector u of D, in other words (u, w) where w is
the Weyl vector of D. The letter after the height is just a name to distinguish vectors of
the same height, and is the letter referred to in the column headed “Norm 2” of table 2.
An asterisk after the letter means that the vector u is of type 1, in other words the lattice
L is the sum of a Niemeier lattice and a1.

The column “Roots” gives the Dynkin diagram of the norm 2 vectors of L arranged
into orbits under Aut(L). “Group” is the order of the subgroup of Aut(D) fixing u. The
group Aut(L) is a split extension R.G where R is the Weyl group of the Dynkin diagram
and G is isomorphic to the subgroup of Aut(D) fixing u.

“S” is the maximal number of pairwise orthogonal roots of L.
The column headed “Norm 0 vectors” describes the norm 0 vectors z corresponding to

each orbit of roots of u⊥ where u is in D. A capital letter indicates that the corresponding
norm 0 vector is twice a primitive vector, otherwise the norm 0 vector is primitive. x
stands for a norm 0 vector of type the Leech lattice. Otherwise the letter a, d, or e is
the first letter of the Dynkin diagram of the norm 0 vector, and its height is given by
height(u)−h + 1 where h is the Coxeter number of the component of the Dynkin diagram
of u.

For example, the norm 2 vector of type 23a has 3 components in its root system, of
Coxeter numbers 12, 12, and 6, and the letters are e, a, and d, so the corresponding norm

13



0 vectors have Coxeter numbers 12, 12, and 18 and hence are norm 0 vectors with Dynkin
diagrams E4

6 , A11D7E6, and D10E
2
7 .

For some remarks on the reliability of table 1 see the introduction to table 2.

Height Roots Group S Norm 0 vectors

1a* a1 8315553613086720000 1 X

2a a2 991533312000 1 x

3a a9
1 92897280 9 a

4a a2a
12
1 190080 13 aa

5a* a24
1 a1 244823040 25 aA

5b a4
2a

9
1 3456 13 aa

5c a3a
15
1 40320 17 aa

6a a9
2 3024 9 a

6b a3a
5
2a

6
1 240 13 aaa

7a* a12
2 a1 190080 13 aA

7b a3
3a

4
2a

3
1 48 13 aaa

7c a4
3a

8
1a1 384 17 aad

7d a4a
6
2a

5
1 240 13 aaa

7e d4a
21
1 120960 25 ad

8a a6
3a2 240 13 ad

8b a4a
3
3a

3
2a

2
1 12 13 aaaa

8c d4a
9
2 864 13 aa

9a* a8
3a1 2688 17 aA

9b a2
4a

4
3a1 16 13 aaa

9c a3
4a3a

2
2a

3
1 12 13 aaaa

9d d4a
4
3a3a

3
1 48 17 aada

9e a5a
3
3a

4
2 24 13 aaa

9f a5a
4
3a

6
1 48 17 aaa

10a d4a
3
4a

3
2 12 13 aaa

10b a5a
2
4a

2
3a2a1 4 13 aaaaa

11a* a6
4a1 240 13 aA

11b d4
4a

9
1 432 25 dd

11c a5d
2
4a

3
3 24 17 daa

11d a5a5a
2
4a3a1 4 13 aaaaa
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11e a2
5d4a

2
3a

2
1a1 8 17 aaaad

11f a3
5a

4
2 48 13 aa

11g d5a
6
3a1 48 17 aad

11h a6a
2
4a

2
3a2a1 4 13 aaaaa

12a a4
5a2 24 13 ad

12b d5a
4
4a2 8 13 aaa

12c a6d4a
3
4 6 13 aaa

12d a6a
2
5a3a

2
2 4 13 aaaa

13a* a4
5d4a1 48 17 aaA

13b d5a
2
5d4a3a1 4 17 aaada

13c d5a
3
5a

3
1a1 12 17 aaae

13d* d6
4a1 2160 25 dD

13e a2
6a5a4a

2
1 4 13 aaaa

13f a7a5a
2
4a3 4 13 aaaa

13g a7a5d4a
2
3a

2
1 4 17 aaaaa

14a a6a6d5a4a2 2 13 aaaaa
14b a3

6d4 12 13 aa
14c a7a6a5a4a1 2 13 aaaaa

15a* a4
6a1 24 13 aA

15b d3
5a5a3 12 17 ade

15c d6d
4
4a

3
1 24 25 ddd

15d d6a
2
5a5a3 4 17 aada

15e a7d
2
5a

2
3a1 4 17 aaad

15f a2
7d

2
4a1 8 17 aad

15g a8a
3
5 6 13 aa

15h a8a6a5a3a2 2 13 aaaaa

16a a3
7a2 12 13 ad

16b a8a6d5a4 2 13 aaaa

17a* a2
7d

2
5a1 8 17 aaA

17b e6a
3
5d4 12 17 aae

17c a7d6d5a5 2 17 daaa
17d a2

7d6a3a1 4 17 aada
17e a8a

2
7a1 4 13 aaa

17f a9d5a5d4a1 2 17 aaaaa
17g a9a7a

2
4 4 13 aaa

18a e6a
3
6 6 13 aa

18b a9a8a5a2 2 13 aaaa
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19a* a3
8a1 12 13 aA

19b d3
6d4a

3
1 6 25 ddd

19c a7e6d
2
5a1 4 17 eaad

19d d7a7d5a5 2 17 aaad
19e d7a

2
7a3a1 4 17 aaad

19f a9a7d6a1a1 2 17 aaaad
19g a10a7a6a1 2 13 aaaa

20a a2
8e6a2 4 13 aaa

20b a10a8d5 2 13 aaa

21a* a2
9d6a1 4 17 aaA

21b a11d6a5a3 2 17 aaaa
21c a11a8a5 2 13 aaa
21d* d4

6a1 24 25 dD
21e a9e6d6a3 2 17 aaad

23a d7e
2
6a5 4 17 ead

23b d8d
2
6d4a1 2 25 dddd

23c a9d
2
7 4 17 da

23d a9d8a7 2 17 daa
23e a11d7d5a1 2 17 aaad

24a a2
11a2 4 13 ad

24b a12e6a6 2 13 aaa

25a* a11d7e6a1 2 17 aaaA
25b a13d6d5 2 17 aaa
25e* e4

6a1 48 17 eE

26a a13a10a1 2 13 aaa

27a* a2
12a1 4 13 aA

27b e7d
3
6 3 25 dd

27c a9a9e7 2 17 ada
27d d9a9e6 2 17 ada
27e a11d9a5 2 17 aad
27f a14a9a2 2 13 aaa

29a a11e7e6 2 17 daa
29d* d3

8a1 6 25 dD

31a d2
8e7a1a1 2 25 ddde
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31b d10d8d6a1 1 25 dddd
31c a15d8a1 2 17 aad

33a* a15d9a1 2 17 aaA
33b a15e7a3 2 17 aad
33c a17a8 2 13 aa

35a e3
7d4 6 25 de

35b a13d11 2 17 da

36a a18e6 2 13 aa

37a* a17e7a1 2 17 aaA
37d* d10e

2
7a1 2 25 ddD

39a d12e7d6 1 25 ddd

45d* d2
12a1 2 25 dD

47a d10e8e7 1 25 edd
47b d14d10a1 1 25 ddd
47c a17e8 2 17 da

48a a23a2 2 13 ad

51a* a24a1 2 13 aA

61d* d16e8a1 1 25 ddD
61e* e3

8a1 6 25 eE

63a d18e7 1 25 dd

93d* d24a1 1 25 dD

Table 2. The norm 4 vectors of II1,25.

There is a natural 1:1 correspondence between the elements of the following sets:
(1) Orbits of norm 4 vectors u in II1,25 under Aut(II1,25).
(2) Orbits of norm 4 vectors in the fundamental domain D of II1,25 under Aut(D).
(3) Orbits of norm 1 vectors v of I1,25 under Aut(I1,25).
(4) 25 dimensional unimodular positive definite lattices L.
(5) Unimodular lattices L1 of dimension at most 25 with no vectors of norm 1.
(6) 25 dimensional even lattices L2 of determinant 4.

L1 is the orthogonal complement of the norm 1 vectors of L, L2 is the lattice of
elements of L of even norm, L2(−1) is isomorphic to u⊥, and L(−1) is isomorphic to v⊥.
Table 2 lists the 665 elements of any of these sets.
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The height is the height of the norm 4 vector u of D, in other words (u, w) where w is
the Weyl vector of D. The things in table 2 are listed in increasing order of their height.

Dim is the dimension of the lattice L1. A capital E after the dimension means that
L1 is even.

The column “roots” gives the Dynkin diagram of the norm 2 vectors of L2 arranged
into orbits under Aut(L2).

“Group” gives the order of the subgroup of Aut(D) fixing u. The group Aut(L) ∼=
Aut(L2) is of the form 2×R.G where R is the group generated by the reflections of norm
2 vectors of L, G is the group described in the column “group”, and 2 is the group of
order 2 generated by −1. If dim(L1) ≤ 24 then Aut(L1) is of the form R.G where R is the
reflection group of L1 and G is as above.

For any root r of u⊥ the vector v = u− r is a norm 2 vector of II1,25. This vector v
can be found as follows. Let X be the component of the Dynkin diagram of u⊥ to which
u belongs and let h be the Coxeter number of X. Then u − r is conjugate to a norm 2
vector of II1,25 in D of height t− h + 1 (or t− h if the entry under “Dim” is 24E) whose
letter is the letter corresponding to X in the column headed “norm 2”. For example let u
be the vector of height 6 and root system a2

2a
10
1 . Then the norm 2 vectors corresponding

to roots from the components a2 or a1 have heights 6− 3 + 1 and 6− 2 + 1 and letters a
and b, so they are the vectors 4a and 5b of table 1.

If dim(L1) ≤ 24 then the column “neighbors” gives the two even neighbors of
L1 + I24−dim(L1). If dim(L1) ≤ 23 then both neighbors are isomorphic so only one is
listed, and if L1 is a Niemeier lattice then the neighbor is preceded by 2 (to indicate that
the corresponding norm 0 vector is twice a primitive vector). If the two neighbors are
isomorphic then there is an automorphism of L exchanging them.

Tables 1 and 2 were originally calculated by hand. Most of the lattices were found
several times, once for each orbit of roots, and this gave a large number of checks for
most entries. I later ran a computer version of the algorithm of this paper, which turned
up about 20 minor errors (mostly errors in column 5, and a few misprints in the group
order and root systems which were due to copying errors). I also checked the Minkowski-
Siegel mass formula. Any errors remaining are probably either copying errors (the tables
are based on computer output, but have had some hand editing to turn them into nice
looking TEX) or an error where a lattice should be split into 2 lattices each with twice the
automorphism group. The second possibility cannot be detected by mass formulas but I
think it unlikely that it occurs in these tables. (It becomes an irritating problem when
classifying the 26-dimensional even lattices of determinant 3.)

Height Dim Roots Group norm 2 Neighbors
1 24E None 8315553613086720000 2Λ

2 23 a2
1 84610842624000 a Λ

2 24 None 1002795171840 Λ A24
1

3 25 a2
1 88704000 a

4 24 a8
1 20643840 a A24

1 A24
1
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4 25 a2
2 26127360 a

4 25 a6
1 138240 a

5 24 a12
1 190080 a A24

1 A12
2

5 25 a2a
7
1 5040 aa

5 25 a10
1 1920 a

6 23 a16
1 a2

1 645120 ca A24
1

6 24 a2
2a

10
1 5760 ab A12

2 A12
2

6 24 a16
1 43008 c A24

1 A8
3

6 25 a3a
8
1 21504 ac

6 25 a2
2a

8
1 128 ab

6 25 a2a
10
1 a1 120 abc

6 25 a8
1a

6
1 1152 bc

7 24 a4
2a

8
1 384 bb A12

2 A8
3

7 24E a24
1 244823040 a 2A24

1

7 25 a5
2a

3
1 720 bb

7 25 a3a2a
9
1 72 acb

7 25 a4
2a

4
1a

2
1 24 bba

7 25 a3a
12
1 1440 ab

7 25 a3
2a

6
1a

3
1 12 bbb

7 25 a2
2a

12
1 144 cb

8 22 a3a
22
1 887040 ae A24

1

8 23 a6
2a

6
1a

2
1 1440 bda A12

2

8 24 a2
3a

12
1 768 cc A8

3 A8
3

8 24 a3a
4
2a

6
1 96 bbb A8

3 A8
3

8 24 a8
2 672 a A8

3 A8
3

8 24 a6
2a

6
1 240 bd A12

2 A6
4

8 24 a24
1 138240 e A24

1 D6
4

8 25 a4a
12
1 1440 ad

8 25 a3a
4
2a

4
1 16 bbb

8 25 a2
3a

8
1a

2
1 64 cbc

8 25 a3a
3
2a

6
1a1 12 bbbc

8 25 a3a
3
2a

3
1a

3
1a1 6 bbbbd

8 25 a4
2a

2
2a

4
1 8 bab

8 25 a3a
2
2a

4
1a

4
1a

2
1 16 bbcbd

8 25 a4
2a2a

4
1a

2
1a1 8 bbbdb

8 25 a4
2a

8
1a

2
1 48 bdc

8 25 a3a
15
1 a1 720 cce

9 24 a2
3a

4
2a

4
1 16 bbb A8

3 A6
4

9 24 a8
2a

4
1 384 dc A12

2 A4
5D4
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9 25 a4a
3
2a

6
1a1 12 bdbb

9 25 a2
3a

4
2a

2
1 16 bba

9 25 a2
3a

2
2a2a

4
1a1 4 bbcba

9 25 a3a3a
2
2a2a

2
1a

2
1a1 2 bbbbbbb

9 25 a3a
6
2a

2
1 6 abb

9 25 a2
3a

2
2a

4
1a

4
1 8 bcbb

9 25 a3a
4
2a2a

4
1a1 8 bbbbc

9 25 a3a
2
2a

2
2a2a

2
1a

2
1a1 2 bbbdbbb

10 22 a3a
10
2 2880 ac A12

2

10 23 a4
3a

8
1a

2
1 384 cfa A8

3

10 23 a3
3a

4
2a

2
1a

2
1 48 bbea A8

3

10 24 a4
3a

2
2a

2
1 32 bab A6

4 A6
4
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3 8 edd A2

9D6 A2
9D6

20 24 a8a
2
5a3 4 dge A2

9D6 A2
9D6

20 24 d6a
2
5a

2
3 4 edc D4

6 A2
9D6

20 24 d6d
3
4a

6
1 12 bcb D4

6 D4
6

20 24 a7d5a5a3a1a1a1 2 cgefecd A2
7D

2
5A11D7E6

20 24 d5d5a
2
5a

2
1 4 bced A2

7D
2
5A11D7E6

20 24 a7d5d4a3a3 2 bgecf A2
7D

2
5A11D7E6

20 24 a6a6d5a4 2 aaeb A2
7D

2
5A11D7E6

20 24 d2
5a

2
5a

2
1 8 cbc A2

7D
2
5 E4

6

20 24 a2
6a

2
5 4 ch A4

6 A2
12

20 24 d6
4 48 c D6

4 D3
8

20 25 a8a
2
5a

2
1a

2
1 2 dhfg

20 25 d6a
2
5a3a

2
1a1a1 2 eddfeb

20 25 d6a5d4a
2
3a1 2 ccdcd

20 25 a7a7a3a
2
2a

2
1 2 fggbg

20 25 a8d4a4a3a3 1 chbff
20 25 d2

5a5d4a
2
1a1 2 bbecb

20 25 a7d5a
2
4a1a1 2 cfbcf

20 25 a7a6a5a3 1 ecfe
20 25 a2

6d5a3a
2
1 2 aedd

20 25 a7d5a4a3a3 1 bfbfc
20 25 a7a6a5a2a1a1a1 1 echbgfe
20 25 a7a6a4a4a1 1 ecbad
20 25 a2

6a6a3a1 2 abee
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20 25 a6a6a6a3a1 1 caceg
20 25 a6d5a5a4a2a1 1 aeebad
20 25 a6a6a5d4a1 1 abfhd
20 25 a7a

2
5a4a

2
1 2 ehag

20 25 d5a5a5a
2
4 2 fbdb

21 24 a8a6a5a2a1 2 ehbga A3
8A11D7E6

21 24 a2
7a

2
4 4 cg A2

7D
2
5 A2

12

21 25 d6a6a4a4a2 1 cdcdd
21 25 a8a6a4a3a1 1 eggbb
21 25 a7a6d5a2a1a1 1 aecfba
21 25 a6d5d5a4a2 1 baacc
21 25 a7d5a5a4a1 1 acbdb
21 25 a7a6a5a4 1 cgbe

22 21 a7d
2
5d4a3 4 beac A2

7D
2
5

22 22 a8a
2
6a3 4 bba A3

8

22 23 a8a7a5a
2
1a1 2 cgeac A2

9D6

22 23 a8a6d5a2a
2
1 2 abhba A2

9D6

22 23 a7d6a5a3a
2
1a1 2 dgdfab A2

9D6

22 23 a9a5a
2
4a

2
1 4 fgba A2

9D6

22 23 d6d5a
2
5a

2
1 4 bdcd D4

6

22 23 d4
5a

2
1 48 bd D4

6

22 24 a9a5d4a3a1a1 2 gfffeb A2
9D6A11D7E6

22 24 a7d6a5a3a1 2 dgcfe A2
9D6A11D7E6

22 24 a8a6d5a2 2 abhb A2
9D6A11D7E6

22 24 d6d5a
2
5 4 bdc D4

6A11D7E6

22 24 d4
5 48 b D4

6 E4
6

22 24 a8a7a4a3 2 chbg A3
8 A2

12

22 24 a7d
2
5a

2
3 4 eed A2

7D
2
5 D3

8

22 24 a2
7d

2
4 8 fd A2

7D
2
5 D3

8

22 24E a4
6 24 a 2A4

6

22 25 e6d
2
4a

3
3 12 cbc

22 25 e6a5a
2
4a3a1 2 dbace

22 25 e6a
2
5a

4
2 8 fba

22 25 d7a
6
3 24 ge

22 25 a9a5d4a
2
2 2 gfgb

22 25 a9a5a4a3a1a1 1 ffbgbc
22 25 a9a5a

2
3a3 2 fggf

22 25 a8a7a4a2a1 1 chbbc
22 25 d6d5a5a3a3a1 1 bdcdbe
22 25 a7d6a

2
3a3a

2
1 2 dgfeb

22 25 a8d5a5a3a1 1 agffe
22 25 a8d5a5a2a2a1 1 ahfbab
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22 25 a8a6a5a3 1 bbgg
22 25 a8a6a5a3 1 cbef
22 25 d6a

2
5d4a3 2 bcdb

22 25 d6a
3
5a

3
1 6 cdb

22 25 a8a
2
5d4 2 bfe

22 25 a8a6a4a4a1 1 cbbbc
22 25 a7a7a5a3a1 1 ghefc
22 25 d3

5a
3
3 6 ec

22 25 a7d5d
2
4a3 2 bffc

23 24 a2
8a

2
3 4 hb A2

9D6 A2
12

23 24 a9a6a5a2 2 cgbc A2
9D6 A2

12

23 24 a3
7 12 a A3

8 D3
8

23 25 d7a
4
4 4 bd

23 25 a9a6a4a3 1 cfgb
23 25 a8d

2
5a

2
2 2 ebe

23 25 d6a6a6a4 1 accf
23 25 d6a

2
6a4 2 bce

23 25 a8a7d4a3 1 fbbb
23 25 a2

7d5a3 2 baa
23 25 a2

6d
2
5 2 cb

24 20 a2
7d5d5 4 cda A2

7D
2
5

24 21 a2
8d4a4 4 baa A3

8

24 22 a9a7d4a3a1 2 fffad A2
9D6

24 22 a2
7d6a3 4 cfa A2

9D6

24 22 d2
6d

2
4a3a

2
1 4 cbdb D4

6

24 24 d7a
2
5a5a1 4 cdea A11D7E6A11D7E6

24 24 a9d
2
5a

2
1a1 4 efec A11D7E6A11D7E6

24 24 a7e6d4a
2
3 4 bgce A11D7E6A11D7E6

24 24 e6a
2
6a4 4 eaa A11D7E6A11D7E6

24 24 e6d5a
2
5a

2
1 4 cbca E4

6A11D7E6

24 24 d2
6d

2
4a

4
1 4 cbb D4

6 D3
8

24 24 a2
7d6a

2
1 4 dfd A2

9D6 D3
8

24 24 a2
7d5d4 4 fde A2

7D
2
5 A15D9

24 25 d7a
2
5d4a1a1 2 bdeeb

24 25 a9a7a
2
3a1 2 fgcd

24 25 d6d
2
5a5a1 2 bcba

24 25 a7d6d5a3a1a1 1 cedeeb
24 25 a8a7a6a1 1 aebd
24 25 a7d6a5d4a1 1 cfdfb
24 25 a2

7a7a
2
1 2 edd

24 25 a8a7d4a4 1 bfgb
24 25 a7a7d5a4 1 ccgb
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24 25 a2
7d5a4 2 cea

25 24 a10a6a5a1 2 hgbb A11D7E6 A2
12

25 24 a8a
2
7 4 eb A3

8 A15D9

25 24E a2
7d

2
5 8 aa 2A2

7D
2
5

25 25 d7a6a6a2a2 1 adedc
25 25 a10a6a4a2a1 1 hgcea
25 25 e6a6d5a4a2 1 acaea
25 25 e6a

2
6d4 2 bca

25 25 a7e6a5a4a1 1 acaeb
25 25 a10a5a4a4 1 gbcb
25 25 a8d6a6a2 1 dbfc
25 25 a9a6d5a2a1 1 bfbeb
25 25 a9a

2
6a2 2 agc

25 25 a9d5a5a4 1 bbbe

26 19 a2
7d6d5 4 dae A2

7D
2
5

26 21 a9d6a5d4 2 cfea A2
9D6

26 23 a9d6d5a
2
1a1 2 cffab A11D7E6

26 23 a10a6d5a
2
1 2 bbga A11D7E6

26 23 a8e6a6a2a
2
1 2 ahaba A11D7E6

26 23 d7a7d5a3a
2
1 2 edeea A11D7E6

26 23 e6d6a
2
5a

2
1 4 dbea A11D7E6

26 23 e6d
3
5a

2
1 12 bce E4

6

26 24 a2
9a

2
2 8 ga A2

12 A2
12

26 24 d7a7d5a3 2 eddc A11D7E6 D3
8

26 24 a9d6a5a3 2 dfbd A2
9D6 A15D9

26 24 a9a8a5 2 ebc A2
9D6 A15D9

26 24 a2
7d

2
5 8 ce A2

7D
2
5 D10E

2
7

26 25 d7d
2
5a3a3 2 bdba

26 25 a10d5a5a2a1 1 bgbbb
26 25 a7d

2
6a3 2 bcc

26 25 a9d6d4a3a1 1 cfbeb
26 25 a9a7a6 1 egb
26 25 a9a7a6 1 efb
26 25 a7d6d5a5a1 1 dffeb

27 24 a2
8a7 4 ga A3

8 A17E7

27 25 a8d7a4a4 1 dbde
27 25 a2

9a3a
2
1 2 baa

27 25 a10a
2
6a1 2 eca

28 20 a2
9d5a

2
1 4 fac A2

9D6

28 20 d3
6d5a

2
1 6 bdb D4

6
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28 22 a9e6d5a3a1 2 cfead A11D7E6

28 22 a9d7a5a3 2 dfca A11D7E6

28 22 a11d5a5a3a1 2 fbeae A11D7E6

28 22 e2
6a

2
5a3 8 bae E4

6

28 23 a10a9a2a
2
1a1 2 bgaaf A2

12

28 23 a11a7a4a
2
1 2 gcaa A2

12

28 24 d8d
4
4 8 cb D3

8 D3
8

28 24 a9d7a5a1a1 2 efede A11D7E6 A15D9

28 24 a11d5d4a3 2 fbeb A11D7E6 A15D9

28 24 a9a7d6a1 2 fefc A2
9D6 A17E7

28 24 a9a7d6a1 2 fbfc A2
9D6 D10E

2
7

28 24 d2
6d6d4a

2
1 2 bbbb D4

6 D10E
2
7

28 24E a3
8 12 a 2A3

8

28 25 d8a
2
5a5a1 2 ddbe

28 25 a11a7a
2
2a

2
1 2 gbaf

28 25 a11d5a4a3 1 fcbb
28 25 e6d6d5a5a1 1 cceab
28 25 d7d6a5a5 1 cdcb
28 25 a8a7e6a1a1 1 aeedc
28 25 a9e6a

2
4a1 2 cgbc

28 25 a10a8a4a1 1 bbae
28 25 a2

9a4a
2
1 2 gaf

28 25 a9a8d5a1 1 fbcd

29 24 a11a8a3 2 bca A2
12 A15D9

29 25 a10d6a6 1 fbe

30 21 d7a7e6d4 2 cada A11D7E6

30 22 a2
10a3 4 ba A2

12

30 23 d2
7a7a

2
1 4 dcd D3

8

30 23 d8a
2
7a

2
1 4 ddd D3

8

30 24 d8a
2
7 4 dd D3

8 A15D9

30 24 a11d6a5a1 2 fbba A11D7E6 A17E7

30 24 a10e6a6 2 agb A11D7E6 A17E7

30 24 d7a7e6a3 2 caed A11D7E6 D10E
2
7

30 24 a9e6d6a1 2 efea A11D7E6 D10E
2
7

30 24 e2
6d

2
5 8 ca E4

6 D10E
2
7

30 25 d8a7d5a3 1 cbdd
30 25 a10a9a4 1 bca
30 25 d7a7d

2
5 2 cae

31 24 a12a7a4 2 gbf A2
12 A17E7

31 24E d4
6 24 d 2D4

6

31 24E a2
9d6 4 aa 2A2

9D6
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31 25 a12a6a5 1 gba
31 25 a8e

2
6a

2
2 2 aaa

31 25 a10e6d5a2 1 ebba
31 25 a11a8d4 1 bea
31 25 a11a7d5 1 bba
31 25 a8a8d7 1 dcb
31 25 a2

8d7 2 ca

32 18 a2
9d7 4 da A2

9D6

32 18 d7d
3
6 6 db D4

6

32 20 a11e6d5a3 2 ebaa A11D7E6

32 21 a12a8d4 2 bba A2
12

32 22 d8d
2
6a3a

2
1 2 bbdb D3

8

32 24 d8d
2
6a

2
1a

2
1 2 bbba D3

8 D10E
2
7

32 24 d4
6 8 b D4

6 D2
12

32 25 a9d8a5a1a1 1 dfecb
32 25 a12a7d4 1 bbf
32 25 a9d7d6a1 1 ceeb

34 19 a11d7d6 2 cea A11D7E6

34 19 e3
6d6 12 ae E4

6

34 23 a11d8a3a
2
1 2 dbca A15D9

34 23 a13a8a
2
1a1 2 caac A15D9

34 23 d9a
2
7a

2
1 4 eea A15D9

34 24 a13d6a3a1 2 bbcb A15D9 A17E7

34 24 d9a
2
7 4 ed A15D9 D10E

2
7

34 24 a11d7d5 2 eee A11D7E6 D2
12

34 25 e7a7d5a5 1 cbca
34 25 e7a

2
7a3a1 2 dcab

34 25 d9a7d5a3 1 ddeb
34 25 a13a7a3a1 1 cfcc
34 25 d2

7e6a3 2 aca
34 25 d8a7e6a3 1 edda
34 25 a11d

2
6 2 cb

35 24 a2
11 4 a A2

12 D2
12

35 25 a12d7a4 1 ebc

36 20 d2
8d5d4 2 bda D3

8

36 22 a13d7a3a1 2 ebab A15D9

36 24 a9e7a7 2 cfa D10E
2
7 A17E7

36 24 e7d6d6d4a1 2 bbbaa D10E
2
7 D10E

2
7

36 24 d2
8d

2
4 2 bb D3

8 D2
12

36 25 a12a10a1 1 aab
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37 24E e4
6 48 e 2E4

6

37 24E a11d7e6 2 aaa 2A11D7E6

37 25 a13e6a4a1 1 baba

38 17 a11d8e6 2 dae A11D7E6

38 21 a11d9d4 2 dea A15D9

38 23 d9e
2
6a

2
1 4 add D10E

2
7

38 23 a9e7e6a
2
1 2 aecd D10E

2
7

38 23 a14e6a2a
2
1 2 bfaa A17E7

38 23 a11e7a5a
2
1 2 cbba A17E7

38 24 a11d9a3 2 eeb A15D9 D2
12

38 24 a12a11 2 af A2
12 A24

38 25 d9d7a7 1 cdb
38 25 a11d8d5 1 dbc

40 20 a15d5d5 2 bba A15D9

40 22 d8e7d6a3a1 1 bbada D10E
2
7

40 22 d10d
2
6a3 2 bbd D10E

2
7

40 22 a15d6a3 2 bca A17E7

40 24 d10d
2
6a

2
1 2 bba D10E

2
7 D2

12

40 24E a2
12 4 a 2A2

12

40 25 d10a9a5 1 dbb
40 25 a15d5a4 1 bca
40 25 e7e

2
6a5 2 aaa

40 25 a9e7d7 1 aca
40 25 a11e7d5a1 1 aeba
40 25 a14a9 1 ac

41 24 a15a8 2 ac A15D9 A24

42 21 a13e7d4 2 aba A17E7

43 24 a16a7 2 fa A17E7 A24

43 24E d3
8 6 d 2D3

8

44 16 d9d
2
8 2 db D3

8

44 20 e2
7d6d5 2 bad D10E

2
7

44 24 d2
8d8 2 ba D3

8 D16E8

44 24 d3
8 6 a D3

8 E3
8

46 23 d11a11a
2
1 2 ebd D2

12

46 24 a15d8 2 cb A15D9 D16E8

46 25 d11a7e6 1 dab
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47 25 a16d7 1 ca

48 18 d10e7d7a1 1 abda D10E
2
7

48 18 a17d7a1 2 cac A17E7

48 22 d2
10a3a

2
1 2 bdb D2

12

48 24 a15e7a1 2 bcc A17E7 D16E8

48 24 d10e7d6a1 1 abaa D10E
2
7 D16E8

48 24 d8e
2
7a

2
1 2 aaa D10E

2
7 D16E8

48 25 a13d10a1 1 bcb

49 24E a15d9 2 aa 2A15D9

50 15 a15d10 2 ba A15D9

52 20 d12d8d5 1 bad D2
12

52 23 a19a4a
2
1 2 caa A24

52 24 d12d8d4 1 bab D2
12 D16E8

55 24E d10e
2
7 2 dd 2D10E

2
7

55 24E a17e7 2 aa 2A17E7

55 25 a19d5 1 aa

56 14 d11e
2
7 2 da D10E

2
7

56 21 a20d4 2 aa A24

58 25 e8a11e6 1 aac
58 25 a11d13 1 bb

60 24 e8d
2
8 2 aa E3

8 D16E8

62 23 a15e8a
2
1 2 cbd D16E8

64 22 e8e
2
7a3 2 aae E3

8

64 22 d14e7a3a1 1 abda D16E8

67 24E d2
12 2 d 2D2

12

68 12 d13d12 1 db D2
12

68 20 d12e8d5 1 aad D16E8

68 24 d2
12 2 b D2

12 D24

71 24 a23 2 a A24 D24
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76 16E d16d9 1 bd D16E8

76 16E d9e
2
8 2 ea E3

8

76 24 d16d8 1 ba D16E8 D24

76 24E a24 2 a 2A24

91 24E e3
8 6 e 2E3

8

91 24E d16e8 1 dd 2D16E8

92 8E d17e8 1 da D16E8

100 20 d20d5 1 ad D24

139 24E d24 1 d 2D24

140 0E d25 1 d D24
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