### Calculations in Deformation Theory

Nathan Owen Ilten

UC Berkeley

February 22nd, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

**Deformation Basics** 

Computing Versal Deformations



**Deformation Basics** 

**Computing Versal Deformations** 



• Let 
$$S = \mathbb{C}[x_1, \ldots, x_d]$$
.

- Let  $S = \mathbb{C}[x_1, \ldots, x_d]$ .
- Consider polynomials  $f_1, f_2, \ldots, f_m \in S$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Let  $S = \mathbb{C}[x_1, \ldots, x_d]$ .
- Consider polynomials  $f_1, f_2, \ldots, f_m \in S$ .

(ロ)、(型)、(E)、(E)、 E) の(の)

▶ These generate an ideal *I* in *S*.

- Let  $S = \mathbb{C}[x_1, \ldots, x_d]$ .
- Consider polynomials  $f_1, f_2, \ldots, f_m \in S$ .
- ▶ These generate an ideal *I* in *S*.
- They also define an affine scheme  $X \subset \mathbb{C}^d$ .

・ロト・日本・モート モー うへぐ

- Let  $S = \mathbb{C}[x_1, \ldots, x_d]$ .
- Consider polynomials  $f_1, f_2, \ldots, f_m \in S$ .
- These generate an ideal *I* in *S*.
- They also define an affine scheme  $X \subset \mathbb{C}^d$ .

Basic idea: we deform X by perturbing the  $f_i$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

• Take 
$$d = 3$$
,  $f = x^2 + y^2 - z^2$ .

• Take 
$$d = 3$$
,  $f = x^2 + y^2 - z^2$ .



▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

• Take 
$$d = 3$$
,  $f = x^2 + y^2 - z^2$ .

• Perturb this with a parameter t to get  $\tilde{f} = x^2 + y^2 - z^2 - t$ .



• Take 
$$d = 3$$
,  $f = x^2 + y^2 - z^2$ .

- Perturb this with a parameter t to get  $\tilde{f} = x^2 + y^2 z^2 t$ .
- This cuts out a scheme X ⊂ C<sup>3</sup> × C with a natural projection map π : X → C.



• Take 
$$d = 3$$
,  $f = x^2 + y^2 - z^2$ .

- Perturb this with a parameter t to get  $\tilde{f} = x^2 + y^2 z^2 t$ .
- This cuts out a scheme X ⊂ C<sup>3</sup> × C with a natural projection map π : X → C.
- The fiber over 0 is just X. The fiber over  $t \neq 0$  is smooth.



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• Take d = 3,  $f_1 = x - y$ ,  $f_2 = x - z$ ,  $f_3 = y - z$ .

• Take 
$$d = 3$$
,  $f_1 = x - y$ ,  $f_2 = x - z$ ,  $f_3 = y - z$ .

• These equations cut out a line x = y = z in  $\mathbb{C}^3$ .

• Take 
$$d = 3$$
,  $f_1 = x - y$ ,  $f_2 = x - z$ ,  $f_3 = y - z$ .

- These equations cut out a line x = y = z in  $\mathbb{C}^3$ .
- ► Now perturb:

$$\widetilde{f_1} = x - y + t$$
  

$$\widetilde{f_2} = x - z + t$$
  

$$\widetilde{f_3} = y - z + t$$

• Take 
$$d = 3$$
,  $f_1 = x - y$ ,  $f_2 = x - z$ ,  $f_3 = y - z$ .

- These equations cut out a line x = y = z in  $\mathbb{C}^3$ .
- Now perturb:

$$\widetilde{f_1} = x - y + t$$
  

$$\widetilde{f_2} = x - z + t$$
  

$$\widetilde{f_3} = y - z + t$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Something is fishy! The fiber over  $t \neq 0$  is a point!

• Take 
$$d = 3$$
,  $f_1 = x - y$ ,  $f_2 = x - z$ ,  $f_3 = y - z$ .

- These equations cut out a line x = y = z in  $\mathbb{C}^3$ .
- Now perturb:

$$\widetilde{f_1} = x - y + t$$
  

$$\widetilde{f_2} = x - z + t$$
  

$$\widetilde{f_3} = y - z + t$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Something is fishy! The fiber over  $t \neq 0$  is a point!

Problem: the relation  $f_2 - f_1 = f_3$  doesn't lift to a relation among the  $\tilde{f}_i$ .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Consider the start of a free resolution of S/I:

$$\cdots \longrightarrow S^n \xrightarrow{R} S^m \xrightarrow{F} S \longrightarrow S/I \longrightarrow 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Here, F is a matrix whose columns are just the  $f_i$ .

Consider the start of a free resolution of S/I:

$$\cdots \longrightarrow S^n \xrightarrow{R} S^m \xrightarrow{F} S \longrightarrow S/I \longrightarrow 0.$$

Here, F is a matrix whose columns are just the  $f_i$ . Consider a ring of deformation parameters  $T = \mathbb{C}[t_1, \ldots, t_e]$  and set  $\tilde{S} = S \otimes T$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider the start of a free resolution of S/I:

$$\cdots \longrightarrow S^n \xrightarrow{R} S^m \xrightarrow{F} S \longrightarrow S/I \longrightarrow 0.$$

Here, F is a matrix whose columns are just the  $f_i$ . Consider a ring of deformation parameters  $T = \mathbb{C}[t_1, \ldots, t_e]$  and set  $\tilde{S} = S \otimes T$ . Let  $\tilde{F} : \tilde{S}^m \to \tilde{S}$  be a perturbation of F.

Consider the start of a free resolution of S/I:

$$\cdots \longrightarrow S^n \xrightarrow{R} S^m \xrightarrow{F} S \longrightarrow S/I \longrightarrow 0.$$

Here, F is a matrix whose columns are just the  $f_i$ . Consider a ring of deformation parameters  $T = \mathbb{C}[t_1, \ldots, t_e]$  and set  $\tilde{S} = S \otimes T$ . Let  $\tilde{F} : \tilde{S}^m \to \tilde{S}$  be a perturbation of F.

#### Definition

The relations R lift with respect to  $\widetilde{F}$  subject to equations  $g_1, \ldots, g_k \in T$  if there exists a  $\widetilde{R} : \widetilde{S}^n \to \widetilde{S}^m$  restricting to R such that

$$\operatorname{Im}\left(\widetilde{F}\cdot\widetilde{R}\right)\subset\left\langle g_{i}\right\rangle$$

<ロ> <@> < E> < E> E のQの

Take d = 4 and consider the matrix

$$F = \left( \begin{array}{cc} x_1 x_3 - x_2^2 & x_2 x_4 - x_3^2 & x_1 x_4 - x_2 x_3 \end{array} \right).$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Take d = 4 and consider the matrix

$$F = \left( \begin{array}{cc} x_1 x_3 - x_2^2 & x_2 x_4 - x_3^2 & x_1 x_4 - x_2 x_3 \end{array} \right).$$

A relation matrix is given by

$$R = \begin{pmatrix} x_4 & x_3 \\ x_2 & x_1 \\ -x_3 & -x_2 \end{pmatrix}.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Take d = 4 and consider the matrix

$$\widetilde{F} = \left(\begin{array}{cc} x_1 x_3 - x_2^2 + t x_2 & x_2 x_4 - x_3^2 - t x_4 & x_1 x_4 - x_2 x_3 \end{array}\right).$$

A relation matrix is given by

$$R = \begin{pmatrix} x_4 & x_3 \\ x_2 & x_1 \\ -x_3 & -x_2 \end{pmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• We can perturb F to  $\widetilde{F}$ .

Take d = 4 and consider the matrix

$$\widetilde{F} = \left(\begin{array}{cc} x_1 x_3 - x_2^2 + t x_2 & x_2 x_4 - x_3^2 - t x_4 & x_1 x_4 - x_2 x_3 \end{array}\right).$$

A relation matrix is given by

$$\widetilde{R} = \left( egin{array}{ccc} x_4 & x_3 \ x_2 & x_1 \ -x_3 & -x_2 + t \end{array} 
ight).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We can perturb F to  $\widetilde{F}$ .
- A lifting of R is given by  $\widetilde{R}$ .

#### Definition

A deformation of  $X \subset \mathbb{C}^d$  over  $Z = \text{Spec}(T/\langle g_i \rangle)$  consists of a perturbation  $\widetilde{F}$  of F such that the relations lift with respect to  $\widetilde{F}$ , subject to the equations  $g_i$ .

#### Definition

A deformation of  $X \subset \mathbb{C}^d$  over  $Z = \text{Spec}(T/\langle g_i \rangle)$  consists of a perturbation  $\widetilde{F}$  of F such that the relations lift with respect to  $\widetilde{F}$ , subject to the equations  $g_i$ .

•  $\widetilde{F}$  defines a scheme  $\mathcal{X} \subset \mathbb{C}^d \times Z$  and a map  $\pi : \mathcal{X} \to Z$ .

#### Definition

A deformation of  $X \subset \mathbb{C}^d$  over  $Z = \text{Spec}(T/\langle g_i \rangle)$  consists of a perturbation  $\widetilde{F}$  of F such that the relations lift with respect to  $\widetilde{F}$ , subject to the equations  $g_i$ .

- $\widetilde{F}$  defines a scheme  $\mathcal{X} \subset \mathbb{C}^d \times Z$  and a map  $\pi : \mathcal{X} \to Z$ .
- $\mathcal{X}$  is the *total space*, Z the *base space* of the deformation.

#### Definition

A deformation of  $X \subset \mathbb{C}^d$  over  $Z = \text{Spec}(T/\langle g_i \rangle)$  consists of a perturbation  $\widetilde{F}$  of F such that the relations lift with respect to  $\widetilde{F}$ , subject to the equations  $g_i$ .

- $\widetilde{F}$  defines a scheme  $\mathcal{X} \subset \mathbb{C}^d \times Z$  and a map  $\pi : \mathcal{X} \to Z$ .
- $\mathcal{X}$  is the *total space*, Z the *base space* of the deformation.

#### Example

For hypersurfaces, arbitrary perturbations are allowed.

< ロ > < 昂 > < 言 > < 言 > 三 - のへの

• Consider a deformation of X.

- Consider a deformation of X.
- We can *induce* other deformations of X by applying changes of coordinates to the variables x<sub>i</sub> and substituting in new deformation parameters for the t<sub>i</sub>.

- Consider a deformation of X.
- We can *induce* other deformations of X by applying changes of coordinates to the variables x<sub>i</sub> and substituting in new deformation parameters for the t<sub>i</sub>.

Example

- Consider a deformation of X.
- We can *induce* other deformations of X by applying changes of coordinates to the variables x<sub>i</sub> and substituting in new deformation parameters for the t<sub>i</sub>.

#### Example

• Consider the deformation given by  $\tilde{f} = x^2 + y^2 - z^2 - t$ .

- Consider a deformation of X.
- We can *induce* other deformations of X by applying changes of coordinates to the variables x<sub>i</sub> and substituting in new deformation parameters for the t<sub>i</sub>.

#### Example

- Consider the deformation given by  $\tilde{f} = x^2 + y^2 z^2 t$ .
- Can we induce the deformation given by  $x^2 + y^2 z^2 sz$ ?

- Consider a deformation of X.
- We can *induce* other deformations of X by applying changes of coordinates to the variables x<sub>i</sub> and substituting in new deformation parameters for the t<sub>i</sub>.

#### Example

- Consider the deformation given by  $\tilde{f} = x^2 + y^2 z^2 t$ .
- Can we induce the deformation given by  $x^2 + y^2 z^2 sz$ ?
- ► Yes! Substitute  $t = -\frac{1}{4}s^2$  and take the change of coordinates  $z \mapsto (z + \frac{1}{2}s)$ .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

#### Definition

A deformation of X is called (formally) *versal* if any (infinitesimal) deformation of X may be induced from it.

#### Definition

A deformation of X is called (formally) *versal* if any (infinitesimal) deformation of X may be induced from it.

• If dim Sing X = 0 and we allow  $\tilde{F}$  and  $\tilde{R}$  to contain formal power series, then X has a formally versal deformation.

#### Definition

A deformation of X is called (formally) *versal* if any (infinitesimal) deformation of X may be induced from it.

• If dim Sing X = 0 and we allow  $\tilde{F}$  and  $\tilde{R}$  to contain formal power series, then X has a formally versal deformation.

Q: How can we compute a versal deformation of X?

#### Definition

A deformation of X is called (formally) *versal* if any (infinitesimal) deformation of X may be induced from it.

• If dim Sing X = 0 and we allow  $\tilde{F}$  and  $\tilde{R}$  to contain formal power series, then X has a formally versal deformation.

Q: How can we compute a versal deformation of X?A: Using Macaulay2 and the package VersalDeformations.

**Deformation Basics** 

Computing Versal Deformations



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Input:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Input: A matrix F containing the equations of X.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Input: A matrix F containing the equations of X. Output:

Input: A matrix F containing the equations of X. Output:

• A basis for  $T_X^1$ , the space of deformations over  $\operatorname{Spec} \mathbb{C}[t]/t^2$ .

・ロト・日本・モート モー うへぐ

Input: A matrix F containing the equations of X. Output:

• A basis for  $T_X^1$ , the space of deformations over  $\operatorname{Spec} \mathbb{C}[t]/t^2$ .

► A basis for T<sup>2</sup><sub>X</sub>, which contains obstructions to lifting deformations.

Input: A matrix F containing the equations of X. Output:

• A basis for  $T_X^1$ , the space of deformations over  $\operatorname{Spec} \mathbb{C}[t]/t^2$ .

- ► A basis for T<sup>2</sup><sub>X</sub>, which contains obstructions to lifting deformations.
- ► A formally versal deformation of X (more details later).

Input: A matrix F containing the equations of X. Output:

- A basis for  $T_X^1$ , the space of deformations over  $\operatorname{Spec} \mathbb{C}[t]/t^2$ .
- ► A basis for T<sup>2</sup><sub>X</sub>, which contains obstructions to lifting deformations.

• A formally versal deformation of X (more details later). Basic approach: iteratively lift deformations in  $T_X^1$  to larger and larger base spaces.

# Computational Example I: Our A<sub>1</sub> Singularity

<ロ> <@> < E> < E> E のQの

# Computational Example I: Our A<sub>1</sub> Singularity

(ロ)、

• 
$$F = (x^2 + y^2 - z^2).$$

## Computational Example I: Our $A_1$ Singularity

• 
$$F = (x^2 + y^2 - z^2).$$

Any first order deformation can be induced from  $F + t_1 \cdot 1 = (x^2 + y^2 - z^2 + t_1)$  with  $t_1^2 = 0$ .

The command "versalDeformation" outputs four lists FL, RL, GL, and CL where

The command "versalDeformation" outputs four lists *FL*, *RL*, *GL*, and *CL* where

• *FL* is a list of matrices whose sum is the perturbation matrix  $\widetilde{F}$  of a versal deformation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The command "versalDeformation" outputs four lists FL, RL, GL, and CL where

• *FL* is a list of matrices whose sum is the perturbation matrix  $\widetilde{F}$  of a versal deformation.

• *RL* is a list of matrices whose sum is a lifting  $\tilde{R}$  of *R*.

The command "versalDeformation" outputs four lists FL, RL, GL, and CL where

- *FL* is a list of matrices whose sum is the perturbation matrix  $\widetilde{F}$  of a versal deformation.
- *RL* is a list of matrices whose sum is a lifting  $\widetilde{R}$  of *R*.
- ► *GL* is a list of matrices whose sum *G* contains the equations cutting out the versal base space.

The command "versalDeformation" outputs four lists FL, RL, GL, and CL where

- *FL* is a list of matrices whose sum is the perturbation matrix  $\widetilde{F}$  of a versal deformation.
- *RL* is a list of matrices whose sum is a lifting  $\widetilde{R}$  of *R*.
- ► *GL* is a list of matrices whose sum *G* contains the equations cutting out the versal base space.

These matrices solve the "deformation equation"

$$(\widetilde{F}\cdot\widetilde{R})^{\mathrm{tr}}+C\cdot G=0$$

where C is the sum of the list CL.

Take

$$F = \begin{pmatrix} x_1 x_3 - x_2^2 & x_2 x_4 - x_3^2 & x_1 x_4 - x_2 x_3 \end{pmatrix}.$$

Take F to be the transpose of 
$$\begin{pmatrix} x_1x_3 - x_2^2 \\ x_2x_4 - x_3^2 \\ x_3x_5 - x_4^2 \\ x_1x_4 - x_2x_3 \\ x_2x_5 - x_3x_4 \\ x_1x_5 - x_2x_5 \end{pmatrix}.$$

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

Take F to be the transpose of 
$$\begin{pmatrix} x_1x_3 - x_2^2 \\ x_2x_4 - x_3^2 \\ x_3x_5 - x_4^2 \\ x_1x_4 - x_2x_3 \\ x_2x_5 - x_3x_4 \\ x_1x_5 - x_2x_5 \end{pmatrix}$$

► The base space has two components, C<sup>3</sup> and C meeting in a point.



## Total Spaces Over the Components

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

The components come from two ways of writing the equations of X:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The components come from two ways of writing the equations of X:

$$\mathsf{rk}\left(\begin{array}{rrrr} x_1 & x_2 & x_3 & x_4 \\ x_2 & x_3 & x_4 & x_5 \end{array}\right) \leq 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The components come from two ways of writing the equations of X:

$$\mathsf{rk}\left(\begin{array}{ccc} x_{1} & x_{2} & x_{3} & x_{4} \\ x_{2} & x_{3} & x_{4} & x_{5} \end{array}\right) \leq 1$$
$$\mathsf{rk}\left(\begin{array}{ccc} x_{1} & x_{2} & x_{3} \\ x_{2} & x_{3} & x_{4} \\ x_{3} & x_{4} & x_{5} \end{array}\right) \leq 1$$

The components come from two ways of writing the equations of X:

$$\mathsf{rk}\left(\begin{array}{cccc} x_1 & x_2 & x_3 & x_4 \\ x_2 + s_1 & x_3 + s_2 & x_4 + s_3 & x_5 \end{array}\right) \le 1$$

$$\mathsf{rk} \left( \begin{array}{ccc} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_4 \\ x_3 & x_4 & x_5 \end{array} \right) \le 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The components come from two ways of writing the equations of X:

$$\mathsf{rk} \left( \begin{array}{cccc} x_1 & x_2 & x_3 & x_4 \\ x_2 + s_1 & x_3 + s_2 & x_4 + s_3 & x_5 \end{array} \right) \leq 1$$

$$\mathsf{rk} \left( \begin{array}{ccc} x_1 & x_2 & x_3 \\ x_2 & x_3 + s_4 & x_4 \\ x_3 & x_4 & x_5 \end{array} \right) \le 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► Can calculate T<sup>1</sup><sub>X</sub>, T<sup>2</sup><sub>X</sub>, and normal modules for projective X in good situations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

► Can calculate T<sup>1</sup><sub>X</sub>, T<sup>2</sup><sub>X</sub>, and normal modules for projective X in good situations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Can calculate versal deformations for projective X.

► Can calculate T<sup>1</sup><sub>X</sub>, T<sup>2</sup><sub>X</sub>, and normal modules for projective X in good situations.

- Can calculate versal deformations for projective X.
- Can calculate local (multigraded) Hilbert schemes.

► Can calculate T<sup>1</sup><sub>X</sub>, T<sup>2</sup><sub>X</sub>, and normal modules for projective X in good situations.

- Can calculate versal deformations for projective X.
- Can calculate local (multigraded) Hilbert schemes.
- Can lift deformations in given tangent direction to a one-parameter family.

### A Toric Fano Threefold

#### A Toric Fano Threefold

Let X be the projective subscheme of  $\mathbb{P}^8$  cut out by

$$\begin{array}{ll} x_{i+1}x_{i-1} - x_iy_0 & 1 \le i \le 6 \\ x_ix_{i+3} - y_0^2 & 1 \le i \le 3 \\ y_1y_2 - y_0^2 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where  $\mathbb{P}^8$  has coordinates  $x_1, \ldots, x_6, y_0, y_1, y_2$ .

### A Toric Fano Threefold

Let X be the projective subscheme of  $\mathbb{P}^8$  cut out by

$$\begin{array}{ll} x_{i+1}x_{i-1} - x_iy_0 & 1 \leq i \leq 6 \\ x_ix_{i+3} - y_0^2 & 1 \leq i \leq 3 \\ y_1y_2 - y_0^2 \end{array}$$

where  $\mathbb{P}^8$  has coordinates  $x_1, \ldots, x_6, y_0, y_1, y_2$ .



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

The versal base space of X has three components.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The versal base space of X has three components. X admits smoothings to three different kinds of Fano threefolds.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

The versal base space of X has three components. X admits smoothings to three different kinds of Fano threefolds.

Similar calculations + lots of hard work can be used to classify all smoothings of Gorenstein Fano toric threefolds of degree  $\leq 12$ .

### References

Jan Arthur Christophersen and Nathan Owen Ilten. Toric degenerations of low degree Fano threefolds. arXiv:1202.0510v1 [math.AG], 2012.

📔 Nathan Owen Ilten.

VersalDeformations — a package for computing versal deformations and local Hilbert schemes. arXiv:1107.2416v1 [math.AG], 2011.



Jan Stevens.

Computing versal deformations.

Experiment. Math., 4(2):129–144, 1995.

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

#### Definition

Let  $T_X^1$  be the set of isomorphism classes of deformations of X with base space  $\text{Spec } \mathbb{C}[t]/t^2$ .

#### Definition

Let  $T_X^1$  be the set of isomorphism classes of deformations of X with base space  $\operatorname{Spec} \mathbb{C}[t]/t^2$ .

 $T_X^1$  may be computed as the cokernel of

$$J: S^d o \operatorname{Hom}_{\mathcal{S}}(I, S/I) \subset (S/I)^m$$

where J is the Jacobian matrix  $\left(\frac{\partial f_i}{\partial x_j}\right)_{ij}$ .

#### Definition

Let  $T_X^1$  be the set of isomorphism classes of deformations of X with base space  $\operatorname{Spec} \mathbb{C}[t]/t^2$ .

 $T_X^1$  may be computed as the cokernel of

$$J:S^d o \operatorname{Hom}_{\mathcal{S}}(I,S/I) \subset (S/I)^m$$

where J is the Jacobian matrix  $\left(\frac{\partial f_i}{\partial x_j}\right)_{ij}$ . If dim Sing(X) = 0, then dim<sub>C</sub>  $T_X^1 < \infty$ .

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / の�?

• Choose  $\phi_i \in \text{Hom}(S^m, S)$   $i = 1, \dots, e$  which represent a basis of  $T_X^1$ .

Choose φ<sub>i</sub> ∈ Hom(S<sup>m</sup>, S) i = 1,..., e which represent a basis of T<sup>1</sup><sub>X</sub>.

• Set  $T = \mathbb{C}[t_1, \ldots, t_e]$  with maximal ideal  $\mathfrak{m} = \langle t_1, \ldots, t_e \rangle$ .

- Choose φ<sub>i</sub> ∈ Hom(S<sup>m</sup>, S) i = 1,..., e which represent a basis of T<sup>1</sup><sub>X</sub>.
- Set  $T = \mathbb{C}[t_1, \ldots, t_e]$  with maximal ideal  $\mathfrak{m} = \langle t_1, \ldots, t_e \rangle$ .
- Let  $F^1 \colon \widetilde{S}^m \to \widetilde{S}$  be the perturbation of  $F = F^0$  defined by

$$F^1 = F^0 + \sum_{i=1}^e t_i \phi_i.$$

- Choose φ<sub>i</sub> ∈ Hom(S<sup>m</sup>, S) i = 1,..., e which represent a basis of T<sup>1</sup><sub>X</sub>.
- Set  $T = \mathbb{C}[t_1, \ldots, t_e]$  with maximal ideal  $\mathfrak{m} = \langle t_1, \ldots, t_e \rangle$ .
- Let  $F^1 \colon \widetilde{S}^m \to \widetilde{S}$  be the perturbation of  $F = F^0$  defined by

$$F^1 = F^0 + \sum_{i=1}^e t_i \phi_i.$$

▶ The relations *R* lift with respect to  $F^1$  subject to  $\mathfrak{m}^2$  to some  $R^1: \widetilde{S}^n \to \widetilde{S}^m$ .

- Choose φ<sub>i</sub> ∈ Hom(S<sup>m</sup>, S) i = 1,..., e which represent a basis of T<sup>1</sup><sub>X</sub>.
- Set  $T = \mathbb{C}[t_1, \ldots, t_e]$  with maximal ideal  $\mathfrak{m} = \langle t_1, \ldots, t_e \rangle$ .
- Let  $F^1 \colon \widetilde{S}^m \to \widetilde{S}$  be the perturbation of  $F = F^0$  defined by

$$F^1 = F^0 + \sum_{i=1}^e t_i \phi_i.$$

▶ The relations *R* lift with respect to  $F^1$  subject to  $\mathfrak{m}^2$  to some  $R^1: \widetilde{S}^n \to \widetilde{S}^m$ . This can be computed using matrix quotients in Macaulay2.

<ロト (個) (目) (目) (目) (0) (0)</p>

Goal: lift this deformation to a "larger" base space.

- Goal: lift this deformation to a "larger" base space.
- ▶ Given  $F^{i-1} \in \text{Hom}(\widetilde{S}^m, \widetilde{S}), R^{i-1} \in \text{Hom}(\widetilde{S}^n, \widetilde{S}^m)$ , we would like to find  $F^i$  and  $R^i$  such that

- ► Goal: lift this deformation to a "larger" base space.
- Given  $F^{i-1} \in \text{Hom}(\widetilde{S}^m, \widetilde{S}), R^{i-1} \in \text{Hom}(\widetilde{S}^n, \widetilde{S}^m)$ , we would like to find  $F^i$  and  $R^i$  such that

1.  $F^i \equiv F^{i-1} \mod \mathfrak{m}^i$ ,  $R^i \equiv R^{i-1} \mod \mathfrak{m}^i$ ;

- Goal: lift this deformation to a "larger" base space.
- ▶ Given  $F^{i-1} \in \text{Hom}(\widetilde{S}^m, \widetilde{S}), R^{i-1} \in \text{Hom}(\widetilde{S}^n, \widetilde{S}^m)$ , we would like to find  $F^i$  and  $R^i$  such that

- 1.  $F^i \equiv F^{i-1} \mod \mathfrak{m}^i$ ,  $R^i \equiv R^{i-1} \mod \mathfrak{m}^i$ ;
- 2.  $F^i \cdot R^i \equiv 0 \mod \mathfrak{m}^{i+1}$ .

Goal: lift this deformation to a "larger" base space.
Given F<sup>i-1</sup> ∈ Hom(S̃<sup>m</sup>, S̃), R<sup>i-1</sup> ∈ Hom(S̃<sup>n</sup>, S̃<sup>m</sup>), we would like to find F<sup>i</sup> and R<sup>i</sup> such that

F<sup>i</sup> ≡ F<sup>i-1</sup> mod m<sup>i</sup>, R<sup>i</sup> ≡ R<sup>i-1</sup> mod m<sup>i</sup>;
F<sup>i</sup> ⋅ R<sup>i</sup> ≡ 0 mod m<sup>i+1</sup>.

In general, this is not possible!!!

If dim Sing(X) = 0, there is a finite dimensional C-vector space T<sup>2</sup><sub>X</sub> containing obstructions to lifting F<sup>i</sup>, R<sup>i</sup>.

- If dim Sing(X) = 0, there is a finite dimensional C-vector space T<sup>2</sup><sub>X</sub> containing obstructions to lifting F<sup>i</sup>, R<sup>i</sup>.
- Choose V ∈ Hom(S<sup>1</sup>, S<sup>n</sup>) such that its columns represent a basis of T<sup>2</sup><sub>X</sub>.

- If dim Sing(X) = 0, there is a finite dimensional C-vector space T<sup>2</sup><sub>X</sub> containing obstructions to lifting F<sup>i</sup>, R<sup>i</sup>.
- Choose V ∈ Hom(S<sup>1</sup>, S<sup>n</sup>) such that its columns represent a basis of T<sup>2</sup><sub>X</sub>.
- ▶ It is possible to inductively construct  $F^i$ ,  $R^i$ ,  $G^{i-2} \in \text{Hom}(\widetilde{S}, \widetilde{S}^i)$ ,  $C^{i-2} \in \text{Hom}(\widetilde{S}^i, \widetilde{S}^n)$  solving

$$(F^i R^i)^{\mathrm{tr}} + C^{i-2} G^{i-2} \equiv 0 \mod \mathfrak{m}^{i+1}.$$

- If dim Sing(X) = 0, there is a finite dimensional C-vector space T<sup>2</sup><sub>X</sub> containing obstructions to lifting F<sup>i</sup>, R<sup>i</sup>.
- Choose V ∈ Hom(S<sup>1</sup>, S<sup>n</sup>) such that its columns represent a basis of T<sup>2</sup><sub>X</sub>.
- ▶ It is possible to inductively construct  $F^i$ ,  $R^i$ ,  $G^{i-2} \in \text{Hom}(\widetilde{S}, \widetilde{S}^i)$ ,  $C^{i-2} \in \text{Hom}(\widetilde{S}^i, \widetilde{S}^n)$  solving

$$(F^i R^i)^{\mathrm{tr}} + C^{i-2} G^{i-2} \equiv 0 \mod \mathfrak{m}^{i+1}.$$

1. 
$$F^i, R^i, G^{i-2}, C^{i-2}$$
 reduce to  $F^{i-1}, R^{i-1}, G^{i-3}, C^{i-3}$  modulo  $\mathfrak{m}^i$ ;

- If dim Sing(X) = 0, there is a finite dimensional C-vector space T<sup>2</sup><sub>X</sub> containing obstructions to lifting F<sup>i</sup>, R<sup>i</sup>.
- Choose V ∈ Hom(S<sup>1</sup>, S<sup>n</sup>) such that its columns represent a basis of T<sup>2</sup><sub>X</sub>.
- ▶ It is possible to inductively construct  $F^i$ ,  $R^i$ ,  $G^{i-2} \in \text{Hom}(\widetilde{S}, \widetilde{S}^i)$ ,  $C^{i-2} \in \text{Hom}(\widetilde{S}^i, \widetilde{S}^n)$  solving

$$(F^i R^i)^{\mathrm{tr}} + C^{i-2} G^{i-2} \equiv 0 \mod \mathfrak{m}^{i+1}.$$

- 1.  $F^i, R^i, G^{i-2}, C^{i-2}$  reduce to  $F^{i-1}, R^{i-1}, G^{i-3}, C^{i-3}$  modulo  $\mathfrak{m}^i;$
- 2.  $G^{i-2}$  and  $C^{i-2}$  vanish for i < 2;

- If dim Sing(X) = 0, there is a finite dimensional C-vector space T<sup>2</sup><sub>X</sub> containing obstructions to lifting F<sup>i</sup>, R<sup>i</sup>.
- Choose V ∈ Hom(S<sup>1</sup>, S<sup>n</sup>) such that its columns represent a basis of T<sup>2</sup><sub>X</sub>.
- ▶ It is possible to inductively construct  $F^i$ ,  $R^i$ ,  $G^{i-2} \in \text{Hom}(\widetilde{S}, \widetilde{S}^i)$ ,  $C^{i-2} \in \text{Hom}(\widetilde{S}^i, \widetilde{S}^n)$  solving

$$(F^i R^i)^{\mathrm{tr}} + C^{i-2} G^{i-2} \equiv 0 \mod \mathfrak{m}^{i+1}.$$

- 1.  $F^i, R^i, G^{i-2}, C^{i-2}$  reduce to  $F^{i-1}, R^{i-1}, G^{i-3}, C^{i-3}$  modulo  $\mathfrak{m}^i$ ;
- 2.  $G^{i-2}$  and  $C^{i-2}$  vanish for i < 2;
- 3.  $C^0$  is of the form  $V \cdot D$ , where  $D \in \text{Hom}(S^d, S^d)$  is a diagonal matrix.

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

The perturbation  $\lim_{i\to\infty} F^i$  gives a formally versal deformation over the base space cut out by the rows of  $\lim_{i\to\infty} G^{i-2}$ .