
Macdonald polynomials and Hilbert schemes

Mark Haiman

U.C. Berkeley

LECTURE I

Introduction to Hall-Littlewood and

Macdonald polynomials, and the n! and

(n+ 1)(n−1) theorems
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Hall-Littlewood polynomials from geometry

A flag is a chain of subspaces

F• = (0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Cn).

Denote the usual basis of Cn by {e1, . . . , en}.
The standard flag E• is given by

Ei = 〈e1, . . . , ei〉.

Let

G = GLn(C)

B = {upper triangular matrices} ⊆ G.

Then G acts transitively on

X = {flags},

and B is the stabilizer of E•, hence

X = G/B.
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Fix a partition of n,

µ = (µ1 ≥ µ2 ≥ · · · ≥ µl),

and a unipotent matrix

gµ ∈ G

with Jordan block sizes µi.

Example (n = 5):

µ = (3,2)

gµ =


1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 .

Let

Xµ = {F• ∈ X : gµX = X}

be the set of flags fixed by gµ. Xµ is a Springer

variety.
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Examples:

X(1n) = X,

X(n) = {E•} is a point,

X(2,1) = is a union of two P1’s meeting at E•.

Definition. Rµ = H∗(Xµ,C).

Some facts:

1. Hi(Xµ) = 0 for i odd; so Rµ is a commu-
tative, graded C-algebra.

2. R(1n) = H∗(X) ∼= C[x1, . . . , xn]/(Sn-invariants).

3. Xµ ⊆ X induces a surjection R(1n) →→ Rµ,
so Rµ = R(1n)/Iµ.

4. The ideal Iµ is Sn-invariant, so Sn acts on
Rµ.

Problem. Describe the action of Sn on the
graded ring Rµ.
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I’ll write the solution in terms of the charac-

teristic map

F : Sn-characters → symmetric functions

FV =
∑
|µ|=n

dim(V Sµ)mµ(z)

of Frobenius. Here

V is an Sn-module

µ is a partition of n

Sµ = Sµ1 × · · · × Sµl ⊆ Sn

is a Young subgroup

mµ(z) = (zµ1
1 · · · zµll + symmetric terms)

is a monomial symmetric function.

Theorem (Frobenius). The characteristic of

the irreducible representation Vλ is the Schur

function

FVλ = Sλ(z).
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For a graded Sn-module V =
⊕
d Vd, define the

Frobenius series

FV (z; t) =
∑
d

F(Vd) t
d.

Example (n = 3):

degree

R(13) R(2,1) R(3)

3 V(13)
2 V(2,1)
1 V(2,1) V(2,1)
0 V(3) V(3) V(3)

Therefore

FR(13) = S(3) + (t+ t2)S(2,1) + t3S(13)

FR(2,1) = S(3) + tS(2,1)

FR(3) = S(3)
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We work with symmetric functions in infinitely

many variables

ΛQ(t)(z) = Q(t)[z1, z2, . . .]
S∞

∼= Q(t)[p1, p2, . . .],

where pk = m(k) = zk1+zk2+· · · are the Newton

power-sums.

Define Q(t)-algebra automorphism εt : Λ → Λ

εt(pk) = (1− tk)pk

and introduce the notation

f [Z(1− t)]
def
= εt(f).

As motivation, the inverse of εt is

f 7→ f(z, tz, t2z, . . .),

which we might naturally denote by

f

[
Z

1− t

]
.
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The partial ordering on partitions of n is

λ ≤ µ ⇔ λ1 + · · ·+ λk ≤ µ1 + · · ·+ µk ∀k.

The transpose of a partition is, e.g.,

µ = (3,2) = , µ′ = (2,2,1) = .

Theorem/Definition. The algebra ΛQ(t) has

a basis of Hall-Littlewood polynomials H̃µ(z; t)

characterized by

(i) H̃µ(z; t) ∈ Q(t){Sλ(z) : λ ≥ µ};
(ii) H̃µ[Z(1− t); t] ∈ Q(t){Sλ(z) : λ ≥ µ′};
(iii) 〈H̃λ, S(n)〉 = 1.

Theorem (Hotta–Springer). FRµ = H̃µ(z; t).
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Remark: Define the t-Kostka coefficients K̃λµ(t)

by

H̃µ(z; t) =
∑
λ

K̃λµ(t)Sλ(z)

The Hotta–Springer theorem implies they are

non-negative polynomials, K̃λµ(t) ∈ N[t]. A pri-

ori we only have K̃λµ(t) ∈ Q(t).

Macdonald polynomials

Now our symmetric functions will involve two

parameters, coefficient ring Q(q, t).

Theorem/Definition (Macdonald). The al-

gebra ΛQ(q,t) has a basis of Macdonald polyno-

mials H̃µ(z; q, t) characterized by

(i) H̃µ[Z(1− q); q, t] ∈ Q(t){Sλ(z) : λ ≥ µ};
(ii) H̃µ[Z(1− t); q, t] ∈ Q(t){Sλ(z) : λ ≥ µ′};
(iii) 〈H̃µ, S(n)〉 = 1.

9



Comparing definitions, we see that

H̃µ(z; 0, t) = H̃µ(z; t).

New definition has more symmetry:

H̃µ′(z; q, t) = H̃µ(z; t, q).

Define the q, t-Kostka coefficients by

H̃µ(z; q, t) =
∑
λ

K̃λµ(q, t)Sλ(z).

A priori, K̃λµ(q, t) ∈ Q(q, t), but. . .

Integrality Theorem (Garsia–Remmel, Garsia–
Tesler, Knop, Kirillov–Noumi, Lapointe, Sahi
ca. 1995).

K̃λµ(q, t) ∈ Z[q, t].

Positivity Theorem (H— 2001).

K̃λµ(q, t) ∈ N[q, t].

Macdonald conjectured integrality & positivity
in 1988.

10



An interpretation of H̃µ(z; q, t)

Recall from rep’n theory of Sn that the sign

representation ε = V(1n) occurs in Vλ ⊗ Vµ if

and only if λ = µ′.

The top degree in Rµ, i.e., dimC(Xµ) is

n(µ) =
∑
i

(i− 1)µi,

and we have

(Rµ)n(µ)
∼= Vµ

Vλ occurs in (Rµ)d for d < n(µ) ⇒ λ > µ.

Then Rµ ⊗ Rµ′ contains ε uniquely, in its top

bi-degree (n(µ), n(µ′)).

Definition. Rµ(x,y) = Rµ ⊗ Rµ′/J, where J is

the unique largest Sn-invariant ideal not con-

taining ε.
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Elementary description—let the boxes in the

diagram of µ be (p1, q1), . . . , (pn, qn), as shown

for µ = (3,2):

(1,0) (1,1)

(0,0) (0,1) (0,2)

In C[x,y] = C[x1, y1, . . . , xn, yn], define the poly-

nomial

∆µ(x,y) = det

 x
p1
1 y

q1
1 · · · x

pn
1 y

qn
1... ...

x
p1
n y

q1
n · · · x

pn
n y

qn
n


and consider the ideal

Jµ = {f ∈ C[x,y] : f(
∂

∂x
,
∂

∂y
)∆µ = 0}.

Proposition. Rµ(x,y) ∼= C[x,y]/Jµ.
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Theorem 1. The Frobenius series of Rµ(x,y)
as a doubly-graded Sn-module is

FRµ(x,y) = H̃µ(z; q, t).

This implies the Positivity Theorem, since

K̃λµ(q, t) =
∑
r,s

mult(Vλ, Rµ(x,y)r,s)t
rqs.

Example: R(3,1)(x,y). stands for V(2,2),

so K̃(2,2),(3,1)(q, t) = qt+ q2, and so on.

↑
x-

degree

+

+

y-degree →

Left column shows Springer ring Rµ = R(3,1);
bottom row is Rµ′ = R(2,1,1).
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Proposition (Macdonald). Let V = CSn be

the regular representation. Then H̃µ(z; 1,1) =

p1(z)
n = FV , for any µ.

Hence Theorem 1 implies

Rµ(x,y) ∼= CSn

as an ungraded Sn-module; in particular,

dim(Rµ(x,y)) = n!

for every partition µ of n.

For µ = (1n), when R(1n)(x,y) = R(1n)(x) =

H∗(X), this is classical. For general µ, I call it

the n! theorem. It is equivalent to the exis-

tence of certain rank n! vector bundle on the

Hilbert scheme (tomorrow’s lecture).
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The (n+ 1)n−1 theorem

Define the diagonal coinvariant ring

Rn = C[x,y]/(Sn-invariants)

= C[x,y]/(C[x,y]Sn+ ),

a bivariate analog of the classical coinvariant
ring

R(1n) = C[x]/(Sn-invariants) = H∗(X,C).

The rings Rµ in the n! theorem are quotients,

Rn →→ Rµ.

Theorem 2. Let ∇ be the linear operator on
ΛQ(q,t) given by

∇H̃µ(z; q, t) = tn(µ)qn(µ
′)H̃µ(z; q, t),

and let en(z) be the n-th elementary symmetric
function. The Frobenius series of the diagonal
coinvariant ring is

FRn = ∇en(z).
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Some remarkable consequences. . .

Corollary 1. We have

dim(Rn) = (n+ 1)n−1,

and Rn is isomorphic as an Sn-module to ε⊗V ,
where V is the permutation representation of
Sn on the finite abelian group

(Z/(n+ 1)Z)n/〈(1,1, . . . ,1)〉.

Corollary 2. Ignoring the y-grading and con-
sidering only x-degree,

dim(Rn)d,−

is equal to the number of rooted forests on the
vertex set {1, . . . , n} with d inversions [example:

~
~

~
~
~
~

A
A
A
A
A�

�
�
�
�1

3

4

5

6

2

has three inversions: (1,3), (2,6), (2,5)].
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In Lecture 2, we’ll explain these symmetric
function formulas by interpreting the rings Rµ
and Rn in terms of the Hilbert scheme of points
in the plane.

Now consider any Weyl group W , its root lat-
tice Q and defining representation h = Q⊗Z C.

Theorem (I. Gordon). The diagonal coinvari-
ant ring

RW = O(h⊕ h)/(W -invariants)

has a natural quotient R̂W such that

dim(R̂W ) = (h+ 1)r,

where h is the Coxeter number and r = dim(h)
is the rank. Moreover, RW is isomorphic as a
W -module to ε⊗V , where V is the permutation
representation of W on Q/(h+ 1)Q.

Example. For W = B4, dim(RW ) = 94 + 1,
but dim(R̂W ) = 94. Gordon’s method doesn’t
explain the fact that RW = R̂W for W = Sn.
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Macdonald polynomials and Hilbert schemes

Mark Haiman

U.C. Berkeley

LECTURE II

The connection between Macdonald

polynomials and the Hilbert scheme of points

in the plane
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Hilbert scheme Hn = Hilbn(C2)

As a set. . .

Hn = {finite subschemes S ⊆ C2 of length n}
= {ideals I ⊆ C[x, y] : dimC(C[x, y]/I) = n}

As a scheme (in coordinates). . .

Set Mµ = {xpyq : (p, q) ∈ µ}, e.g. (n = 5)

M(3,2) =
x xy

1 y y2
.

Hn is covered by open affines

Uµ = {I : Mµ spans C[x, y]/I}.

Given (r, s) 6∈ µ, have unique coefficients s.t.

xrys ≡
∑

(p,q)∈µ
Crspq x

pyq (mod I).

I ideal ⇔ certain equations in Crspq’s hold.

19



As a scheme (functorially). . .

Have tautological family

F ⊆ Hn × C2yπ
Hn

with fibers π−1(I) = Spec(C[x, y]/I).

Universal property: any family

T ⊆ Z × C2y
Z

flat & finite of degree n over Z, is the pullback

of F by a unique morphism

T −→ Fy yπ
Z −→

φ
Hn .

(Hn represents the functor of such families.)
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More info. . .

Theorem (Fogarty). Hn is non-singular, re-
duced and irreducible of dimension 2n.

The Chow morphism

Hn −→
σ

Symn(C2)

σ(S) =
∑
P

(lengthOS,P ) · P.

is projective & birational.

Torus T = (C∗)2 acts on C2 & Hn. Explicitly,

(t, q) · I = I|x 7→t−1x, y 7→q−1y.

T -fixed points of Hn are ideals

Iµ = (xrys : (r, s) 6∈ µ),
e.g.

I(3,2) = (x2, xy2, y3)

x2

xy2

y3
.
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G-Hilbert schemes

Let G = finite group acting on Cd. The Hilbert
scheme of regular G-orbits

G -Hilb(Cd) = {G-invariant subschemes S ⊆ Cd

such that O(S) ∼=
G

CG}

is a closed subscheme of Hilb|G|(Cd).

Take G = Sn acting on (C2)n, with O((C2)n) =
C[x1, y1, . . . , xn, yn] = C[x,y]. Let

J ⊆ C[x,y], J ∈ Sn -Hilb(C2n).

Now xn, yn, xr1y
s
1 + · · · + xrn−1y

s
n−1 generate

C[x,y]Sn−1, and

(xr1y
s
1 + · · ·+ xrn−1y

s
n−1) + xrny

s
n ≡ c (mod J),

hence

C[xn, yn] →→ (C[x,y]/J)Sn−1

is surjective, with kernel

I ⊆ C[xn, yn], I ∈ Hn.
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We now have a morhpism

φ : Sn -Hilb(C2n) → Hn,

which is generically the obvious one:

Sn · (a1, b1, . . . , an, bn) 7→
φ
{(a1, b1), . . . , (an, bn)}.

Theorem 1. Sn -Hilb(C2n) ∼= Hn.

To prove it, need to construct a family of reg-

ular Sn orbits over Hn, so universal property of

Sn -Hilb(C2n) will give φ−1 : Hn → Sn -Hilb(C2n).

Consider the reduced fiber product

Xn −→ C2n

ρ

y y
Hn

σ−→ Symn(C2)=C2n/Sn.

Theorem. Xn is Cohen-Macaulay (i.e., ρ is

flat) and Gorenstein.
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Proof sketch. . . let

A = (C[x,y]ε)

be the ideal in C[x,y] generated by antisym-
metric polynomials. A description of Xn as a
blowup

Xn = Proj(C[x,y][tA]),

plus a geometric induction on n

Xn−1,n −→ Xn

↘
yy Hn−1,n−→ Hny

Xn−1 −→ Hn−1,

reduces us to

Proposition. Ad is a free C[x]-module for all
d.

We prove this by brute force, constructing a
basis.
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Tying in Lecture 1

Tautological families

Xn ⊆ Hn × C2n

ρ

y
Hn= Sn -Hilb(C2n),

F ⊆ Hn × C2yπ
Hn

give tautological vector bundles B = π∗OF ,
P = ρ∗OXn on Hn, with fibers

B(I) = C[x, y]/I, P (I) = C[x,y]/J,

where J = φ−1(I).

Recall from Lecture 1

Rµ(x,y) = C[x,y]/Jµ,

Jµ = {f ∈ C[x,y] : f(
∂

∂x
,
∂

∂y
)∆µ = 0}.

Proposition. Jµ = φ−1(Iµ), i.e., Rµ(x,y) =
P (Iµ).

Proof: both rings are Gorenstein quotients of
C[x,y] with the same socle.
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Now recall Macdonald polynomials

(i) H̃µ[Z(1− q); q, t] ∈ Q(t){Sλ(z) : λ ≥ µ};
(ii) H̃µ[Z(1− t); q, t] ∈ Q(t){Sλ(z) : λ ≥ µ′};
(iii) 〈H̃µ, S(n)〉 = 1.

Proposition. If FV = f(z, t) is the Frobenius

series of a graded Sn ∗ C[x]-module V , then

f [Z(1− t)] =
∑
i

(−1)iF TorC[x]
i (V,C).

Let

fµ(z; q, t) = FRµ(x,y).

Using the Proposition, read off fµ[Z(1−q); q, t]
and fµ[Z(1− t); q, t] from the Koszul homology

of OXn,ρ−1(Iµ)
w.r.t. x and y. But x and y are

regular sequences in OXn, so this is easy! We

verify that fµ satisfies (i)-(iii) above, hence

fµ = H̃µ(z; q, t).
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Next, the diagonal coinvariants

Rn = C[x,y]/(Sn-invariants).

In the diagram

Xn −→ C2n

ρ

y yψ
Hn

σ−→ Symn(C2)=C2n/Sn,

Spec(Rn) is the scheme-theoretic fiber ψ−1(0).

So Xn → C2n induces a map

Rn → H0(ρ−1σ−1(0),O) = H0(σ−1(0), P ).

Theorem 2. The (scheme-theoretic) zero-

fiber Zn = σ−1(0) is reduced & Cohen-Macaulay,

and OZn has an explicit OHn-locally free reso-

lution.

Theorem 3. Hi(Zn, P ) = 0 for i > 0, and the

above map Rn → H0(Zn, P ) is an isomorphism.
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About proofs. . . for Theorem 2, the zero-fiber

in the tautological family F turns out to be a a

local complete intersection in F , and Zn is its

isomorphic image. Theorem 3 follows from

Theorem 2 plus a general vanishing theorem

Theorem 4. Hi(Hn, P ⊗B⊗k) for i > 0.

This in turn follows from Theorem 1, a theo-

rem of Bridgeland–King–Reid, and the “poly-

graph theorem” (an intermediate result in the

proof of Theorem 1).

We can now write down FRn using Thoma-

son’s generalized Atiyah–Bott–Lefschetz for-

mula.

FRn =∑
|µ|=n

(1− q)(1− t)Πµ(q, t)Bµ(q, t)H̃µ(z; q, t)∏
x∈µ(1− q−a(x)tl(x)+1)(1− qa(x)+1t−l(x))

,

where. . .
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the sum is over partitions µ of n,

Bµ(q, t) =
∑

(r,s)∈µ
trqs,

Πµ(q, t) =
∏

(r,s)∈µ
(r,s) 6=(0,0)

(1− trqs),
t qt

1 q q2

and arm a(x) and leg l(x) of a box x ∈ µ are

l
l
x a a a a(x) = 3, l(x) = 2.

Numerator factors

(1− q)(1− t)Πµ(q, t)Bµ(q, t)

come from the free resolution of OZn;

H̃µ(z; q, t)

comes from the fiber P (Iµ). Denominator fac-
tors∏

x∈µ
(1− q−a(x)tl(x)+1)(1− qa(x)+1t−l(x))

come from torus action on T ∗IµHn.
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Proposition (Garsia–H—). The expansion of
the n-th elementary symmetric function en(z)
in terms of Macdonald polynomials is

en(z) =∑
|µ|=n

t−n(µ)q−n(µ
′)(1− q)(1− t)ΠµBµH̃µ(z; q, t)∏

x∈µ(1− q−a(x)tl(x)+1)(1− qa(x)+1t−l(x))

Hence

FRn = ∇en(z), where ∇H̃µ = tn(µ)qn(µ
′)H̃µ.

Set O(1) =
∧nB. The “miraculous” identity

in the Proposition reduces to an instance of
Atiyah–Bott for

FH0(Zn,O(−1)⊗ P ) = FV(1n) = en(z),

assuming the truth of

Conjecture. Hi(Zn,O(−1)⊗ P ) = 0 for i > 0.
More generally (since O(−1) is a summand of
P ∗), for i > 0

Hi(Hn, P
∗ ⊗ P ⊗B⊗k) = 0.
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A bigger picture

Fix Γ ⊆ SL2(C) finite. G = Sn o Γ acts on C2n.

Γ ( 6= 1) corresponds to a Dynkin diagram of

type A, D, or E.

Conjecture. Quiver varieties M(Λ0, ν) asso-

ciated to affine Dynkin diagrams Â, D̂, Ê and

the basic weight Λ0 are moduli spaces of stable

G-constellations.

Our Theorem 1 on the Hilbert scheme is the

case Γ = 1.

Nakajima & Grojnowski constructed a level-

(0,1) representation VΛ0
of the quantum dou-

ble loop algebra Uq(̂̂g) on
⊕
νK

C∗
0 (M(Λ0, ν)).

The Conjecture would supply a basis consist-

ing of distinguished vector bundles. One ex-

pects this to be a “canonical basis” of VΛ0
in

some suitable sense.
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In type Âr−1, Γ = Z/rZ is Abelian and com-

mutes with T = (C∗)2, which acts on M(Λ0, ν)

with isolated fixed points. The conjecture gives

a tautological bundle P of G-constellations on

M(Λ0, ν). Its fibers P (I) at fixed points I ∈
M(Λ0, ν)

T are doubly graded G-modules. Their

characters should be wreath Macdonald poly-

nomials

H̃I ∈ N[q, t]⊗X(G),

determined (conjecturally) by an analog of the

definition we gave in Lecture 1 for usual Mac-

donald polynomials. Plenty of computational

evidence suggests that wreath Macdonald poly-

nomials do indeed exist and have coefficients

in N[q, t].
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Combinatorial formula for H̃µ(z; q, t)

Motivation—

H̃µ(z; 1,1) = p1(z)
n = (z1 + z2 + · · · )n

for any µ, where n = |µ|. Assign each filling

σ : µ→ Z+

the weight

zσ =
∏
x∈µ

zσ(x),

e.g.

σ =

2 2

1 5 3

3 2 4

, zσ = z1z
3
2z

2
3z4z5.

Then

p1(z)
n =

∑
σ : µ→Z+

zσ,
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and we may expect

H̃µ(z; q, t) =
∑

σ : µ→Z+

q?t?zσ.

Definitions. Descents and major index of σ:

b
a a < b

maj(σ) =
∑

x∈Des(σ)

l(x) + 1

(recall arm a(x) and leg l(x)

l
l
x a a a a(x) = 3, l(x) = 2).

Example.

2 2

1 5 3

3 2 4

maj(σ) = 1 + 2 = 3
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Inversions of σ

b a or b
a a < b

inv(σ) = | Inv(σ)| −
∑

x∈Des(σ)

a(x).

We subtracted “forced” inversions

b c
a a < b⇒ c < b or a < c.

Example.

2 2

1 5 3

3 2 4

inv(σ) = 5− 2 = 3

Theorem (Haglund–Loehr–H— 2004, conj. by
Haglund).

H̃µ(z; q, t) =
∑

σ : µ→Z+

qinv(σ)tmaj(σ)zσ.
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• No combinatorial formula for K̃λµ(q, t), as

we wrote H̃µ(z; q, t) in terms of monomials,

not Schur functions.

• Open Problem 1: explain q ↔ t symmetry

H̃µ′(z; q, t) = H̃µ(z; t, q), generalizing Foata–

Schützenberger bijection for µ = (1n), (n).

inv = 0
maj is
classical

maj = 0
inv is classical.

• Open Problem 2: connect combinatorics

to Rµ and Hilbert scheme.

• A puzzle: why is our formula a symmetric

function in z?
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LLT polynomials

Recall that a semistandard Young tableau

4 4 6 7
2 3 3 4
1 1 1 3 5

is a filling, increasing weakly on rows & strictly

on columns. Schur functions are given by

Sλ(z) =
∑

T∈SSYT(λ)

zT .

Fix a tuple ν of (skew) diagrams

ν(1) ν(2) ν(3)

A semistandard tableau on ν is a tuple T ∈
SSYT(ν(1))× · · · × SSYT(ν(k)), e.g.

2 4
3 3

2 4
1 2

1

5
3
2 3
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Mark the content c(x) = (row − column) of
each box, e.g.

4 3
2 1

3 2
2 1

0

5
4
3 2

(we may fix a separate origin for each ν(i)).

Definition. Inversions of SSYT T on ν

b
a

x ∈ ν(i) y ∈ ν(j)

a < b,
c(y) = c(x),

i < j,

or

a
b

y ∈ ν(j) x ∈ ν(i)

a < b,
c(y) = c(x)− 1,

i > j.

Example.

T = 2 4
3 3

2 4
1 2

1

5
3
2 3

inv(T ) = 10
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Definition. LLT polynomial

Gν(z; q) =
∑

T∈SSYT(ν)

q| Inv(T )|zT .

Note Gν(z; 1) is a product of skew Schur func-

tions S
ν(1)(z) · · ·Sν(k)(z).

Theorem (Lascoux–Leclerc–Thibon). Gν(z; q)

is a symmetric function.

Proposition. Fix µ and D ⊆ µ. Then

Fµ,D(z; q, t)
def
=

∑
σ : µ→Z+
Des(σ)=D

q| Inv(σ)|zσ = Gν(z; q)

for a suitable tuple of ribbon skew diagrams ν.

Picture proof.

D = {•}

•
• •

•

µ

↔
3 2

1 0

3
2
1 0

2 1
0

ν, c(x)
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Corollary. The combinatorial expression for

H̃µ(z; q, t) is a symmetric function, equal to∑
D

t
∑
x∈D(l(x)+1)q−

∑
x∈D a(x)Fµ,D(z; q, t).

About the proof of our formula. . . let

Cµ(z; q, t) =
∑

σ : µ→Z+

qinv(σ)tmaj(σ)zσ

be the combinatorial expression. Given that

Cµ is symmetric, we can make sense of

Cµ[Z(1− q); q, t], Cµ[Z(1− t); q, t].

We construct sign-reversing involutions to ver-

ify Cµ satisfies (i)–(ii) in the def’n of Macdon-

ald polynomials:

(i) Cµ[Z(1− q); q, t] ∈ Q(t){Sλ(z) : λ ≥ µ};
(ii) Cµ[Z(1− t); q, t] ∈ Q(t){Sλ(z) : λ ≥ µ′};
(iii) 〈Cµ, S(n)〉 = 1.

For (iii), 〈Cµ, S(n)〉 is the coefficient of zn1 in Cµ.

The all-1’s filling σ has maj(σ) = inv(σ) = 0.
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Diagonal coinvariants

Recall

Rn = C[x,y]/(Sn-invariants) = H0(Zn, P )

FRn = ∇en(z).

Let δn = (n−1, n−2, . . . ,1). Consider partitions

λ ⊆ δn and tableaux T ∈ SSY T (λ+(1n)/λ), e.g.

(n = 6)

• •
• •
• • •

5
3
2
• • 3
• • 1
• • • 2

λ = (3,2,2) T

Theorem (Garsia–H—).

(∇en)(z; 1, t) =
∑
λ⊆δn

t|δn/λ|Sλ+(1n)/λ(z).
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Definition. Inversions of T ∈ SSYT(λ+(1n)/λ)

b

a

or

a

b

a < b

Then ∑
T∈

SSYT(λ+(1n)/λ)

q| Inv(T )|zT

is an LLT polynomial (hence symmetric), e.g.

• •
• •
• • •

↔
6
5
4

5
4 4

λ+ (1n)/λ ν, c(x)

Conjecture (Haglund–Loehr–Remmel–Ulyanov–
H—).

∇en(z) =
∑
λ⊆δn

t|δn/λ|
∑
T∈

SSYT(λ+(1n)/λ)

q| Inv(T )|zt.
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• Open Problem 3. Prove the conjecture.

• Open Problem 4. Relate it to geometry.

• Open Problem 5. Exhibit the q ↔ t sym-

metry of ∇en(z) in the combinatorial for-

mula.

• Open Problem 6. Find a combinatorial

expression for the doubly-graded charac-

ter of Gordon’s module R̂W for other Weyl

groups W .
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