Macdonald polynomials and Hilbert schemes

Mark Haiman
U.C. Berkeley

LECTURE I

Introduction to Hall-Littlewood and Macdonald polynomials, and the n ! and $(n+1)^{(n-1)}$ theorems

Hall-Littlewood polynomials from geometry

A flag is a chain of subspaces

$$
F_{\bullet}=\left(0 \subset F_{1} \subset F_{2} \subset \cdots \subset F_{n-1} \subset \mathbb{C}^{n}\right)
$$

Denote the usual basis of \mathbb{C}^{n} by $\left\{e_{1}, \ldots, e_{n}\right\}$. The standard flag E_{\bullet} is given by

$$
E_{i}=\left\langle e_{1}, \ldots, e_{i}\right\rangle
$$

Let

$$
\begin{aligned}
& G=G L_{n}(\mathbb{C}) \\
& B=\{\text { upper triangular matrices }\} \subseteq G .
\end{aligned}
$$

Then G acts transitively on

$$
X=\{\mathrm{flags}\}
$$

and B is the stabilizer of E_{\bullet}, hence

$$
X=G / B
$$

Fix a partition of n,

$$
\mu=\left(\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{l}\right)
$$

and a unipotent matrix

$$
g_{\mu} \in G
$$

with Jordan block sizes μ_{i}.
Example ($n=5$):

$$
\begin{gathered}
\mu=(3,2) \\
g_{\mu}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

Let

$$
X_{\mu}=\left\{F_{\bullet} \in X: g_{\mu} X=X\right\}
$$

be the set of flags fixed by $g_{\mu} . X_{\mu}$ is a Springer variety.

Examples:

$$
\begin{aligned}
X_{\left(1^{n}\right)} & =X, \\
X_{(n)} & =\left\{E_{\bullet}\right\} \text { is a point },
\end{aligned}
$$

$X_{(2,1)}=$ is a union of two \mathbb{P}^{1} 's meeting at E_{\bullet}.
Definition. $R_{\mu}=H^{*}\left(X_{\mu}, \mathbb{C}\right)$.
Some facts:

1. $H^{i}\left(X_{\mu}\right)=0$ for i odd; so R_{μ} is a commutative, graded \mathbb{C}-algebra.
2. $R_{\left(1^{n}\right)}=H^{*}(X) \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(S_{n}\right.$-invariants $)$.
3. $X_{\mu} \subseteq X$ induces a surjection $R_{\left(1^{n}\right)} \rightarrow R_{\mu}$, so $R_{\mu}=R_{\left(1^{n}\right)} / I_{\mu}$.
4. The ideal I_{μ} is S_{n}-invariant, so S_{n} acts on R_{μ}.

Problem. Describe the action of S_{n} on the graded ring R_{μ}.

I'll write the solution in terms of the characteristic map
$\mathcal{F}: S_{n}$-characters \rightarrow symmetric functions

$$
\mathcal{F} V=\sum_{|\mu|=n} \operatorname{dim}\left(V^{S_{\mu}}\right) m_{\mu}(\mathbf{z})
$$

of Frobenius. Here

$$
\begin{aligned}
V & \text { is an } S_{n} \text {-module } \\
\mu & \text { is a partition of } n \\
S_{\mu}= & S_{\mu_{1}} \times \cdots \times S_{\mu_{l}} \subseteq S_{n} \\
& \text { is a Young subgroup }
\end{aligned}
$$

$$
m_{\mu}(\mathbf{z})=\left(z_{1}^{\mu_{1}} \cdots z_{l}^{\mu_{l}}+\text { symmetric terms }\right)
$$

is a monomial symmetric function.

Theorem (Frobenius). The characteristic of the irreducible representation V_{λ} is the Schur function

$$
\mathcal{F} V_{\lambda}=S_{\lambda}(\mathbf{z})
$$

For a graded S_{n}-module $V=\oplus_{d} V_{d}$, define the Frobenius series

$$
\mathcal{F} V(\mathbf{z} ; t)=\sum_{d} \mathcal{F}\left(V_{d}\right) t^{d}
$$

Example ($n=3$):

Therefore

$$
\begin{aligned}
\mathcal{F} R_{\left(1^{3}\right)} & =S_{(3)}+\left(t+t^{2}\right) S_{(2,1)}+t^{3} S_{\left(1^{3}\right)} \\
\mathcal{F} R_{(2,1)} & =S_{(3)}+t S_{(2,1)} \\
\mathcal{F} R_{(3)} & =S_{(3)}
\end{aligned}
$$

We work with symmetric functions in infinitely many variables

$$
\begin{aligned}
\wedge_{\mathbb{Q}(t)}(\mathbf{z}) & =\mathbb{Q}(t)\left[z_{1}, z_{2}, \ldots\right]^{S_{\infty}} \\
& \cong \mathbb{Q}(t)\left[p_{1}, p_{2}, \ldots\right]
\end{aligned}
$$

where $p_{k}=m_{(k)}=z_{1}^{k}+z_{2}^{k}+\cdots$ are the Newton power-sums.

Define $\mathbb{Q}(t)$-algebra automorphism $\varepsilon_{t}: \wedge \rightarrow \wedge$

$$
\varepsilon_{t}\left(p_{k}\right)=\left(1-t^{k}\right) p_{k}
$$

and introduce the notation

$$
f[Z(1-t)] \stackrel{\text { def }}{=} \varepsilon_{t}(f) .
$$

As motivation, the inverse of ε_{t} is

$$
f \mapsto f\left(\mathbf{z}, t \mathbf{z}, t^{2} \mathbf{z}, \ldots\right),
$$

which we might naturally denote by

$$
f\left[\frac{Z}{1-t}\right] .
$$

The partial ordering on partitions of n is

$$
\lambda \leq \mu \Leftrightarrow \lambda_{1}+\cdots+\lambda_{k} \leq \mu_{1}+\cdots+\mu_{k} \forall k .
$$

The transpose of a partition is, e.g.,

$$
\mu=(3,2)=\square \square, \quad \mu^{\prime}=(2,2,1)=\square .
$$

Theorem/Definition. The algebra $\wedge_{\mathbb{Q}(t)}$ has a basis of Hall-Littlewood polynomials $\tilde{H}_{\mu}(\mathbf{z} ; t)$ characterized by
(i) $\tilde{H}_{\mu}(\mathbf{z} ; t) \in \mathbb{Q}(t)\left\{S_{\lambda}(\mathbf{z}): \lambda \geq \mu\right\}$;
(ii) $\tilde{H}_{\mu}[Z(1-t) ; t] \in \mathbb{Q}(t)\left\{S_{\lambda}(\mathbf{z}): \lambda \geq \mu^{\prime}\right\}$;
(iii) $\left\langle\tilde{H}_{\lambda}, S_{(n)}\right\rangle=1$.

Theorem (Hotta-Springer). $\mathcal{F} R_{\mu}=\tilde{H}_{\mu}(\mathbf{z} ; t)$.

Remark: Define the t-Kostka coefficients $\tilde{K}_{\lambda \mu}(t)$ by

$$
\tilde{H}_{\mu}(\mathbf{z} ; t)=\sum_{\lambda} \tilde{K}_{\lambda \mu}(t) S_{\lambda}(\mathbf{z})
$$

The Hotta-Springer theorem implies they are non-negative polynomials, $\tilde{K}_{\lambda \mu}(t) \in \mathbb{N}[t]$. A priori we only have $\tilde{K}_{\lambda \mu}(t) \in \mathbb{Q}(t)$.

Macdonald polynomials

Now our symmetric functions will involve two parameters, coefficient ring $\mathbb{Q}(q, t)$.

Theorem/Definition (Macdonald). The algebra $\wedge_{\mathbb{Q}(q, t)}$ has a basis of Macdonald polynomials $\tilde{H}_{\mu}(\mathbf{z} ; q, t)$ characterized by
(i) $\quad \tilde{H}_{\mu}[Z(1-q) ; q, t] \in \mathbb{Q}(t)\left\{S_{\lambda}(\mathrm{z}): \lambda \geq \mu\right\}$;
(ii) $\quad \tilde{H}_{\mu}[Z(1-t) ; q, t] \in \mathbb{Q}(t)\left\{S_{\lambda}(\mathbf{z}): \lambda \geq \mu^{\prime}\right\}$;
(iii) $\left\langle\tilde{H}_{\mu}, S_{(n)}\right\rangle=1$.

Comparing definitions, we see that

$$
\tilde{H}_{\mu}(\mathbf{z} ; 0, t)=\tilde{H}_{\mu}(\mathbf{z} ; t)
$$

New definition has more symmetry:

$$
\tilde{H}_{\mu^{\prime}}(\mathbf{z} ; q, t)=\tilde{H}_{\mu}(\mathbf{z} ; t, q) .
$$

Define the q, t-Kostka coefficients by

$$
\tilde{H}_{\mu}(\mathbf{z} ; q, t)=\sum_{\lambda} \tilde{K}_{\lambda \mu}(q, t) S_{\lambda}(\mathbf{z})
$$

A priori, $\widetilde{K}_{\lambda \mu}(q, t) \in \mathbb{Q}(q, t)$, but. . .
Integrality Theorem (Garsia-Remmel, GarsiaTesler, Knop, Kirillov-Noumi, Lapointe, Sahi ca. 1995).

$$
\widetilde{K}_{\lambda \mu}(q, t) \in \mathbb{Z}[q, t] .
$$

Positivity Theorem (H—2001).

$$
\widetilde{K}_{\lambda \mu}(q, t) \in \mathbb{N}[q, t] .
$$

Macdonald conjectured integrality \& positivity in 1988.

An interpretation of $\tilde{H}_{\mu}(\mathbf{z} ; q, t)$

Recall from rep'n theory of S_{n} that the sign representation $\varepsilon=V_{\left(1^{n}\right)}$ occurs in $V_{\lambda} \otimes V_{\mu}$ if and only if $\lambda=\mu^{\prime}$.

The top degree in R_{μ}, i.e., $\operatorname{dim}_{\mathbb{C}}\left(X_{\mu}\right)$ is

$$
n(\mu)=\sum_{i}(i-1) \mu_{i},
$$

and we have

$$
\begin{aligned}
& \left(R_{\mu}\right)_{n(\mu)} \cong V_{\mu} \\
& V_{\lambda} \text { occurs in }\left(R_{\mu}\right)_{d} \text { for } d<n(\mu) \Rightarrow \lambda>\mu .
\end{aligned}
$$

Then $R_{\mu} \otimes R_{\mu^{\prime}}$ contains ε uniquely, in its top bi-degree ($n(\mu), n\left(\mu^{\prime}\right)$).

Definition. $R_{\mu}(\mathrm{x}, \mathrm{y})=R_{\mu} \otimes R_{\mu^{\prime}} / J$, where J is the unique largest S_{n}-invariant ideal not containing ε.

Elementary description-let the boxes in the diagram of μ be (p_{1}, q_{1}), $\ldots,\left(p_{n}, q_{n}\right)$, as shown for $\mu=(3,2)$:

$(1,0)$	$(1,1)$
$(0,0)$	$(0,1)$

In $\mathbb{C}[\mathbf{x}, \mathbf{y}]=\mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]$, define the polynomial

$$
\Delta_{\mu}(\mathbf{x}, \mathbf{y})=\operatorname{det}\left[\begin{array}{ccc}
x_{1}^{p_{1}} y_{1}^{q_{1}} & \cdots & x_{1}^{p_{n}} y_{1}^{q_{n}} \\
\vdots & & \vdots \\
x_{n}^{p_{1}} y_{n}^{q_{1}} & \cdots & x_{n}^{p_{n}} y_{n}^{q_{n}}
\end{array}\right]
$$

and consider the ideal

$$
J_{\mu}=\left\{f \in \mathbb{C}[\mathbf{x}, \mathbf{y}]: f\left(\frac{\partial}{\partial \mathbf{x}}, \frac{\partial}{\partial \mathbf{y}}\right) \Delta_{\mu}=0\right\} .
$$

Proposition. $R_{\mu}(\mathbf{x}, \mathrm{y}) \cong \mathbb{C}[\mathbf{x}, \mathrm{y}] / J_{\mu}$.

Theorem 1. The Frobenius series of $R_{\mu}(\mathrm{x}, \mathrm{y})$ as a doubly-graded S_{n}-module is

$$
\mathcal{F} R_{\mu}(\mathbf{x}, \mathbf{y})=\tilde{H}_{\mu}(\mathbf{z} ; q, t) .
$$

This implies the Positivity Theorem, since

$$
\tilde{K}_{\lambda \mu}(q, t)=\sum_{r, s} \operatorname{mult}\left(V_{\lambda}, R_{\mu}(\mathbf{x}, \mathbf{y})_{r, s}\right) t^{r} q^{s} .
$$

Example: $R_{(3,1)}(\mathbf{x}, \mathbf{y})$. \square stands for $V_{(2,2)}$, so $\widetilde{K}_{(2,2),(3,1)}(q, t)=q t+q^{2}$, and so on.

$$
\text { y-degree } \rightarrow
$$

Left column shows Springer ring $R_{\mu}=R_{(3,1)}$; bottom row is $R_{\mu^{\prime}}=R_{(2,1,1)}$.

Proposition (Macdonald). Let $V=\mathbb{C} S_{n}$ be the regular representation. Then $\tilde{H}_{\mu}(\mathbf{z} ; 1,1)=$ $p_{1}(\mathbf{z})^{n}=\mathcal{F} V$, for any μ.

Hence Theorem 1 implies

$$
R_{\mu}(\mathrm{x}, \mathrm{y}) \cong \mathbb{C} S_{n}
$$

as an ungraded S_{n}-module; in particular,

$$
\operatorname{dim}\left(R_{\mu}(\mathbf{x}, \mathbf{y})\right)=n!
$$

for every partition μ of n.

For $\mu=\left(1^{n}\right)$, when $R_{\left(1^{n}\right)}(\mathbf{x}, \mathrm{y})=R_{\left(1^{n}\right)}(\mathrm{x})=$ $H^{*}(X)$, this is classical. For general μ, I call it the n ! theorem. It is equivalent to the existence of certain rank n ! vector bundle on the Hilbert scheme (tomorrow's lecture).

The $(n+1)^{n-1}$ theorem
Define the diagonal coinvariant ring

$$
\begin{aligned}
R_{n} & =\mathbb{C}[\mathbf{x}, \mathrm{y}] /\left(S_{n} \text {-invariants }\right) \\
& =\mathbb{C}[\mathbf{x}, \mathbf{y}] /\left(\mathbb{C}[\mathbf{x}, \mathbf{y}]_{+}^{S_{n}}\right),
\end{aligned}
$$

a bivariate analog of the classical coinvariant ring

$$
R_{\left(1^{n}\right)}=\mathbb{C}[\mathrm{x}] /\left(S_{n} \text {-invariants }\right)=H^{*}(X, \mathbb{C})
$$

The rings R_{μ} in the n ! theorem are quotients,

$$
R_{n} \rightarrow R_{\mu}
$$

Theorem 2. Let ∇ be the linear operator on $\wedge_{\mathbb{Q}(q, t)}$ given by

$$
\nabla \widetilde{H}_{\mu}(\mathbf{z} ; q, t)=t^{n(\mu)} q^{n\left(\mu^{\prime}\right)} \tilde{H}_{\mu}(\mathbf{z} ; q, t),
$$

and let $e_{n}(\mathbf{z})$ be the n-th elementary symmetric function. The Frobenius series of the diagonal coinvariant ring is

$$
\mathcal{F} R_{n}=\nabla e_{n}(\mathbf{z})
$$

Some remarkable consequences...
Corollary 1. We have

$$
\operatorname{dim}\left(R_{n}\right)=(n+1)^{n-1}
$$

and R_{n} is isomorphic as an S_{n}-module to $\varepsilon \otimes V$, where V is the permutation representation of S_{n} on the finite abelian group

$$
(\mathbb{Z} /(n+1) \mathbb{Z})^{n} /\langle(1,1, \ldots, 1)\rangle .
$$

Corollary 2. Ignoring the \mathbf{y}-grading and considering only x -degree,

$$
\operatorname{dim}\left(R_{n}\right)_{d,-}
$$

is equal to the number of rooted forests on the vertex set $\{1, \ldots, n\}$ with d inversions [example:

has three inversions: $(1,3),(2,6),(2,5)]$.

In Lecture 2, we'll explain these symmetric function formulas by interpreting the rings R_{μ} and R_{n} in terms of the Hilbert scheme of points in the plane.

Now consider any Weyl group W, its root lattice Q and defining representation $\mathfrak{h}=Q \otimes_{\mathbb{Z}} \mathbb{C}$.

Theorem (I. Gordon). The diagonal coinvariant ring

$$
R_{W}=\mathcal{O}(\mathfrak{h} \oplus \mathfrak{h}) /(W \text {-invariants })
$$

has a natural quotient \widehat{R}_{W} such that

$$
\operatorname{dim}\left(\widehat{R}_{W}\right)=(h+1)^{r},
$$

where h is the Coxeter number and $r=\operatorname{dim}(\mathfrak{h})$ is the rank. Moreover, R_{W} is isomorphic as a W-module to $\varepsilon \otimes V$, where V is the permutation representation of W on $Q /(h+1) Q$.

Example. For $W=B_{4}, \operatorname{dim}\left(R_{W}\right)=9^{4}+1$, but $\operatorname{dim}\left(\widehat{R}_{W}\right)=9^{4}$. Gordon's method doesn't explain the fact that $R_{W}=\widehat{R}_{W}$ for $W=S_{n}$.

Macdonald polynomials and Hilbert schemes

Mark Haiman
U.C. Berkeley

LECTURE II

The connection between Macdonald polynomials and the Hilbert scheme of points in the plane

Hilbert scheme $H_{n}=\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$

As a set...

$$
\begin{aligned}
H_{n} & =\left\{\text { finite subschemes } S \subseteq \mathbb{C}^{2} \text { of length } n\right\} \\
& =\left\{\text { ideals } I \subseteq \mathbb{C}[x, y]: \operatorname{dim}_{\mathbb{C}}(\mathbb{C}[x, y] / I)=n\right\}
\end{aligned}
$$

As a scheme (in coordinates)...

Set $M_{\mu}=\left\{x^{p} y^{q}:(p, q) \in \mu\right\}$, e.g. $(n=5)$

$$
M_{(3,2)}=\begin{array}{|c|c|}
\hline x & x y \\
\hline 1 & y \\
\hline
\end{array} .
$$

H_{n} is covered by open affines

$$
U_{\mu}=\left\{I: M_{\mu} \text { spans } \mathbb{C}[x, y] / I\right\} .
$$

Given $(r, s) \notin \mu$, have unique coefficients s.t.

$$
x^{r} y^{s} \equiv \sum_{(p, q) \in \mu} C_{p q}^{r s} x^{p} y^{q}(\bmod I)
$$

I ideal \Leftrightarrow certain equations in $C_{p q}^{r s}$'s hold.

As a scheme (functorially)...

Have tautological family

$$
\begin{aligned}
& \underset{\|_{n}}{F} \subseteq H_{n} \times \mathbb{C}^{2} \\
& H_{n}
\end{aligned}
$$

with fibers $\pi^{-1}(I)=\operatorname{Spec}(\mathbb{C}[x, y] / I)$.

Universal property: any family

$$
\underbrace{T \subseteq Z \times \mathbb{C}^{2}}_{Z}
$$

flat \& finite of degree n over Z, is the pullback of F by a unique morphism

(H_{n} represents the functor of such families.)

More info. . .
Theorem (Fogarty). H_{n} is non-singular, reduced and irreducible of dimension $2 n$.

The Chow morphism

$$
\begin{gathered}
H_{n} \underset{\sigma}{\longrightarrow} \operatorname{Sym}^{n}\left(\mathbb{C}^{2}\right) \\
\sigma(S)=\sum_{P}\left(\text { length } \mathcal{O}_{S, P}\right) \cdot P .
\end{gathered}
$$

is projective \& birational.
Torus $T=\left(\mathbb{C}^{*}\right)^{2}$ acts on $\mathbb{C}^{2} \& H_{n}$. Explicitly,

$$
(t, q) \cdot I=\left.I\right|_{x \mapsto t^{-1} x, y \mapsto q^{-1} y} .
$$

T-fixed points of H_{n} are ideals

$$
I_{\mu}=\left(x^{r} y^{s}:(r, s) \notin \mu\right),
$$

e.g.

$$
I_{(3,2)}=\left(x^{2}, x y^{2}, y^{3}\right) \quad \square \quad \begin{array}{|c|c}
x^{2} \\
& \\
& \\
y^{2}
\end{array} .
$$

G-Hilbert schemes

Let $G=$ finite group acting on \mathbb{C}^{d}. The Hilbert scheme of regular G-orbits
G-Hilb $\left(\mathbb{C}^{d}\right)=\left\{G\right.$-invariant subschemes $S \subseteq \mathbb{C}^{d}$ such that $\mathcal{O}(S) \underset{G}{\cong} \mathbb{C} G\}$
is a closed subscheme of $\operatorname{Hilb}{ }^{|G|}\left(\mathbb{C}^{d}\right)$.
Take $G=S_{n}$ acting on $\left(\mathbb{C}^{2}\right)^{n}$, with $\mathcal{O}\left(\left(\mathbb{C}^{2}\right)^{n}\right)=$ $\mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]=\mathbb{C}[\mathbf{x}, \mathbf{y}]$. Let

$$
J \subseteq \mathbb{C}[\mathrm{x}, \mathrm{y}], \quad J \in S_{n}-\operatorname{Hilb}\left(\mathbb{C}^{2 n}\right)
$$

Now $x_{n}, y_{n}, x_{1}^{r} y_{1}^{s}+\cdots+x_{n-1}^{r} y_{n-1}^{s}$ generate $\mathbb{C}[\mathbf{x}, \mathbf{y}]^{S_{n-1}}$, and

$$
\left(x_{1}^{r} y_{1}^{s}+\cdots+x_{n-1}^{r} y_{n-1}^{s}\right)+x_{n}^{r} y_{n}^{s} \equiv c(\bmod J),
$$

hence

$$
\mathbb{C}\left[x_{n}, y_{n}\right] \rightarrow(\mathbb{C}[\mathbf{x}, \mathbf{y}] / J)^{S_{n-1}}
$$

is surjective, with kernel

$$
I \subseteq \mathbb{C}\left[x_{n}, y_{n}\right], \quad I \in H_{n}
$$

We now have a morhpism

$$
\phi: S_{n}-\operatorname{Hilb}\left(\mathbb{C}^{2 n}\right) \rightarrow H_{n},
$$

which is generically the obvious one:

$$
S_{n} \cdot\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) \underset{\phi}{\mapsto}\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\} .
$$

Theorem 1. $S_{n}-\operatorname{Hilb}\left(\mathbb{C}^{2 n}\right) \cong H_{n}$.

To prove it, need to construct a family of regular S_{n} orbits over H_{n}, so universal property of $S_{n}-\operatorname{Hilb}\left(\mathbb{C}^{2 n}\right)$ will give $\phi^{-1}: H_{n} \rightarrow S_{n}-\operatorname{Hilb}\left(\mathbb{C}^{2 n}\right)$.

Consider the reduced fiber product

Theorem. $\quad X_{n}$ is Cohen-Macaulay (i.e., ρ is flat) and Gorenstein.

Proof sketch. . . let

$$
A=\left(\mathbb{C}[\mathbf{x}, \mathbf{y}]^{\varepsilon}\right)
$$

be the ideal in $\mathbb{C}[\mathbf{x}, \mathbf{y}]$ generated by antisymmetric polynomials. A description of X_{n} as a blowup

$$
X_{n}=\operatorname{Proj}(\mathbb{C}[\mathbf{x}, \mathbf{y}][t A])
$$

plus a geometric induction on n

reduces us to

Proposition. A^{d} is a free $\mathbb{C}[\mathrm{x}]$-module for all d.

We prove this by brute force, constructing a basis.

Tying in Lecture 1

Tautological families

$$
\begin{array}{lc}
X_{n} \subseteq H_{n} \times \mathbb{C}^{2 n} & F \subseteq H_{n} \times \mathbb{C}^{2} \\
\left.\rho\right|^{2} & \mid \pi \\
H_{n}=S_{n}-\operatorname{Hilb}\left(\mathbb{C}^{2 n}\right), & H_{n}
\end{array}
$$

give tautological vector bundles $B=\pi_{*} \mathcal{O}_{F}$, $P=\rho_{*} \mathcal{O}_{X_{n}}$ on H_{n}, with fibers

$$
B(I)=\mathbb{C}[x, y] / I, \quad P(I)=\mathbb{C}[\mathbf{x}, \mathbf{y}] / J,
$$

where $J=\phi^{-1}(I)$.
Recall from Lecture 1

$$
\begin{gathered}
R_{\mu}(\mathbf{x}, \mathbf{y})=\mathbb{C}[\mathbf{x}, \mathbf{y}] / J_{\mu} \\
J_{\mu}=\left\{f \in \mathbb{C}[\mathbf{x}, \mathbf{y}]: f\left(\frac{\partial}{\partial \mathbf{x}}, \frac{\partial}{\partial \mathbf{y}}\right) \Delta_{\mu}=0\right\}
\end{gathered}
$$

Proposition. $J_{\mu}=\phi^{-1}\left(I_{\mu}\right)$, i.e., $R_{\mu}(\mathbf{x}, \mathbf{y})=$ $P\left(I_{\mu}\right)$.

Proof: both rings are Gorenstein quotients of $\mathbb{C}[x, y]$ with the same socle.

Now recall Macdonald polynomials

$$
\begin{aligned}
& \text { (i) } \tilde{H}_{\mu}[Z(1-q) ; q, t] \in \mathbb{Q}(t)\left\{S_{\lambda}(\mathbf{z}): \lambda \geq \mu\right\} \text {; } \\
& \text { (ii) } \tilde{H}_{\mu}[Z(1-t) ; q, t] \in \mathbb{Q}(t)\left\{S_{\lambda}(\mathbf{z}): \lambda \geq \mu^{\prime}\right\} \text {; } \\
& \text { (iii) }\left\langle\tilde{H}_{\mu}, S_{(n)}\right\rangle=1 \text {. }
\end{aligned}
$$

Proposition. If $\mathcal{F} V=f(\mathbf{z}, t)$ is the Frobenius series of a graded $S_{n} * \mathbb{C}[\mathrm{x}]$-module V, then

$$
f[Z(1-t)]=\sum_{i}(-1)^{i} \mathcal{F} \operatorname{Tor}_{i}^{\mathbb{C}[\mathrm{x}]}(V, \mathbb{C}) .
$$

Let

$$
f_{\mu}(\mathbf{z} ; q, t)=\mathcal{F} R_{\mu}(\mathbf{x}, \mathbf{y}) .
$$

Using the Proposition, read off $f_{\mu}[Z(1-q) ; q, t]$ and $f_{\mu}[Z(1-t) ; q, t]$ from the Koszul homology of $\mathcal{O}_{X_{n}, \rho^{-1}\left(I_{\mu}\right)}$ w.r.t. \mathbf{x} and \mathbf{y}. But \mathbf{x} and \mathbf{y} are regular sequences in $\mathcal{O}_{X_{n}}$, so this is easy! We verify that f_{μ} satisfies (i)-(iii) above, hence

$$
f_{\mu}=\tilde{H}_{\mu}(\mathbf{z} ; q, t)
$$

Next, the diagonal coinvariants

$$
R_{n}=\mathbb{C}[\mathrm{x}, \mathrm{y}] /\left(S_{n} \text {-invariants }\right) .
$$

In the diagram

$\operatorname{Spec}\left(R_{n}\right)$ is the scheme-theoretic fiber $\psi^{-1}(0)$. So $X_{n} \rightarrow \mathbb{C}^{2 n}$ induces a map

$$
R_{n} \rightarrow H^{0}\left(\rho^{-1} \sigma^{-1}(0), \mathcal{O}\right)=H^{0}\left(\sigma^{-1}(0), P\right)
$$

Theorem 2. The (scheme-theoretic) zerofiber $Z_{n}=\sigma^{-1}(0)$ is reduced \& Cohen-Macaulay, and $\mathcal{O}_{Z_{n}}$ has an explicit $\mathcal{O}_{H_{n}}$-locally free resoIution.

Theorem 3. $H^{i}\left(Z_{n}, P\right)=0$ for $i>0$, and the above map $R_{n} \rightarrow H^{0}\left(Z_{n}, P\right)$ is an isomorphism.

About proofs. . . for Theorem 2, the zero-fiber in the tautological family F turns out to be a a local complete intersection in F, and Z_{n} is its isomorphic image. Theorem 3 follows from Theorem 2 plus a general vanishing theorem

Theorem 4. $H^{i}\left(H_{n}, P \otimes B^{\otimes k}\right)$ for $i>0$.

This in turn follows from Theorem 1, a theorem of Bridgeland-King-Reid, and the "polygraph theorem" (an intermediate result in the proof of Theorem 1).

We can now write down $\mathcal{F} R_{n}$ using Thomason's generalized Atiyah-Bott-Lefschetz formula.

$$
\begin{aligned}
& \mathcal{F} R_{n}= \\
& \sum_{|\mu|={ }_{n}} \frac{(1-q)(1-t) \Pi_{\mu}(q, t) B_{\mu}(q, t) \tilde{H}_{\mu}(\mathbf{z} ; q, t)}{\Pi_{x \in \mu}\left(1-q^{-a(x)} t^{l(x)+1}\right)\left(1-q^{a(x)+1} t^{-l(x)}\right)},
\end{aligned}
$$ where...

the sum is over partitions μ of n,

$$
B_{\mu}(q, t)=\sum_{(r, s) \in \mu} t^{r} q^{s},
$$

$\Pi_{\mu}(q, t)=\prod_{\substack{(r, s) \in \mu \\(r, s) \neq(0,0)}}$
and $\operatorname{arm} a(x)$ and leg $l(x)$ of a box $x \in \mu$ are

	l			
	l			
	x	a	a	a

$$
a(x)=3, l(x)=2 .
$$

Numerator factors

$$
(1-q)(1-t) \Pi_{\mu}(q, t) B_{\mu}(q, t)
$$

come from the free resolution of $\mathcal{O}_{Z_{n}}$;

$$
\tilde{H}_{\mu}(\mathbf{z} ; q, t)
$$

comes from the fiber $P\left(I_{\mu}\right)$. Denominator factors

$$
\prod_{x \in \mu}\left(1-q^{-a(x)} t^{l(x)+1}\right)\left(1-q^{a(x)+1} t^{-l(x)}\right)
$$

come from torus action on $T_{I_{\mu}}^{*} H_{n}$.

Proposition (Garsia-H-). The expansion of the n-th elementary symmetric function $e_{n}(\mathbf{z})$ in terms of Macdonald polynomials is

$$
\begin{aligned}
& e_{n}(\mathbf{z})= \\
& \sum_{|\mu|=n} \frac{t^{-n(\mu)} q^{-n\left(\mu^{\prime}\right)}(1-q)(1-t) \Pi_{\mu} B_{\mu} \tilde{H}_{\mu}(\mathbf{z} ; q, t)}{\Pi_{x \in \mu}\left(1-q^{-a(x)} t^{l(x)+1}\right)\left(1-q^{a(x)+1} t^{-l(x)}\right)}
\end{aligned}
$$

Hence

$$
\mathcal{F} R_{n}=\nabla e_{n}(\mathbf{z}), \text { where } \nabla \tilde{H}_{\mu}=t^{n(\mu)} q^{n\left(\mu^{\prime}\right)} \tilde{H}_{\mu} .
$$

Set $\mathcal{O}(1)=\Lambda^{n} B$. The "miraculous" identity in the Proposition reduces to an instance of Atiyah-Bott for

$$
\mathcal{F} H^{0}\left(Z_{n}, \mathcal{O}(-1) \otimes P\right)=\mathcal{F} V_{\left(1^{n}\right)}=e_{n}(\mathbf{z})
$$

assuming the truth of
Conjecture. $H^{i}\left(Z^{n}, \mathcal{O}(-1) \otimes P\right)=0$ for $i>0$. More generally (since $\mathcal{O}(-1)$ is a summand of $\left.P^{*}\right)$, for $i>0$

$$
H^{i}\left(H_{n}, P^{*} \otimes P \otimes B^{\otimes k}\right)=0 .
$$

A bigger picture

Fix $\Gamma \subseteq \mathrm{SL}_{2}(\mathbb{C})$ finite. $G=S_{n} \prec \Gamma$ acts on $\mathbb{C}^{2 n}$. $\Gamma(\neq 1)$ corresponds to a Dynkin diagram of type A, D, or E.

Conjecture. Quiver varieties $\mathcal{M}\left(\Lambda_{0}, \nu\right)$ associated to affine Dynkin diagrams $\widehat{A}, \widehat{D}, \widehat{E}$ and the basic weight Λ_{0} are moduli spaces of stable G-constellations.

Our Theorem 1 on the Hilbert scheme is the case $\Gamma=1$.

Nakajima \& Grojnowski constructed a level$(0,1)$ representation $V_{\Lambda_{0}}$ of the quantum double loop algebra $U_{q}(\widehat{\mathfrak{\mathfrak { g }}})$ on $\oplus_{\nu} K_{0}^{\mathbb{C}^{*}}\left(\mathcal{M}\left(\Lambda_{0}, \nu\right)\right)$. The Conjecture would supply a basis consisting of distinguished vector bundles. One expects this to be a "canonical basis" of $V_{\Lambda_{0}}$ in some suitable sense.

In type $\widehat{A}_{r-1}, \Gamma=\mathbb{Z} / r \mathbb{Z}$ is Abelian and commutes with $T=\left(\mathbb{C}^{*}\right)^{2}$, which acts on $\mathcal{M}\left(\wedge_{0}, \nu\right)$ with isolated fixed points. The conjecture gives a tautological bundle P of G-constellations on $\mathcal{M}\left(\Lambda_{0}, \nu\right)$. Its fibers $P(I)$ at fixed points $I \in$ $\mathcal{M}\left(\wedge_{0}, \nu\right)^{T}$ are doubly graded G-modules. Their characters should be wreath Macdonald polynomials

$$
\tilde{H}_{I} \in \mathbb{N}[q, t] \otimes X(G),
$$

determined (conjecturally) by an analog of the definition we gave in Lecture 1 for usual Macdonald polynomials. Plenty of computational evidence suggests that wreath Macdonald polynomials do indeed exist and have coefficients in $\mathbb{N}[q, t]$.

Macdonald polynomials and Hilbert schemes

Mark Haiman
U.C. Berkeley

LECTURE III

New combinatorial developments in Macdonald theory

Combinatorial formula for $\tilde{H}_{\mu}(\mathbf{z} ; q, t)$

Motivation-

$$
\tilde{H}_{\mu}(\mathbf{z} ; 1,1)=p_{1}(\mathbf{z})^{n}=\left(z_{1}+z_{2}+\cdots\right)^{n}
$$

for any μ, where $n=|\mu|$. Assign each filling

$$
\sigma: \mu \rightarrow \mathbb{Z}_{+}
$$

the weight

$$
z^{\sigma}=\prod_{x \in \mu} z_{\sigma(x)}
$$

e.g.

Then

$$
p_{1}(\mathbf{z})^{n}=\sum_{\sigma: \mu \rightarrow \mathbb{Z}_{+}} z^{\sigma},
$$

and we may expect

$$
\tilde{H}_{\mu}(\mathbf{z} ; q, t)=\sum_{\sigma: \mu \rightarrow \mathbb{Z}_{+}} q^{?} t^{?} z^{\sigma}
$$

Definitions. Descents and major index of σ :

	b	
	a	

$$
a<b
$$

$$
\operatorname{maj}(\sigma)=\sum_{x \in \operatorname{Des}(\sigma)} l(x)+1
$$

(recall arm $a(x)$ and leg $l(x)$

l			
x	a	a	a

$$
a(x)=3, l(x)=2)
$$

Example.

Inversions of σ

We subtracted "forced" inversions

$$
\begin{array}{|c}
\frac{b}{a}
\end{array} \quad a<b \Rightarrow c<b \text { or } a<c .
$$

Example.

Theorem (Haglund-Loehr-H— 2004, conj. by Haglund).

$$
\tilde{H}_{\mu}(\mathbf{z} ; q, t)=\sum_{\sigma: \mu \rightarrow \mathbb{Z}_{+}} q^{\operatorname{inv}(\sigma) t^{\operatorname{maj}(\sigma)} z^{\sigma} .}
$$

- No combinatorial formula for $\tilde{K}_{\lambda \mu}(q, t)$, as we wrote $\tilde{H}_{\mu}(\mathbf{z} ; q, t)$ in terms of monomials, not Schur functions.
- Open Problem 1: explain $q \leftrightarrow t$ symmetry $\tilde{H}_{\mu^{\prime}}(\mathbf{z} ; q, t)=\tilde{H}_{\mu}(\mathbf{z} ; t, q)$, generalizing FoataSchützenberger bijection for $\mu=\left(1^{n}\right),(n)$.

inv $=0$
maj is
classical

$$
\square \square \square
$$

$$
\text { maj }=0
$$

inv is classical.

- Open Problem 2: connect combinatorics to R_{μ} and Hilbert scheme.
- A puzzle: why is our formula a symmetric function in \mathbf{z} ?

LLT polynomials

Recall that a semistandard Young tableau

$$
\begin{array}{l|llll}
\hline 4 & 4 & 6 & 7 \\
2 & 3 & 3 & 4 \\
1 & 1 & 1 & 3 & 5 \\
\hline
\end{array}
$$

is a filling, increasing weakly on rows \& strictly on columns. Schur functions are given by

$$
S_{\lambda}(\mathbf{z})=\sum_{T \in \operatorname{SSY} T(\lambda)} z^{T}
$$

Fix a tuple $\boldsymbol{\nu}$ of (skew) diagrams

$\nu^{(1)} \quad \nu^{(2)} \quad \nu^{(3)}$
A semistandard tableau on $\boldsymbol{\nu}$ is a tuple $T \in$ $\operatorname{SSYT}\left(\nu^{(1)}\right) \times \cdots \times \operatorname{SSYT}\left(\nu^{(k)}\right)$, e.g.

$$
\begin{array}{lll}
24 & 24 & 5 \\
33 & 12 & \begin{array}{l}
3 \\
3
\end{array} \\
\hline
\end{array}
$$

Mark the content $c(x)=$ (row - column) of each box, e.g.

$$
\begin{array}{llll}
43 & 32 & 5 \\
\hline 21 & 21 & 4 \\
\hline 21 & 0 & 3 \\
\hline
\end{array}
$$

(we may fix a separate origin for each $\nu^{(i)}$).
Definition. Inversions of SSYT T on ν

$$
\begin{gathered}
a<b \\
c(y)=c(x),
\end{gathered}
$$

$$
i<j
$$

or

$y \in \nu^{(j)}$

$y \in \nu^{(j)}$
$x \in \nu^{(i)}$

$x \in \nu^{(i)}$

$$
\begin{gathered}
a<b, \\
c(y) \stackrel{a}{=} c(x)-1, \\
i>j .
\end{gathered}
$$

Example.

$$
\begin{gathered}
T=\begin{array}{cc|c}
24 & 24 & 4 \\
33 & 1 & 2 \\
1 & 5 \\
3 \\
23
\end{array} \\
\\
\\
\\
\operatorname{inv}(T)=
\end{gathered}
$$

Definition. LLT polynomial

$$
G_{\nu}(\mathbf{z} ; q)=\sum_{T \in \operatorname{SSY}(\boldsymbol{\nu})} q^{|\operatorname{Inv}(T)| z^{T} .}
$$

Note $G_{\nu}(z ; 1)$ is a product of skew Schur functions $S_{\nu^{(1)}}(\mathbf{z}) \cdots S_{\nu^{(k)}}(\mathbf{z})$.

Theorem (Lascoux-Leclerc-Thibon). $G_{\nu}(\mathrm{z} ; q)$ is a symmetric function.

Proposition. Fix μ and $D \subseteq \mu$. Then

$$
F_{\mu, D}(\mathbf{z} ; q, t) \stackrel{\text { def }}{=} \sum_{\substack{\sigma: \mu \rightarrow \mathbb{Z}_{+} \\ \operatorname{Des}(\sigma)=D}} q^{|\operatorname{Inv}(\sigma)|} z^{\sigma}=G_{\nu}(\mathbf{z} ; q)
$$

for a suitable tuple of ribbon skew diagrams ν.

Picture proof.

Corollary. The combinatorial expression for $\tilde{H}_{\mu}(\mathbf{z} ; q, t)$ is a symmetric function, equal to

$$
\sum_{D} t^{\sum_{x \in D}(l(x)+1)} q^{-\sum_{x \in D} a(x)} F_{\mu, D}(\mathbf{z} ; q, t)
$$

About the proof of our formula. . . let

$$
C_{\mu}(\mathbf{z} ; q, t)=\sum_{\sigma: \mu \rightarrow \mathbb{Z}_{+}} q^{\operatorname{inv}(\sigma) t^{\operatorname{maj}(\sigma)} z^{\sigma}}
$$

be the combinatorial expression. Given that C_{μ} is symmetric, we can make sense of

$$
C_{\mu}[Z(1-q) ; q, t], C_{\mu}[Z(1-t) ; q, t] .
$$

We construct sign-reversing involutions to verify C_{μ} satisfies (i)-(ii) in the def'n of Macdonald polynomials:

$$
\begin{aligned}
& \text { (i) } C_{\mu}[Z(1-q) ; q, t] \in \mathbb{Q}(t)\left\{S_{\lambda}(\mathbf{z}): \lambda \geq \mu\right\} \text {; } \\
& \text { (ii) } C_{\mu}[Z(1-t) ; q, t] \in \mathbb{Q}(t)\left\{S_{\lambda}(\mathbf{z}): \lambda \geq \mu^{\prime}\right\} \text {; } \\
& \text { (iii) }\left\langle C_{\mu}, S_{(n)}\right\rangle=1 \text {. }
\end{aligned}
$$

For (iii), $\left\langle C_{\mu}, S_{(n)}\right\rangle$ is the coefficient of z_{1}^{n} in C_{μ}. The all-1's filling σ has $\operatorname{maj}(\sigma)=\operatorname{inv}(\sigma)=0$.

Diagonal coinvariants

Recall

$$
\begin{gathered}
R_{n}=\mathbb{C}[\mathbf{x}, \mathrm{y}] /\left(S_{n} \text {-invariants }\right)=H^{0}\left(Z_{n}, P\right) \\
\mathcal{F} R_{n}=\nabla e_{n}(\mathbf{z}) .
\end{gathered}
$$

Let $\delta_{n}=(n-1, n-2, \ldots, 1)$. Consider partitions $\lambda \subseteq \delta_{n}$ and tableaux $T \in S S Y T\left(\lambda+\left(1^{n}\right) / \lambda\right)$, e.g. ($n=6$)

Theorem (Garsia-H—).

$$
\left(\nabla e_{n}\right)(\mathbf{z} ; 1, t)=\sum_{\lambda \subseteq \delta_{n}} t^{\left|\delta_{n} / \lambda\right|} S_{\lambda+\left(1^{n}\right) / \lambda}(\mathbf{z}) .
$$

Definition. Inversions of $T \in \operatorname{SSYT}\left(\lambda+\left(1^{n}\right) / \lambda\right)$

Then

$$
\sum_{\substack{T \in \\ \operatorname{SSYT}\left(\lambda+\left(1^{n}\right) / \lambda\right)}} q^{|\operatorname{Inv}(T)| z^{T}}
$$

is an LLT polynomial (hence symmetric), e.g.

Conjecture (Haglund-Loehr-Remmel-UlyanovH—).

$$
\nabla e_{n}(\mathbf{z})=\sum_{\lambda \subseteq \delta_{n}} t^{\left|\delta_{n} / \lambda\right|} \sum_{\substack{T \in \\ \operatorname{SSYT}\left(\lambda+\left(1^{n}\right) / \lambda\right)}} q^{|\operatorname{Inv}(T)|} z^{t} .
$$

- Open Problem 3. Prove the conjecture.
- Open Problem 4. Relate it to geometry.
- Open Problem 5. Exhibit the $q \leftrightarrow t$ symmetry of $\nabla e_{n}(\mathbf{z})$ in the combinatorial formula.
- Open Problem 6. Find a combinatorial expression for the doubly-graded character of Gordon's module \widehat{R}_{W} for other Weyl groups W.

