# Calculations in Deformation Theory 

Nathan Owen Ilten

UC Berkeley
February 22nd, 2012

# Deformation Basics 

Computing Versal Deformations

# Deformation Basics 

## Computing Versal Deformations

The Setup


## The Setup

- Let $S=\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$.


## The Setup

- Let $S=\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$.
- Consider polynomials $f_{1}, f_{2}, \ldots, f_{m} \in S$.


## The Setup

- Let $S=\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$.
- Consider polynomials $f_{1}, f_{2}, \ldots, f_{m} \in S$.
- These generate an ideal $l$ in $S$.


## The Setup

- Let $S=\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$.
- Consider polynomials $f_{1}, f_{2}, \ldots, f_{m} \in S$.
- These generate an ideal $l$ in $S$.
- They also define an affine scheme $X \subset \mathbb{C}^{d}$.


## The Setup

- Let $S=\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$.
- Consider polynomials $f_{1}, f_{2}, \ldots, f_{m} \in S$.
- These generate an ideal $l$ in $S$.
- They also define an affine scheme $X \subset \mathbb{C}^{d}$.

Basic idea: we deform $X$ by perturbing the $f_{i}$.

## Example I: An $A_{1}$ Singularity

## Example I: An $A_{1}$ Singularity

- Take $d=3, f=x^{2}+y^{2}-z^{2}$.


## Example I: An $A_{1}$ Singularity

- Take $d=3, f=x^{2}+y^{2}-z^{2}$.



## Example I: An $A_{1}$ Singularity

- Take $d=3, f=x^{2}+y^{2}-z^{2}$.
- Perturb this with a parameter $t$ to get $\widetilde{f}=x^{2}+y^{2}-z^{2}-t$.



## Example I: An $A_{1}$ Singularity

- Take $d=3, f=x^{2}+y^{2}-z^{2}$.
- Perturb this with a parameter $t$ to get $\widetilde{f}=x^{2}+y^{2}-z^{2}-t$.
- This cuts out a scheme $\mathcal{X} \subset \mathbb{C}^{3} \times \mathbb{C}$ with a natural projection map $\pi: \mathcal{X} \rightarrow \mathbb{C}$.



## Example I: An $A_{1}$ Singularity

- Take $d=3, f=x^{2}+y^{2}-z^{2}$.
- Perturb this with a parameter $t$ to get $\widetilde{f}=x^{2}+y^{2}-z^{2}-t$.
- This cuts out a scheme $\mathcal{X} \subset \mathbb{C}^{3} \times \mathbb{C}$ with a natural projection map $\pi: \mathcal{X} \rightarrow \mathbb{C}$.
- The fiber over 0 is just $X$. The fiber over $t \neq 0$ is smooth.



## Example II: A Line in $\mathbb{C}^{3}$

## Example II: A Line in $\mathbb{C}^{3}$

- Take $d=3, f_{1}=x-y, f_{2}=x-z, f_{3}=y-z$.


## Example II: A Line in $\mathbb{C}^{3}$

- Take $d=3, f_{1}=x-y, f_{2}=x-z, f_{3}=y-z$.
- These equations cut out a line $x=y=z$ in $\mathbb{C}^{3}$.


## Example II: A Line in $\mathbb{C}^{3}$

- Take $d=3, f_{1}=x-y, f_{2}=x-z, f_{3}=y-z$.
- These equations cut out a line $x=y=z$ in $\mathbb{C}^{3}$.
- Now perturb:

$$
\begin{aligned}
& \tilde{f}_{1}=x-y+t \\
& \widetilde{f}_{2}=x-z+t \\
& \widetilde{f}_{3}=y-z+t
\end{aligned}
$$

## Example II: A Line in $\mathbb{C}^{3}$

- Take $d=3, f_{1}=x-y, f_{2}=x-z, f_{3}=y-z$.
- These equations cut out a line $x=y=z$ in $\mathbb{C}^{3}$.
- Now perturb:

$$
\begin{aligned}
& \widetilde{f}_{1}=x-y+t \\
& \widetilde{f}_{2}=x-z+t \\
& \widetilde{f}_{3}=y-z+t
\end{aligned}
$$

- Something is fishy! The fiber over $t \neq 0$ is a point!


## Example II: A Line in $\mathbb{C}^{3}$

- Take $d=3, f_{1}=x-y, f_{2}=x-z, f_{3}=y-z$.
- These equations cut out a line $x=y=z$ in $\mathbb{C}^{3}$.
- Now perturb:

$$
\begin{aligned}
& \widetilde{f}_{1}=x-y+t \\
& \widetilde{f}_{2}=x-z+t \\
& \widetilde{f}_{3}=y-z+t
\end{aligned}
$$

- Something is fishy! The fiber over $t \neq 0$ is a point!

Problem: the relation $f_{2}-f_{1}=f_{3}$ doesn't lift to a relation among the $\widetilde{f}_{i}$.

## Lifting Relations

## Lifting Relations

Consider the start of a free resolution of $S / I$ :


Here, $F$ is a matrix whose columns are just the $f_{i}$.

## Lifting Relations

Consider the start of a free resolution of $S / I$ :

$$
\cdots \longrightarrow S^{n} \xrightarrow{R} S^{m} \xrightarrow{F} S \longrightarrow S / I \longrightarrow 0 .
$$

Here, $F$ is a matrix whose columns are just the $f_{i}$.
Consider a ring of deformation parameters $T=\mathbb{C}\left[t_{1}, \ldots, t_{e}\right]$ and set $\widetilde{S}=S \otimes T$.

## Lifting Relations

Consider the start of a free resolution of $S / I$ :

$$
\cdots \longrightarrow S^{n} \xrightarrow{R} S^{m} \xrightarrow{F} S \longrightarrow S / I \longrightarrow 0 .
$$

Here, $F$ is a matrix whose columns are just the $f_{i}$.
Consider a ring of deformation parameters $T=\mathbb{C}\left[t_{1}, \ldots, t_{e}\right]$ and set $\widetilde{S}=S \otimes T$.
Let $\widetilde{F}: \widetilde{S}^{m} \rightarrow \widetilde{S}$ be a perturbation of $F$.

## Lifting Relations

Consider the start of a free resolution of $S / I$ :

$$
\cdots \longrightarrow S^{n} \xrightarrow{R} S^{m} \xrightarrow{F} S \longrightarrow S / I \longrightarrow 0 .
$$

Here, $F$ is a matrix whose columns are just the $f_{i}$.
Consider a ring of deformation parameters $T=\mathbb{C}\left[t_{1}, \ldots, t_{e}\right]$ and set $\widetilde{S}=S \otimes T$.
Let $\widetilde{F}: \widetilde{S}^{m} \rightarrow \widetilde{S}$ be a perturbation of $F$.
Definition
The relations $R$ lift with respect to $\widetilde{F}$ subject to equations $g_{1}, \ldots, g_{k} \in T$ if there exists a $\widetilde{R}: \widetilde{S}^{n} \rightarrow \widetilde{S}^{m}$ restricting to $R$ such that

$$
\operatorname{Im}(\widetilde{F} \cdot \widetilde{R}) \subset\left\langle g_{i}\right\rangle
$$

## Example III: Lifting Relations

## Example III: Lifting Relations

- Take $d=4$ and consider the matrix

$$
F=\left(\begin{array}{lll}
x_{1} x_{3}-x_{2}^{2} & x_{2} x_{4}-x_{3}^{2} \quad x_{1} x_{4}-x_{2} x_{3}
\end{array}\right)
$$

## Example III: Lifting Relations

- Take $d=4$ and consider the matrix

$$
F=\left(x_{1} x_{3}-x_{2}^{2} \quad x_{2} x_{4}-x_{3}^{2} \quad x_{1} x_{4}-x_{2} x_{3}\right) .
$$

- A relation matrix is given by

$$
R=\left(\begin{array}{cc}
x_{4} & x_{3} \\
x_{2} & x_{1} \\
-x_{3} & -x_{2}
\end{array}\right)
$$

## Example III: Lifting Relations

- Take $d=4$ and consider the matrix

$$
\widetilde{F}=\left(\begin{array}{lll}
x_{1} x_{3}-x_{2}^{2}+t x_{2} & x_{2} x_{4}-x_{3}^{2}-t x_{4} & x_{1} x_{4}-x_{2} x_{3}
\end{array}\right) .
$$

- A relation matrix is given by

$$
R=\left(\begin{array}{cc}
x_{4} & x_{3} \\
x_{2} & x_{1} \\
-x_{3} & -x_{2}
\end{array}\right)
$$

- We can perturb $F$ to $\widetilde{F}$.


## Example III: Lifting Relations

- Take $d=4$ and consider the matrix

$$
\widetilde{F}=\left(\begin{array}{lll}
x_{1} x_{3}-x_{2}^{2}+t x_{2} & x_{2} x_{4}-x_{3}^{2}-t x_{4} & x_{1} x_{4}-x_{2} x_{3}
\end{array}\right) .
$$

- A relation matrix is given by

$$
\widetilde{R}=\left(\begin{array}{cc}
x_{4} & x_{3} \\
x_{2} & x_{1} \\
-x_{3} & -x_{2}+t
\end{array}\right)
$$

- We can perturb $F$ to $\widetilde{F}$.
- A lifting of $R$ is given by $\widetilde{R}$.


## Deformations of Affine Schemes

## Deformations of Affine Schemes

Definition
A deformation of $X \subset \mathbb{C}^{d}$ over $Z=\operatorname{Spec}\left(T /\left\langle g_{i}\right\rangle\right)$ consists of a perturbation $\widetilde{F}$ of $F$ such that the relations lift with respect to $\widetilde{F}$, subject to the equations $g_{i}$.

## Deformations of Affine Schemes

Definition
A deformation of $X \subset \mathbb{C}^{d}$ over $Z=\operatorname{Spec}\left(T /\left\langle g_{i}\right\rangle\right)$ consists of a perturbation $\widetilde{F}$ of $F$ such that the relations lift with respect to $\widetilde{F}$, subject to the equations $g_{i}$.

- $\tilde{F}$ defines a scheme $\mathcal{X} \subset \mathbb{C}^{d} \times Z$ and a map $\pi: \mathcal{X} \rightarrow Z$.


## Deformations of Affine Schemes

Definition
A deformation of $X \subset \mathbb{C}^{d}$ over $Z=\operatorname{Spec}\left(T /\left\langle g_{i}\right\rangle\right)$ consists of a perturbation $\widetilde{F}$ of $F$ such that the relations lift with respect to $\widetilde{F}$, subject to the equations $g_{i}$.

- $\tilde{F}$ defines a scheme $\mathcal{X} \subset \mathbb{C}^{d} \times Z$ and a map $\pi: \mathcal{X} \rightarrow Z$.
- $\mathcal{X}$ is the total space, $Z$ the base space of the deformation.


## Deformations of Affine Schemes

## Definition

A deformation of $X \subset \mathbb{C}^{d}$ over $Z=\operatorname{Spec}\left(T /\left\langle g_{i}\right\rangle\right)$ consists of a perturbation $\widetilde{F}$ of $F$ such that the relations lift with respect to $\widetilde{F}$, subject to the equations $g_{i}$.

- $\tilde{F}$ defines a scheme $\mathcal{X} \subset \mathbb{C}^{d} \times Z$ and a map $\pi: \mathcal{X} \rightarrow Z$.
- $\mathcal{X}$ is the total space, $Z$ the base space of the deformation.


## Example

For hypersurfaces, arbitrary perturbations are allowed.

## Induced Deformations

## Induced Deformations

- Consider a deformation of $X$.


## Induced Deformations

- Consider a deformation of $X$.
- We can induce other deformations of $X$ by applying changes of coordinates to the variables $x_{i}$ and substituting in new deformation parameters for the $t_{i}$.


## Induced Deformations

- Consider a deformation of $X$.
- We can induce other deformations of $X$ by applying changes of coordinates to the variables $x_{i}$ and substituting in new deformation parameters for the $t_{i}$.

Example

## Induced Deformations

- Consider a deformation of $X$.
- We can induce other deformations of $X$ by applying changes of coordinates to the variables $x_{i}$ and substituting in new deformation parameters for the $t_{i}$.


## Example

- Consider the deformation given by $\widetilde{f}=x^{2}+y^{2}-z^{2}-t$.


## Induced Deformations

- Consider a deformation of $X$.
- We can induce other deformations of $X$ by applying changes of coordinates to the variables $x_{i}$ and substituting in new deformation parameters for the $t_{i}$.


## Example

- Consider the deformation given by $\widetilde{f}=x^{2}+y^{2}-z^{2}-t$.
- Can we induce the deformation given by $x^{2}+y^{2}-z^{2}-s z$ ?


## Induced Deformations

- Consider a deformation of $X$.
- We can induce other deformations of $X$ by applying changes of coordinates to the variables $x_{i}$ and substituting in new deformation parameters for the $t_{i}$.


## Example

- Consider the deformation given by $\widetilde{f}=x^{2}+y^{2}-z^{2}-t$.
- Can we induce the deformation given by $x^{2}+y^{2}-z^{2}-s z$ ?
- Yes! Substitute $t=-\frac{1}{4} s^{2}$ and take the change of coordinates $z \mapsto\left(z+\frac{1}{2} s\right)$.


## Versal Deformations

## Versal Deformations

Definition
A deformation of $X$ is called (formally) versal if any (infinitesimal) deformation of $X$ may be induced from it.

## Versal Deformations

Definition
A deformation of $X$ is called (formally) versal if any (infinitesimal) deformation of $X$ may be induced from it.

- If $\operatorname{dim} \operatorname{Sing} X=0$ and we allow $\widetilde{F}$ and $\widetilde{R}$ to contain formal power series, then $X$ has a formally versal deformation.


## Versal Deformations

## Definition

A deformation of $X$ is called (formally) versal if any (infinitesimal) deformation of $X$ may be induced from it.

- If $\operatorname{dim} \operatorname{Sing} X=0$ and we allow $\widetilde{F}$ and $\widetilde{R}$ to contain formal power series, then $X$ has a formally versal deformation.
$Q$ : How can we compute a versal deformation of $X$ ?


## Versal Deformations

## Definition

A deformation of $X$ is called (formally) versal if any (infinitesimal) deformation of $X$ may be induced from it.

- If $\operatorname{dim} \operatorname{sing} X=0$ and we allow $\widetilde{F}$ and $\widetilde{R}$ to contain formal power series, then $X$ has a formally versal deformation.

Q: How can we compute a versal deformation of $X$ ?
A: Using Macaulay2 and the package VersalDeformations.

## Deformation Basics

Computing Versal Deformations

## Basic Features of the Package VersalDeformations

## Basic Features of the Package VersalDeformations

Input:

## Basic Features of the Package VersalDeformations

Input: A matrix $F$ containing the equations of $X$.

## Basic Features of the Package VersalDeformations

Input: A matrix $F$ containing the equations of $X$.
Output:

## Basic Features of the Package VersalDeformations

Input: A matrix $F$ containing the equations of $X$.
Output:

- A basis for $T_{X}^{1}$, the space of deformations over $\operatorname{Spec} \mathbb{C}[t] / t^{2}$.


## Basic Features of the Package VersalDeformations

Input: A matrix $F$ containing the equations of $X$.
Output:

- A basis for $T_{X}^{1}$, the space of deformations over Spec $\mathbb{C}[t] / t^{2}$.
- A basis for $T_{X}^{2}$, which contains obstructions to lifting deformations.


## Basic Features of the Package VersalDeformations

Input: A matrix $F$ containing the equations of $X$.
Output:

- A basis for $T_{X}^{1}$, the space of deformations over Spec $\mathbb{C}[t] / t^{2}$.
- A basis for $T_{X}^{2}$, which contains obstructions to lifting deformations.
- A formally versal deformation of $X$ (more details later).


## Basic Features of the Package VersalDeformations

Input: A matrix $F$ containing the equations of $X$.
Output:

- A basis for $T_{X}^{1}$, the space of deformations over Spec $\mathbb{C}[t] / t^{2}$.
- A basis for $T_{X}^{2}$, which contains obstructions to lifting deformations.
- A formally versal deformation of $X$ (more details later).

Basic approach: iteratively lift deformations in $T_{X}^{1}$ to larger and larger base spaces.

## Computational Example I: Our $A_{1}$ Singularity

## Computational Example I: Our $A_{1}$ Singularity

- $F=\left(x^{2}+y^{2}-z^{2}\right)$.


## Computational Example I: Our $A_{1}$ Singularity

- $F=\left(x^{2}+y^{2}-z^{2}\right)$.
- Any first order deformation can be induced from $F+t_{1} \cdot 1=\left(x^{2}+y^{2}-z^{2}+t_{1}\right)$ with $t_{1}^{2}=0$.


## Output of Command "versalDeformation"

## Output of Command "versalDeformation"

The command "versalDeformation" outputs four lists $F L, R L, G L$, and $C L$ where

## Output of Command "versalDeformation"

The command "versalDeformation" outputs four lists $F L, R L, G L$, and $C L$ where

- $\underset{\sim}{F}$ is a list of matrices whose sum is the perturbation matrix $\widetilde{F}$ of a versal deformation.


## Output of Command "versalDeformation"

The command "versalDeformation" outputs four lists $F L, R L, G L$, and $C L$ where

- $\underset{\widetilde{F}}{ }$ is a list of matrices whose sum is the perturbation matrix $\widetilde{F}$ of a versal deformation.
- $R L$ is a list of matrices whose sum is a lifting $\widetilde{R}$ of $R$.


## Output of Command "versalDeformation"

The command "versalDeformation" outputs four lists $F L, R L, G L$, and $C L$ where

- $\underset{\widetilde{F}}{ }$ is a list of matrices whose sum is the perturbation matrix $\widetilde{F}$ of a versal deformation.
- $R L$ is a list of matrices whose sum is a lifting $\widetilde{R}$ of $R$.
- $G L$ is a list of matrices whose sum $G$ contains the equations cutting out the versal base space.


## Output of Command "versalDeformation"

The command "versalDeformation" outputs four lists $F L, R L, G L$, and $C L$ where

- $\underset{\widetilde{F}}{ }$ is a list of matrices whose sum is the perturbation matrix $\widetilde{F}$ of a versal deformation.
- $R L$ is a list of matrices whose sum is a lifting $\widetilde{R}$ of $R$.
- $G L$ is a list of matrices whose sum $G$ contains the equations cutting out the versal base space.
These matrices solve the "deformation equation"

$$
(\widetilde{F} \cdot \widetilde{R})^{\mathrm{tr}}+C \cdot G=0
$$

where $C$ is the sum of the list $C L$.

## Computational Example II: The Cone over the Rational

 Normal Curve of Deg. 3
## Computational Example II: The Cone over the Rational

 Normal Curve of Deg. 3Take

$$
F=\left(\begin{array}{cc}
x_{1} x_{3}-x_{2}^{2} & x_{2} x_{4}-x_{3}^{2}
\end{array} x_{1} x_{4}-x_{2} x_{3}\right) .
$$

## Computational Example II: The Cone over the Rational

 Normal Curve of Deg. 4
## Computational Example II: The Cone over the Rational

 Normal Curve of Deg. 4Take $F$ to be the transpose of $\left(\begin{array}{c}x_{1} x_{3}-x_{2}^{2} \\ x_{2} x_{4}-x_{3}^{2} \\ x_{3} x_{5}-x_{4}^{2} \\ x_{1} x_{4}-x_{2} x_{3} \\ x_{2} x_{5}-x_{3} x_{4} \\ x_{1} x_{5}-x_{2} x_{5}\end{array}\right)$.

## Computational Example II: The Cone over the Rational Normal Curve of Deg. 4

Take $F$ to be the transpose of $\left(\begin{array}{c}x_{1} x_{3}-x_{2}^{2} \\ x_{2} x_{4}-x_{3}^{2} \\ x_{3} x_{5}-x_{4}^{2} \\ x_{1} x_{4}-x_{2} x_{3} \\ x_{2} x_{5}-x_{3} x_{4} \\ x_{1} x_{5}-x_{2} x_{5}\end{array}\right)$.

- The base space has two components, $\mathbb{C}^{3}$ and $\mathbb{C}$ meeting in a point.



## Total Spaces Over the Components

## Total Spaces Over the Components

The components come from two ways of writing the equations of $X$ :

## Total Spaces Over the Components

The components come from two ways of writing the equations of $X$ :

$$
\operatorname{rk}\left(\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{2} & x_{3} & x_{4} & x_{5}
\end{array}\right) \leq 1
$$

## Total Spaces Over the Components

The components come from two ways of writing the equations of $X$ :

$$
\begin{aligned}
& \operatorname{rk}\left(\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{2} & x_{3} & x_{4} & x_{5}
\end{array}\right) \leq 1 \\
& \quad \operatorname{rk}\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
x_{2} & x_{3} & x_{4} \\
x_{3} & x_{4} & x_{5}
\end{array}\right) \leq 1
\end{aligned}
$$

## Total Spaces Over the Components

The components come from two ways of writing the equations of $X$ :

$$
\begin{gathered}
\operatorname{rk}\left(\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{2}+s_{1} & x_{3}+s_{2} & x_{4}+s_{3} & x_{5}
\end{array}\right) \leq 1 \\
\operatorname{rk}\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
x_{2} & x_{3} & x_{4} \\
x_{3} & x_{4} & x_{5}
\end{array}\right) \leq 1
\end{gathered}
$$

## Total Spaces Over the Components

The components come from two ways of writing the equations of $X$ :

$$
\begin{gathered}
\operatorname{rk}\left(\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{2}+s_{1} & x_{3}+s_{2} & x_{4}+s_{3} & x_{5}
\end{array}\right) \leq 1 \\
\operatorname{rk}\left(\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
x_{2} & x_{3}+s_{4} & x_{4} \\
x_{3} & x_{4} & x_{5}
\end{array}\right) \leq 1
\end{gathered}
$$

Further Features of the Package VersalDeformations

## Further Features of the Package VersalDeformations

- Can calculate $T_{X}^{1}, T_{X}^{2}$, and normal modules for projective $X$ in good situations.


## Further Features of the Package VersalDeformations

- Can calculate $T_{X}^{1}, T_{X}^{2}$, and normal modules for projective $X$ in good situations.
- Can calculate versal deformations for projective $X$.


## Further Features of the Package VersalDeformations

- Can calculate $T_{X}^{1}, T_{X}^{2}$, and normal modules for projective $X$ in good situations.
- Can calculate versal deformations for projective $X$.
- Can calculate local (multigraded) Hilbert schemes.


## Further Features of the Package VersalDeformations

- Can calculate $T_{X}^{1}, T_{X}^{2}$, and normal modules for projective $X$ in good situations.
- Can calculate versal deformations for projective $X$.
- Can calculate local (multigraded) Hilbert schemes.
- Can lift deformations in given tangent direction to a one-parameter family.

A Toric Fano Threefold

## A Toric Fano Threefold

Let $X$ be the projective subscheme of $\mathbb{P}^{8}$ cut out by

$$
\begin{array}{rr}
x_{i+1} x_{i-1}-x_{i} y_{0} & 1 \leq i \leq 6 \\
x_{i} x_{i+3}-y_{0}^{2} & 1 \leq i \leq 3 \\
y_{1} y_{2}-y_{0}^{2} &
\end{array}
$$

where $\mathbb{P}^{8}$ has coordinates $x_{1}, \ldots, x_{6}, y_{0}, y_{1}, y_{2}$.

## A Toric Fano Threefold

Let $X$ be the projective subscheme of $\mathbb{P}^{8}$ cut out by

$$
\begin{array}{rr}
x_{i+1} x_{i-1}-x_{i} y_{0} & 1 \leq i \leq 6 \\
x_{i} x_{i+3}-y_{0}^{2} & 1 \leq i \leq 3 \\
y_{1} y_{2}-y_{0}^{2} &
\end{array}
$$

where $\mathbb{P}^{8}$ has coordinates $x_{1}, \ldots, x_{6}, y_{0}, y_{1}, y_{2}$.


A Toric Fano Threefold (cont.)

## A Toric Fano Threefold (cont.)

The versal base space of $X$ has three components.

## A Toric Fano Threefold (cont.)

The versal base space of $X$ has three components. $X$ admits smoothings to three different kinds of Fano threefolds.

## A Toric Fano Threefold (cont.)

The versal base space of $X$ has three components. $X$ admits smoothings to three different kinds of Fano threefolds.

Similar calculations + lots of hard work can be used to classify all smoothings of Gorenstein Fano toric threefolds of degree $\leq 12$.

## References

氥 Jan Arthur Christophersen and Nathan Owen Ilten．
Toric degenerations of low degree Fano threefolds．
arXiv：1202．0510v1［math．AG］， 2012.
目 Nathan Owen Ilten．
VersalDeformations－a package for computing versal deformations and local Hilbert schemes．
arXiv：1107．2416v1［math．AG］， 2011.
圊 Jan Stevens．
Computing versal deformations．
Experiment．Math．，4（2）：129－144， 1995.

First Order Deformations

## First Order Deformations

Definition
Let $T_{X}^{1}$ be the set of isomorphism classes of deformations of $X$ with base space Spec $\mathbb{C}[t] / t^{2}$.

## First Order Deformations

## Definition

Let $T_{X}^{1}$ be the set of isomorphism classes of deformations of $X$ with base space Spec $\mathbb{C}[t] / t^{2}$.
$T_{X}^{1}$ may be computed as the cokernel of

$$
J: S^{d} \rightarrow \operatorname{Hom}_{S}(I, S / I) \subset(S / I)^{m}
$$

where $J$ is the Jacobian matrix $\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{i j}$.

## First Order Deformations

## Definition

Let $T_{X}^{1}$ be the set of isomorphism classes of deformations of $X$ with base space $\operatorname{Spec} \mathbb{C}[t] / t^{2}$.
$T_{X}^{1}$ may be computed as the cokernel of

$$
J: S^{d} \rightarrow \operatorname{Hom}_{S}(I, S / I) \subset(S / I)^{m}
$$

where $J$ is the Jacobian matrix $\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{i j}$.
If $\operatorname{dim} \operatorname{Sing}(X)=0$, then $\operatorname{dim}_{\mathbb{C}} T_{X}^{1}<\infty$.

First Order Deformations (cont.)

## First Order Deformations (cont.)

- Choose $\phi_{i} \in \operatorname{Hom}\left(S^{m}, S\right) i=1, \ldots, e$ which represent a basis of $T_{X}^{1}$.


## First Order Deformations (cont.)

- Choose $\phi_{i} \in \operatorname{Hom}\left(S^{m}, S\right) i=1, \ldots, e$ which represent a basis of $T_{X}^{1}$.
- Set $T=\mathbb{C}\left[t_{1}, \ldots, t_{e}\right]$ with maximal ideal $\mathfrak{m}=\left\langle t_{1}, \ldots, t_{e}\right\rangle$.


## First Order Deformations (cont.)

- Choose $\phi_{i} \in \operatorname{Hom}\left(S^{m}, S\right) i=1, \ldots, e$ which represent a basis of $T_{X}^{1}$.
- Set $T=\mathbb{C}\left[t_{1}, \ldots, t_{e}\right]$ with maximal ideal $\mathfrak{m}=\left\langle t_{1}, \ldots, t_{e}\right\rangle$.
- Let $F^{1}: \widetilde{S}^{m} \rightarrow \widetilde{S}$ be the perturbation of $F=F^{0}$ defined by

$$
F^{1}=F^{0}+\sum_{i=1}^{e} t_{i} \phi_{i}
$$

## First Order Deformations (cont.)

- Choose $\phi_{i} \in \operatorname{Hom}\left(S^{m}, S\right) i=1, \ldots$, e which represent a basis of $T_{X}^{1}$.
- Set $T=\mathbb{C}\left[t_{1}, \ldots, t_{e}\right]$ with maximal ideal $\mathfrak{m}=\left\langle t_{1}, \ldots, t_{e}\right\rangle$.
- Let $F^{1}: \widetilde{S}^{m} \rightarrow \widetilde{S}$ be the perturbation of $F=F^{0}$ defined by

$$
F^{1}=F^{0}+\sum_{i=1}^{e} t_{i} \phi_{i}
$$

- The relations $R$ lift with respect to $F^{1}$ subject to $\mathfrak{m}^{2}$ to some $R^{1}: \widetilde{S}^{n} \rightarrow \widetilde{S}^{m}$.


## First Order Deformations (cont.)

- Choose $\phi_{i} \in \operatorname{Hom}\left(S^{m}, S\right) i=1, \ldots$, e which represent a basis of $T_{X}^{1}$.
- Set $T=\mathbb{C}\left[t_{1}, \ldots, t_{e}\right]$ with maximal ideal $\mathfrak{m}=\left\langle t_{1}, \ldots, t_{e}\right\rangle$.
- Let $F^{1}: \widetilde{S}^{m} \rightarrow \widetilde{S}$ be the perturbation of $F=F^{0}$ defined by

$$
F^{1}=F^{0}+\sum_{i=1}^{e} t_{i} \phi_{i}
$$

- The relations $R$ lift with respect to $F^{1}$ subject to $\mathfrak{m}^{2}$ to some $R^{1}: \widetilde{S}^{n} \rightarrow \widetilde{S}^{m}$. This can be computed using matrix quotients in Macaulay2.

The Deformation Equation, Part I

## The Deformation Equation, Part I

- Goal: lift this deformation to a "larger" base space.


## The Deformation Equation, Part I

- Goal: lift this deformation to a "larger" base space.
- Given $F^{i-1} \in \operatorname{Hom}\left(\widetilde{S}^{m}, \widetilde{S}\right), R^{i-1} \in \operatorname{Hom}\left(\widetilde{S}^{n}, \widetilde{S}^{m}\right)$, we would like to find $F^{i}$ and $R^{i}$ such that


## The Deformation Equation, Part I

- Goal: lift this deformation to a "larger" base space.
- Given $F^{i-1} \in \operatorname{Hom}\left(\widetilde{S}^{m}, \widetilde{S}\right), R^{i-1} \in \operatorname{Hom}\left(\widetilde{S}^{n}, \widetilde{S}^{m}\right)$, we would like to find $F^{i}$ and $R^{i}$ such that

1. $F^{i} \equiv F^{i-1} \bmod \mathfrak{m}^{i}, R^{i} \equiv R^{i-1} \bmod \mathfrak{m}^{i}$;

## The Deformation Equation, Part I

- Goal: lift this deformation to a "larger" base space.
- Given $F^{i-1} \in \operatorname{Hom}\left(\widetilde{S}^{m}, \widetilde{S}\right), R^{i-1} \in \operatorname{Hom}\left(\widetilde{S}^{n}, \widetilde{S}^{m}\right)$, we would like to find $F^{i}$ and $R^{i}$ such that

1. $F^{i} \equiv F^{i-1} \bmod \mathfrak{m}^{i}, R^{i} \equiv R^{i-1} \bmod \mathfrak{m}^{i}$;
2. $F^{i} \cdot R^{i} \equiv 0 \bmod \mathfrak{m}^{i+1}$.

## The Deformation Equation, Part I

- Goal: lift this deformation to a "larger" base space.
- Given $F^{i-1} \in \operatorname{Hom}\left(\widetilde{S}^{m}, \widetilde{S}\right), R^{i-1} \in \operatorname{Hom}\left(\widetilde{S}^{n}, \widetilde{S}^{m}\right)$, we would like to find $F^{i}$ and $R^{i}$ such that

1. $F^{i} \equiv F^{i-1} \bmod \mathfrak{m}^{i}, R^{i} \equiv R^{i-1} \bmod \mathfrak{m}^{i}$;
2. $F^{i} \cdot R^{i} \equiv 0 \bmod \mathfrak{m}^{i+1}$.

In general, this is not possible!!!

The Deformation Equation, Part II

## The Deformation Equation, Part II

- If $\operatorname{dim} \operatorname{Sing}(X)=0$, there is a finite dimensional $\mathbb{C}$-vector space $T_{X}^{2}$ containing obstructions to lifting $F^{i}, R^{i}$.


## The Deformation Equation, Part II

- If $\operatorname{dim} \operatorname{Sing}(X)=0$, there is a finite dimensional $\mathbb{C}$-vector space $T_{X}^{2}$ containing obstructions to lifting $F^{i}, R^{i}$.
- Choose $V \in \operatorname{Hom}\left(S^{\prime}, S^{n}\right)$ such that its columns represent a basis of $T_{X}^{2}$.


## The Deformation Equation, Part II

- If $\operatorname{dim} \operatorname{Sing}(X)=0$, there is a finite dimensional $\mathbb{C}$-vector space $T_{X}^{2}$ containing obstructions to lifting $F^{i}, R^{i}$.
- Choose $V \in \operatorname{Hom}\left(S^{\prime}, S^{n}\right)$ such that its columns represent a basis of $T_{X}^{2}$.
- It is possible to inductively construct $F^{i}, R^{i}, G^{i-2} \in \operatorname{Hom}(\widetilde{S}$, $\left.\widetilde{S}^{\prime}\right), C^{i-2} \in \operatorname{Hom}\left(\widetilde{S}^{\prime}, \widetilde{S}^{n}\right)$ solving

$$
\left(F^{i} R^{i}\right)^{\operatorname{tr}}+C^{i-2} G^{i-2} \equiv 0 \quad \bmod \mathfrak{m}^{i+1}
$$

such that:

## The Deformation Equation, Part II

- If $\operatorname{dim} \operatorname{Sing}(X)=0$, there is a finite dimensional $\mathbb{C}$-vector space $T_{X}^{2}$ containing obstructions to lifting $F^{i}, R^{i}$.
- Choose $V \in \operatorname{Hom}\left(S^{\prime}, S^{n}\right)$ such that its columns represent a basis of $T_{X}^{2}$.
- It is possible to inductively construct $F^{i}, R^{i}, G^{i-2} \in \operatorname{Hom}(\widetilde{S}$, $\left.\widetilde{S}^{\prime}\right), C^{i-2} \in \operatorname{Hom}\left(\widetilde{S}^{\prime}, \widetilde{S}^{n}\right)$ solving

$$
\left(F^{i} R^{i}\right)^{\operatorname{tr}}+C^{i-2} G^{i-2} \equiv 0 \quad \bmod \mathfrak{m}^{i+1}
$$

such that:

1. $F^{i}, R^{i}, G^{i-2}, C^{i-2}$ reduce to $F^{i-1}, R^{i-1}, G^{i-3}, C^{i-3}$ modulo $\mathfrak{m}^{i}$;

## The Deformation Equation, Part II

- If $\operatorname{dim} \operatorname{Sing}(X)=0$, there is a finite dimensional $\mathbb{C}$-vector space $T_{X}^{2}$ containing obstructions to lifting $F^{i}, R^{i}$.
- Choose $V \in \operatorname{Hom}\left(S^{\prime}, S^{n}\right)$ such that its columns represent a basis of $T_{X}^{2}$.
- It is possible to inductively construct $F^{i}, R^{i}, G^{i-2} \in \operatorname{Hom}(\widetilde{S}$, $\left.\widetilde{S}^{\prime}\right), C^{i-2} \in \operatorname{Hom}\left(\widetilde{S}^{\prime}, \widetilde{S}^{n}\right)$ solving

$$
\left(F^{i} R^{i}\right)^{\operatorname{tr}}+C^{i-2} G^{i-2} \equiv 0 \quad \bmod \mathfrak{m}^{i+1}
$$

such that:

1. $F^{i}, R^{i}, G^{i-2}, C^{i-2}$ reduce to $F^{i-1}, R^{i-1}, G^{i-3}, C^{i-3}$ modulo $\mathfrak{m}^{i}$;
2. $G^{i-2}$ and $C^{i-2}$ vanish for $i<2$;

## The Deformation Equation, Part II

- If $\operatorname{dim} \operatorname{Sing}(X)=0$, there is a finite dimensional $\mathbb{C}$-vector space $T_{X}^{2}$ containing obstructions to lifting $F^{i}, R^{i}$.
- Choose $V \in \operatorname{Hom}\left(S^{\prime}, S^{n}\right)$ such that its columns represent a basis of $T_{X}^{2}$.
- It is possible to inductively construct $F^{i}, R^{i}, G^{i-2} \in \operatorname{Hom}(\widetilde{S}$, $\left.\widetilde{S}^{\prime}\right), C^{i-2} \in \operatorname{Hom}\left(\widetilde{S}^{\prime}, \widetilde{S}^{n}\right)$ solving

$$
\left(F^{i} R^{i}\right)^{\operatorname{tr}}+C^{i-2} G^{i-2} \equiv 0 \quad \bmod \mathfrak{m}^{i+1}
$$

such that:

1. $F^{i}, R^{i}, G^{i-2}, C^{i-2}$ reduce to $F^{i-1}, R^{i-1}, G^{i-3}, C^{i-3}$ modulo $\mathfrak{m}^{i}$;
2. $G^{i-2}$ and $C^{i-2}$ vanish for $i<2$;
3. $C^{0}$ is of the form $V \cdot D$, where $D \in \operatorname{Hom}\left(S^{d}, S^{d}\right)$ is a diagonal matrix.

The perturbation $\lim _{i \rightarrow \infty} F^{i}$ gives a formally versal deformation over the base space cut out by the rows of $\lim _{i \rightarrow \infty} G^{i-2}$.

