DENS, NESTS AND THE LOEHR-WARRINGTON CONJECTURE
J. BLASIAK, M. HAIMAN, J. MORSE, A. PUN, AND G. H. SEELINGER

ABSTRACT. We prove and extend the longest-standing conjecture in ‘g, t--Catalan combina-
torics,” namely, the combinatorial formula for V™s,, conjectured by Loehr and Warrington,
where s, is a Schur function and V is an eigenoperator of Macdonald polynomials.

Our approach is to establish a stronger identity of infinite series of GL; characters in-
volving Schur Catalanimals; these were recently shown by the authors to represent Schur
functions s, [—MX"™"] in subalgebras A(X"™™) C & isomorphic to the algebra of symmetric
functions A over Q(q,t), where £ is the elliptic Hall algebra of Burban and Schiffmann. We
establish a combinatorial formula for Schur Catalanimals as weighted sums of LLT poly-
nomials, with terms indexed by configurations of nested lattice paths called nests, having
endpoints and bounding constraints controlled by data called a den.

The special case for A(X™!) proves the Loehr-Warrington conjecture, giving V™s, as
a weighted sum of LLT polynomials indexed by systems of nested Dyck paths. In general,
for A(X™™) our formula implies a new (m,n) version of the Loehr-Warrington conjecture.
In the case where each nest consists of a single lattice path, the nests in a den formula
reduces to our previous shuffle theorem for paths under any line. Both this and the (m,n)
Loehr-Warrington formula generalize the (km, kn) shuffle theorem proven by Carlsson and
Mellit (for n = 1) and Mellit. Our formula here unifies these two generalizations.

1. INTRODUCTION

1.1. Background. In this paper we prove and extend the oldest unresolved conjecture in
‘q,t-Catalan combinatorics,” namely, the combinatorial formula for V™s, conjectured by
Loehr and Warrington [I5], where s, is a Schur function and V is the operator from [2] which
is important in the theory of Macdonald polynomials. Like other results and conjectures in
this area, beginning with the shuffle theorem conjectured by Haglund et. al. [I3] and proven
by Carlsson and Mellit [§], the Loehr-Warrington formula is expressed as a sum over Dyck
paths (in this case, systems of nested Dyck paths) of LLT polynomials weighted by monomials
in ¢ and t.

Our main result, Theorem [3.5.1], is considerably more general than the Loehr-Warrington
formula. We briefly describe some of its further consequences.

The simplest case of the Loehr-Warrington formula, when s, = e;, is an elementary sym-
metric function, reduces to the original shuffle theorem. The latter is the n = 1 case of an
extended (km, kn) shuffle theorem conjectured by Bergeron et. al. [3] and proven by Mellit
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[18]. A new consequence of our main result here, not previously formulated even as a con-
jecture, is a corresponding (m,n) extension of the Loehr-Warrington formula, which reduces
to the (km, kn) shuffle theorem when s, = ey.

Another generalization of the (km, kn) shuffle theorem is given by our shuffle theorem for
paths under any line [6]. This too is a consequence of our main theorem here. Thus our
theorem unifies a number of previous results and conjectures, as summarized in the following
diagram.

Theorem [3.5.1]

7N\

Shuffle theorem for paths (m,n) Lochr-Warrington

under any line /

(km, kn) Shuffle theorem Loehr-Warrington for Vs,

N S

Shuffle theorem for V¢,

1.2. Overview. In [4], we introduced raising operator series H(z; q,t) called Catalanimals;
among them, we constructed examples for which the polynomial truncation H(z;q, )0l is
equal, up to an explicit factor of the form +¢"t*, to wV"s,(z), where w is the standard
involution on symmetric functions.

Our main result, Theorem [3.5.1] gives a combinatorially defined expansion

(1) Z 2q,t pol _ Ztaﬂ dinvy (m ( )(Z;q71>,

in terms of LLT polynomials G, (z; q), for a special class of Catalanimals H(z; ¢, t) including
those for which H(z;q,t)po = £¢"t°w V™s,(z), as just discussed.

The terms on the right hand side of are indexed by configurations of nested lattice
paths m = (m,...,m.), called nests, with endpoints and bounding constraints controlled by
combinatorial data called a den. The statistics a(m), dinv,(7) generalize the ‘area’ and ‘dinv’
statistics found in the shuffle theorem and its friends. We define these combinatorial notions
in §3

In the case where the left hand side of becomes +¢"t*w V™s,(z), formula proves
the Loehr-Warrington conjecture (see Theorem and .

Formula also applies to more general Schur Catalanimals H(z;q,t) = H, (TLZ;M, which
were shown in [4] to represent (again up to a factor £¢"¢°) Schur functions s,[—MX™"] in
subalgebras A(X™™) C & isomorphic to the algebra of symmetric functions A over Q(g, 1),
where £ is the elliptic Hall algebra of Burban and Schiffmann [7]—see §2|for details. Under
the action of £ on A constructed by Schiffmann and Vasserot [20], the Schur Catalanimal
H = H"\,, satisfies Hyol = £¢"t°w(s,[—MX™"]-1)(z). Forn = 1, we have s,[-MX™!]|-1 =

(1°)
V™s,,. In this case, the Schur Catalanimals are the Catalanimals referred to above.
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For general n, (1) yields a combinatorial formula for s,[—MX™"] - 1, made precise in
Theorem [4.2.2] which can be naturally understood as an (m,n) extension of the Loehr-
Warrington conjecture. For u = (1%), s, = e, is the k-th elementary symmetric function,
and our (m,n) Loehr-Warrington theorem reduces to the (km, kn) shuffle theorem of [3] 18],
just as the original Loehr-Warrington conjecture for V™s, reduces to the classical shuffle
theorem [8, [13] for V™ey.

Finally, for dens such that each nest consists of a single lattice path, reduces to our shuf-
fle theorem for paths under any line [0, Theorem 5.5.1], which also generalizes the (km, kn)
shuffle theorem. Thus, we have the diagram of implications in §1.1] above, with formula
at the top.

As with other instances of ¢, t-Catalan combinatorics, the left hand side of is symmetric
in ¢ and t by construction; hence the right hand side shares this symmetry. No purely
combinatorial explanation of this symmetry is yet known, even in the case of the classical
shuffle theorem for Ve,,.

In addition, since LLT polynomials are g-Schur positive [12]—i.e., their coefficients in terms
of Schur functions belong to N[g|—it follows that the Catalanimals to which applies are
(q,t)-Schur positive. The general question of which Catalanimals are (g, t)-Schur positive
seems to be a difficult one. See [6, Conjecture 7.1.1] for one conjecture in this direction.

1.3. Method and outline. We prove our main theorem by a method parallel to the one
we used to prove the shuffle theorem for paths under any line in [6].

We obtain the combinatorial formula in Theorem by taking the polynomial part of
an identity between infinite series of GL; characters. The latter identity, equation in
Theorem , expands the full Catalanimal H(z;q,t) associated with a den as an infinite
sum of LLT series Cfﬁ/a(z; q) weighted by powers of ¢.

Upon taking the polynomial part, all but a finite number of the terms ¢*£7 , /a(z; q) in ((189)

r
vanish. The surviving terms are indexed by nests 7 in the given den, and have polynomial

parts t“ﬁfﬁ/a(z; Q)pol = ta(ﬂqdi“v(”)g,,(ﬂ)(z; g '), yielding ().

Given a Levi subgroup GL, = GL,, X --- x GL,, of GL;, the LLT series E;‘ﬁ/a(z; q) in
variables z = z1, ...,z (Definition encapsulates the matrix coefficients of multiplica-
tion by arbitrary G characters with respect to chosen basis elements EY ,(z;q), E7 5(2; q)
of the space of virtual GL, characters. Here EY,(z;q) denotes a (twisted) semi-symmetric
Hall-Littlewood polynomial (Definition [5.2.1)).

The orthogonality of semi-symmetric Hall-Littlewood polynomials (Proposition
leads to a formula for LLT series in terms of these polynomials (Proposition . Us-
ing this formula, the desired infinite series identity follows from a Cauchy identity
for semi-symmetric Hall-Littlewood polynomials, Theorem [6.1.3] along with an auxiliary
identity, Proposition [6.2.4] that relates semi-symmetric Hall-Littlewood polynomials with
different twists.

The steps just outlined parallel those in the proof of [6, Theorem 5.5.1], although many of
the details are more intricate. Readers may find the simpler argument in [6], which covers
the case r = (1%), a helpful guide to the argument here.

Chief among the new intricacies is that the Cauchy identity for semi-symmetric Hall-
Littlewood polynomials in Theorem [6.1.3| is more subtle than the one for non-symmetric
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Hall-Littlewood polynomials in [0, Theorem 5.1.1]. The new Cauchy identity involves semi-
symmetric Hall-Littlewood polynomials for two separate Levi subgroups GL, and GLs, along
with the choice of minimal dominant regular weights p,, ps for each of them. These choices
must satisfy certain compatibilities in order for the Cauchy identity to hold. Because of this
greater complexity, we are not able to give a short proof of Theorem like we did for
[6, Theorem 5.1.1]. Instead, we devote most of to developing a series of properties of
semi-symmetric Hall-Littlewood polynomials, which we then use to prove Theorem [6.1.3]

2. CATALANIMALS AND LLT POLYNOMIALS

2.1. Symmetric function conventions. The (French style) diagram of a partition A is
the set of lattice points {(z,7) | 1 < 7 < £(N), 1 < i < \;}, where £()) is the length of .
We often identify A and its diagram with the set of lattice squares, or bozes, with northeast
corner at a point (i,7) € A. A skew diagram is a difference v = \/u of partition diagrams
i C A, or any translate of such a diagram. This allows for skew diagrams v = 3/« in which
the x-coordinates «;, 5; of the left and right ends of the rows may be negative.

The content of a box a = (i, 7) in row j, column ¢ of a (skew) diagram is ¢(a) =i — j.

Let A = A(X) be the algebra of symmetric functions in infinitely many variables X =
x1, T2, ..., with coefficients in the field k = Q(q,t). We follow Macdonald’s notation [17] for
the graded bases of A, the Hall inner product (—,—) in which the Schur functions s, are
orthonormal, and the autornorphlsrn w: A — A such that ws), = s)+, where \* denotes the
transpose of a partition .

Given f € A and any expression A involving indeterminates, such as a polynomial, ra-
tional function, or formal series, the plethystic evaluation f[A] is defined by writing f as a
polynomial in the power-sums pj, and evaluating with py, — pg[A], where py[A] is the result of
substituting a* for every indeterminate a occurring in A. The variables ¢, ¢ from our ground
field k count as indeterminates.

By convention, the name of an alphabet X = x1, 9, ... stands for x1 + x5 4+ - -+ inside a
plethystic evaluation. Then f[X] = flx1 +x2+ -] = f(x1,22,...) = f(X). A special case
of this convention that will arise often is the following. We fix

(2) M=(1-q)(1-1)

here and throughout. Then the evaluation f[—M X] is the image of f(X) under the k-algebra
automorphism of A that sends py to —(1 — ¢*)(1 — t*)ps.

We also allow plethystic evaluation term by term in a symmetric formal series, provided
the result makes sense formally. In particular, the series

o e}

— _ Pk
(3) Q= Z hy, = exp -
= k=1
(with hg = 1) has the property
[L(—v)
4 0 ey — Yy — e | = i FE
(4) (21 + 29 + Y1 = Y2 | = L)
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The linear operator V on A, introduced in [2], is defined to act diagonally in the basis of
modified Macdonald polynomials H,(X; ¢, t) [11], with

(5) VH, = tn(u)qn(u*)HW
where n(p) = >".(1 — 1)

2.2. LLT polynomials. We recall the definition and basic properties of LLT polynomials
[14], using the ‘attacking inversions’ formulation from [13].

Let v = (vq), ..., 1)) be a tuple of skew diagrams. We consider the set of boxes in v to
be the disjoint union of the sets of boxes in the v;), and define the adjusted content of a box
a € v to be é(a) = c(a) + i€, where € is a fixed positive number such that ke < 1.

A diagonal in v is the set of boxes of a fixed adjusted content, that is, a diagonal of fixed
content in one of the v;.

The reading order on v is the total ordering < on the boxes of v such that a < b = ¢(a) <
¢(b) and boxes on each diagonal increase from southwest to northeast. An attacking pair is
an ordered pair of boxes (a,b) in v such that a < b in reading order and 0 < ¢(b) — é(a) < 1.

A semistandard tableau on the tuple v is a map T: v — Z, which restricts to a semis-
tandard Young tableau on each component v(;). The set of these is denoted SSYT(v). An
attacking inversion in T' is an attacking pair (a,b) such that 7'(a) > T'(b). The number of
attacking inversions in 7" is denoted inv (7).

Definition 2.2.1. The LLT polynomial indexed by a tuple of skew diagrams v is the gen-
erating function, which is known to be symmetric [13], 14],

(6) G(Xiq)= > ¢"IxT

TeSSYT(v)
T
where x' = ] |a€u T7(a)-

A similar formula expresses w G, (X;¢q) as a generating function for tableaux, as follows.
Fix an ordered alphabet A_ of ‘negative’ letters 1 < 2 < --- (since G, (X;q) is symmetric,
the choice of ordering is arbitrary).

A negative tableau on v is a map T: v — A_ that is strictly increasing on rows and
weakly increasing on columns. Let SSYT_(v) be the set of these. An attacking inversion
in a negative tableau is an attacking pair (a,b) such that T'(a) > T'(b) (like for ordinary
tableaux except that equal negative entries also count as inversions). The number of attack-
ing inversions is again denoted inv (7).

Proposition 2.2.2 ([6, Corollary 4.1.3]). Setting x; = x; for indices i € A_, we have
(7) wG(Xiq)= > ¢™OXT
TeSSYT_ (v)

As in [6], formula (7)) leads to the following corollary.

Corollary 2.2.3 ([0, Lemma 4.1.6]). The LLT polynomial G,(X;q) is a linear combination
of Schur functions sy with {(\) < 1, where | =), (vy)) is the total number of rows in the
skew diagrams v;.
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We also need the invariance of G, (X;q) under shifted rotations of v.

Proposition 2.2.4. Let v = (v, ...,vx)) and set v/ = (V(J;H), o I/(J,;), vy, - - U)) for
any 1 < j < k, where Vg) is a translation of vy such that the content of every box is increased

by 1. Then G,(X;q) = G (X;q).

Proof. From the construction of v/, there is a natural bijection between boxes of v and boxes
of v/ that preserves the reading order and the set of attacking pairs. This induces a bijection
SSYT(v) = SSYT(v') that preserves x? and inv(T). O

2.3. Catalanimals. Let | be a positive integer and let Ry = Ry (GL) = {a; = €; — ¢ |
i < j} be the set of positive roots for GL;, where ¢; denotes the i-th unit coordinate vector
in Z!. Given subsets R,, Ry, Ry C R, and a weight A\ € Z' we define the Catalanimal
H(Ry, Ri, Ry, A) of length [ as in [4] to be the symmetric rational function in [ variables
Z=2,...,2 given by

2 [Loen,, (1 — qtz®)
(8) H(Ry, Ry, Ry, \) & w( a€Ry )
e U’GZSI HQGRJr(l —z7°) HaeRq(l —q2°) [loer, (1 —t2%)

where z* stands for 2} - - - zl’\l. The defining formula can also be written

ZA HaEth(l B tha)
(9) H(Ry, Ry, Ry, \) = U(naeRq(l —q2%) [Toer, (1 — tza)>’
where
(10) o-<f>=Zw(H " (Ji—z—a))

is the Weyl symmetrization operator for GL;. Recall that o (z*) = y, is an irreducible GI,
character if \ is a dominant weight. For an arbitrary weight u € Z!, either o(z") = £y, for
a suitable dominant weight A, or o (z") = 0.

Expanding the factors (1 —qz®) ' =1+ ¢z +--- and (1 —tz%) ' =1+tz*+--- as
geometric series before applying o, we can regard @ as a raising operator Series, exXpress-
ing H(R,, R, Ry, \) as an infinite formal linear combination ) . @uXp Of irreducible GL
characters with coefficients a,, € Z]g, t].

The polynomial characters of GL; are the irreducible characters x,, with u € NY; thus p is
an integer partition with at most [ parts and possible trailing zeroes, and x, is equal to the
Schur function s,(z1, ..., 2). The polynomial part

(11> H(RqaRtath)‘)pol

of a Catalanimal is the truncation of its raising operator series expansion to terms a,x, for
polynomial characters x,. Then H(R,, R, R4, N)pol is a symmetric polynomial, homoge-
neous of degree |[A| =", \;, in the variables z1,. .., z.

We will need several results from [4] concerning Catalanimals and their connection with
the elliptic Hall algebra & of Burban and Schiffmann [7] (or Schiffmann algebra). Before
stating them, we fix notation and recall some facts about &.
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For each pair of coprime integers (m, n), the Schiffmann algebra £ contains a distinguished
subalgebra A(X™™) isomorphic to the algebra of symmetric functions. By a theorem of
Schiffmann and Vasserot [20], the ‘right half-plane’ subalgebra €T C & generated by the
A(X™™) for m > 0 is isomorphic to the shuffle algebra of Feigin et al. [9], Feigin and
Tsymbauliak [10], and Negut [19]. This shuffle algebra has many different realizations. Here
we use the realization Sz in [4], §3.2]; it is a graded algebra whose degree | component is

a certain subspace Slf C Kk(z1,...,2)% of the space of symmetric rational functions in [
variables. The isomorphism that we use is the one denoted
(12) Yp: Sp =S &f

in [4, equations (26, 28)]. In [20], Schiffmann and Vasserot also constructed an action £ on
A(X). We use the version of this action given by [6, Proposition 3.3.1].

The results stated below summarize everything we need to know for the purposes of this
paper about the above algebras, isomorphism and action. For more details, the reader can
consult [7, 19 20]; the translation between the notation in these papers and ours can be
found in [0, §§3.2-3.3], the defining relations of £ written in our notation are in [5, §3.2], and
the relationship between Sz and the shuffle algebra studied by Negut in [19] is explained in
[4, §3.6].

Proposition 2.3.1 ([4, Proposition 4.1.3]). Let H = H(R,, Ry, Ry, A\) be a tame Cata-
lanimal as in [4, Definition 4.1.2]—that is, the root sets satisfy [Rq, Ri] C Ry, where
[R,, R]| = (R, + R:) N Ry. Then H, considered as a symmetric rational function, is an
element of Sz, and as such represents an element Ys(H) € ET of the Schiffmann algebra.

Proposition 2.3.2. If a Catalanimal H = H(Ry, Ry, Ry, ) of length | belongs to Sz, and
¢ = Yp(H) is the corresponding element of 1, then ¢ acting on 1 € A(X) satisfies

(13) w(C-1)(#1,...,2) = Hpol-

In addition, w(C - 1) is a linear combination of Schur functions s, indexved by partitions p
with at most | parts, so it is determined by .

Proof. This follows from [6, Proposition 3.5.2] in the same way that [4, Proposition 3.5.2]
does. 0J

Proposition 2.3.3 ([4, Lemma 3.5.1)). For any symmetric function f, the element
fl-MX™] € & acting on 1 € A(X) is given by

(14) fl=MX™1] 1= V"f(X).

2.4. Schur Catalanimals. Given any LLT polynomial G, (X;q), we constructed Catalani-
mals H,,»" in [4] such that (H,»") is equal, up to a sign and a monomial factor in ¢, t, to
G,[—M X™"|. For the proof of the Loehr-Warrington conjecture we need the special case of
this result when v is a single diagram and the LLT polynomial G, (X;¢q) is a Schur function.
To describe this case, we recall some combinatorial notions from [4, §§8.1-8.2].

Given (m,n) € Z; x Z, we define the sequence of m integers as in [4], (104)]

(15) b(m,n); = [in/m]| — [(i — 1)n/m] (t=1,...,m).
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The m-stretching of a (skew) diagram v is the skew diagram v™ constructed by dilating
v vertically by a factor of m in the following way: for each box z of content ¢ in v, the
m-stretching v™ has m boxes of contents me¢ — m + 1,...,mc — 1, mc in the same column
as x. For example, the 3-stretching of the partition diagram v = (3,2) is shown here, with
shaded bars showing the three boxes in 3 that correspond to each box in v.

(16) y:EEb VP =

We define

(17) Y(v) = (15, 7)

to be the sequence of lengths of diagonals {x € v | ¢(z) = ¢} in increasing order of the
content ¢, and set

(18) W) =3 (2).

i=1

The magic number p(v) is the sum of the lengths of the diagonals that do not contain the first
box in a row of v. Note that the diagonals of ¥™ correspond to diagonals of v, each repeated
m times vertically. Using this one sees that n'(y(v™)) = mn/(y(v)) and p(v™) = p(v).

A more subtle property of the magic number, which follows from [4, Lemma 7.2.2], is that
if v° is the 180° rotation of v, then p(v°) = p(v).

Definition 2.4.1. Given a (skew) diagram v and coprime integers m, n with m > 0,
the (skew) Schur Catalanimal H)»" = H(R,, Ry, Ry, A) is the tame Catalanimal of length
[ = m|v| = [v™] constructed as follows, where v is the m-stretching of v.

The root sets and weight are defined with reference to the partition of [[] = {1,...,l}
into intervals of lengths y(v™). For the root sets, we take a;; € R, = R, if i < j are in
distinct blocks of this partition, and «;; € Ry if @ < j are in distinct, non-adjacent blocks;
equivalently, Ry, = [R,, Ryl

The weight A is defined to be constant on blocks, as follows: for every i € [I] belonging to
the k-th block of the partition, we set

(19) \; = x(Dy contains the first box in a row of ™)

— X(Dy, contains the last box in a row of ™) 4+ b(m, 1) mod,n (),

where Dy, is the k-th diagonal of ©™, ¢ is the content of boxes on that diagonal, and mod,,(c)
is the integer j € [m] such that j = ¢ (mod m).

When 4 is a (non-skew) partition diagram, we call H,»" a Schur Catalanimal and H (mu g’;m
the opposite Schur Catalanimal, where p° is the 180° rotation of p.
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Theorem 2.4.2 ([4, Theorem 8.3.1]). The Schur Catalanimal H}" satisfies the identity
(20) Su[—MX™"] = (_1)p(u) (¢ t)p(“”m"/”(“))zpf(Hl%”).
This identity also holds with the opposite Schur Catalanimal H(TL;T;m in place of H,".

3. NESTS IN A DEN FORMULA

Our main combinatorial result, Theorem below, is an identity expanding the poly-
nomial parts of certain tame Catalanimals as weighted sums of LLT polynomials indexed by
configurations of nested lattice paths. In this section, we define the required combinatorial
notions and then state the theorem. The proof will be given in

3.1. Dens and nests. We begin by defining the data that will serve as input to Theo-

rem 3571
Definition 3.1.1. A denis a tuple (h, p,d, e), where h is a positive integer, p is an irrational
real number, and d = (do, ...,d) and e = (ey, ..., e,) are sequences of integers, subject to
the following conditions:
(21) (di—d;+1)/(j—i)>p for 0<i<j<h-—1;
(22) (ei—e;—1)/(j—i)<p for 1<i<j<h;
h h
(23) dy > ey, djn <ep, and Zdi = Zei.
i=0 i=0

The reason for assuming p irrational is to avoid having to disambiguate equalities that
might otherwise occur in comparisons such as those in .

With any den we also define the following auxiliary notions. The lattice points (7, d;) are
heads, and (i,e;) are feet. Points {(i,7) | e; < j < d;} weakly below a head and strictly
above a foot on the same vertical line = i are sources. Points {(i,7) | d; < j < e;} weakly
below a foot and strictly above a head are sinks. We also set

k—1
(24) g=1(g1,-,0n), where gi= (di—e).
i=0
A den can be pictured by plotting the heads, feet, sources and sinks, as shown for example
in Figure[I] On each line z =i for 0 < i < h, the head, foot, and any sources or sinks are
arranged in one of the ways shown here.

{ head { foot
sources sinks
(25) head = foot
foot head
di>€i dz‘ZGi di<ei

Condition (21) means that for heads P left of @, excluding the last head (h,dy), some line
of slope —p passes above ) and below P + (0,1). Similarly, condition means that for
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g °
@]
L4 °
O @ Py
@ O Py o
O { ]
@ O o
® O 10
O
[ J
® head ® source
O foot O sink
© both

FIGURE 1. Heads, feet, sources and sinks in the den with h = 7, d =
(9,7,6,5,4,3,2,0), e = (8,6,4,5,5,3,3,2). These data define a valid den
for any p € (1,2).

feet P left of @, excluding the first foot (0, ep), some line of slope —p passes above P and
below @ + (0, 1), as pictured here.

<
< N
N o ~
N -
T P -
< <
<

(26) ;- |
Q Q
heads feet

Condition ([23|) says that there is at least one source on the line z = 0 and at least one
sink on the line z = h, and that the total number of sources is equal to the total number of

sinks. Conditions and imply
(27) dj—ejgdi—ei—kl

for all 0 < ¢ < j < h. If there is a sink with x coordinate ¢ and a source with x coordinate
J, then d; —e; < 0 and d; — e; > 0. In particular, no source and sink can be on the same
vertical line x = 7, and implies that all sources are strictly left of all sinks.

Next we define the systems of nested lattice paths that will be attached to a den.

Definition 3.1.2. An east end path is a lattice path with south (0, —1) and east (1,0) steps
that ends with an east step. East end paths 7, n’ are nested with = below 7' if

(i) the interval [, /] of z-coordinates of points of 7’ is contained in the interval [a, b] of
x-coordinates of points of 7, and

(ii) for every integer ¢ € [d/, b'] the respective intervals [v;, w;] and [v], w}] of y-coordinates
of points on 7 N (x = i) and 7' N (z = i) satisfy v; < v} and w; < w.
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@ source
O sink
O head = foot

FIGURE 2. A typical nest 7 in the den in Figure , and the unique nest 7°
such that a(n®) = 0. The sequence g = (1,2,4,4,3,3,2) associated with the
den gives the number of east steps at each z-coordinate.

An example of a pair of nested east end paths is shown below. Note that nested paths
can share south steps, but not east steps.

(28) i i

™

It is not hard to see that nesting is transitive, i.e., if 7 is nested below 7’ and 7’ is nested
below 7", then 7 is nested below 7.

Definition 3.1.3. A nest in a den (h,p,d,e) is a system of nested east end paths 7 =
(71, ..., ) from the sources to the sinks, numbered with 7 nested below m; for k < I, which
satisfies the condition j < d; for every lattice point (7, j) other than the sink on each of the
paths 7. In other words, all non-sink lattice points in 7 lie weakly below the heads.

Figure [2 shows two nests belonging to the den in Figure [ We have marked the head
(= foot) on each line z = i that has no source or sink in order to make visible the condition
that paths in the nest must lie weakly below the heads.

Remark 3.1.4. (i) The numbering of the paths 7; from nested below to nested above implies
that m; starts at the i-th source from left to right, with sources on the same vertical line
numbered bottom to top. Similarly, m; ends at the ¢-th sink from right to left, again from
bottom to top on vertical lines.

(ii) Because paths in a nest are nested, any non-sink lattice point (4,7) on a path auto-
matically lies weakly below the head (7, d;) unless the head equals the foot (i, ;). Only when
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d; = e;, so there is no source or sink on the line x = ¢, does the requirement j < d; impose
an extra condition.

For example, the head and foot at (3,5) in the den in Figure [l shown as the upper left
gray dot in Figure , prohibits the highest path 7, from starting with an east step to (3, 6),
although nesting alone would allow this. Similarly, the head and foot at (5,3) prohibits m3
from passing through (5,4).

(iii) The number g in (24 counts sources minus sinks with z-coordinate less than k.
Hence, for every nest 7 in the den, g; is the number of paths 7; in m that have an east step
from z = k— 1 to x = k, or equivalently, have a non-sink lattice point on the line x = k — 1.
These are the first g5 paths 7y, ..., 7, , since if 7; has an east step from v =k —1 to z = k,
then so does every path m; nested below ;. Since all sources are left of all sinks, and there
is assumed to be at least one source at x = 0 and at least one sink at x = h, the sequence g
is positive and unimodal, with maximum equal to the number of sources (or sinks). These
properties can be seen in Figure

(iv) It is possible to have an ‘abandoned’ den with no nests. The most obvious way this
can happen is if some source is lower than the matching sink.

3.2. Parameterizing nests. Nests in a den can be parameterized by tuples of partitions
satisfying certain inequalities, as follows.

Lemma 3.2.1. Let (h,p,d,e) be a den, with g as in ([24).
(i) If m = (m1,...,m) is a nest in the den, then
(a) for 1 < k < h, m; has a non-sink lattice point on the line x = k — 1 if and only if
1 <0< gy
(b) there are unique partitions Ay, . .., A\n—1y of length £(Axy) < min(gk, gr41) such that
for1 <k < handl <1 < g, the y-coordinates of all non-sink lattice points of m;
on the line x = k — 1 form the interval

(29) i =lex — gk + 10— (Aw))ir k-1 — k-1 + 0 — (A—1))4]
where we set Aoy = Ay = D, extend partitions with trailing zeroes if needed, and set
go = 0.
(1i) Set \oy = Ay = @ and gy = 0. Let A\qy,..., A1) be partitions of length {(Ay)) <
min(gg, gr+1) such that for 1 <k < h and 1 <i < g,
(30) er — gk — (Aw))i < €r—1 — gr—1 — (Ak-1))i

(so the intervals Iy; are non-empty). Then there is a unique nest m = (my,...,m.) in the
den such that the y-coordinates of all non-sink lattice points of m; on the line x = k—1 form
the interval Iy ; for all1 <k < h and 1 <1 < g;.

Proof. Given a nest m, part (i)(a) holds by Remark (iii), and the east steps from
x =k—1tox =k in m are on paths m through 7, . Let yp1 < ... < Y4, be the y-
coordinates of these east steps. The right endpoint of any east step is weakly below the foot
on the same vertical line, so y; 4, < €. Hence,

(31) Yri < € — gk 1

for all k and ¢ < g.
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Every east step from x = h — 1 to x = h ends at a sink, so y,; = e, — g5 + ¢ is fixed for
all 7+ < gp,, independent of the nest. If £k < h and gx > gg11, there are g — gr11 sinks on the
line = k. In this case the top g — gr+1 east steps from x = k — 1 to = = k are fixed, with
Yki = € — gr + 1 for grp1 < i < gg. This leaves the yy; for £ < h and ¢ < min(gy, gx+1) free
to vary with the nest. To establish part (i)(b), let

(32) /\(k) = (ek —gr+1— Ykds--- €k — Gk + Tk — yk,rk)7

for kK =1,...,h — 1, where r;, = min(gy, gr4+1). We also set Ay = Ay = @ and (Ag)); =0
for i > ry.

Since the y;,; are strictly increasing and bounded by , A(k) is a partition of length
((Ax)) < min(gk, gr+1) with possible trailing zeroes. Since equality holds in for the
fixed east steps that end at sinks, we have

(33) Yki = €k — Je + 1 — (A )i

forall 1 <k < handi < g.

The lattice point at x = k — 1 on m; with the smallest y-coordinate is the left endpoint
of the east step with y-coordinate y;,;. If £ > 1 and ¢ < g;_;, the point with the largest
y-coordinate is the right endpoint of the east step with y-coordinate yj_;,. Otherwise, if
k=1orgi1 <1 < g, this highest point is the i-th source, with y-coordinate ex_1 —gx_1 +1,
if we take gy = 0 in the case k = 1. This shows that the y-coordinates of the points on ;
at v = k — 1 are given by the interval I;; in all cases. These intervals clearly determine the
partitions Ay).

For part (ii), suppose we are given partitions A1, ..., Ap—1) with (X)) < min(gx, gri1)
such that holds. By Remark (iii), the sequence g is positive and unimodal with
maximum equal to the number r of sources (or sinks) in the den, and for each i = 1,...,r
the set {k € [h] | gr > i} is the non-empty interval [kg, k1] such that the i-th source and its
matching sink are at * = kg — 1 and x = k;. For each i, we start by constructing an east
end path 7; such that the intervals Iy ; for k € [ko, k1] describe the lattice points on ;.

Fix i and the corresponding interval [kg, k1]. The i-th source has y-coordinate ep,_; —
Jko—1 + 1, if we set go = 0 for kg = 1. Since ky is minimal with ¢ < g, we have ¢ > gg,_1
and therefore (A,—1)); = 0 since €(Ax,-1)) < gro—1. Hence, the upper endpoint of the
interval Iy, ; is the y-coordinate of the i-th source. The sink matching the i-th source has
y-coordinate eg, — gx, + ¢. Since kp is maximal with ¢ < g, either ky = h or ¢ > gg,+1, and
therefore (A(4,)); = 0. Hence, the lower endpoint of Iy, ; is the y-coordinate of the matching
sink. For the rest, if kg < k < k;, the lower endpoint of [ ; is equal to the upper endpoint
of Iy41,;. Hence, there exists a unique east end path m; from the i-th source to the i-th sink
with non-sink lattice points at + = k£ —1 given by the intervals I ; for this 7 and kg < k < k.

By construction, the paths m; defined in this way are nested with m; below 7; for ¢ < j.
The upper endpoint of the interval I ; is at most ez_; — gr—1 + gx, which is equal to dj_; by
the definition of g, so the paths m; form a nest in the den. O

Ezample 3.2.2. Nests in the den in Figure [I| are parameterized by partitions Ay, ..., A@) of
lengths at most 1,2,4,3,3,2, subject to the inequalities in (30)). The nest 7° on the right
in Figure [2| corresponds to A = @ for all ¢ = 1,...,6. The nest m on the left in Figure
corresponds to Aqy = (1), A2y = (1), A3y = (1), Ay = (1, 1,1), A5) = Ag) = 9.
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3.3. Combinatorial statistics associated with nests. We now define statistics a(7) and
dinv,(m) for each nest 7 in a den, closely related to the area and dinv statistics seen in the
Loehr-Warrington conjecture and the various generalizations of the shuffle theorem.

Definition 3.3.1. Let m be a nest in a den (h,p,d, e) and let g be the sequence in , SO
there are g east steps fromx =k —1tox=kinnm. Fork=1,... h,let yp1 < - < Ypgq,
be the y-coordinates of these east steps. We define

(34) a(r) = Z Z(ek — Gk 11— Yk).

k=1 i=1
Equivalently, by [B3), a(r) = [A| = Y,|A\@| in terms of the parameterization in

Lemma

If we let area(m;) denote the number of lattice squares above m; and below some fixed
boundary—for instance, the number of lattice squares above ; in the rectangle with corners
at its source and sink—then both a(m) and _; area(m;) have the form (constant — 3, ; yr:).
Hence, a(7) differs from ), area(n;) by a constant not depending on 7.

If there is a nest 7° in the den such that a(7") = 0, it must correspond via Lemma m
to Ay = @ for all k, or equivalently to yi; = ey — gr + for all k and 4. Since this is always
an upper bound on yy;, the path 7; in any nest 7 lies weakly below the path 7%, and a(7)
is equal to the sum of the areas area(r;) between 7; and Y. We can make this more precise
as follows.

Corollary 3.3.2. A den (h,p,d,e) has a nest 7° such that a(7®) = 0 if and only if e, < di_4
forall k =1,...,h. Such a nest 7° is unique. If it exists, then each path m; in any nest w
lies weakly below 7, and a(r) is equal to the sum of the areas area(m;) = |7\ /m;| enclosed
between the paths m; and 0.

If d is weakly decreasing, which is always the case if p > 0 by condition , then the den
is either abandoned (has no nests), or it has a nest ™ as above.

Proof. By the definition of g in , we have e, < dj_; if and only if e, — g < €x_1 — gr_1,
taking go = 0. This is equivalent to for all Ay = @. The first paragraph then follows
from the preceding observations and Lemma |3.2.1

For the last part, assume that d is weakly decreasing. If e; > dj_; for some k, it follows
that ey > di, so (k,eg) is a sink. The east step ending at this sink in any nest would start

at (k — 1,e), but this is not allowed, since e, > dj_;. Hence, the den is abandoned unless
er < dp_qforallk=1,... h. O

Example 3.3.3. The den in Figure [l has a unique nest 7° with a(7°) = 0, shown on the right
in Figure 2l For the nest m on the left in Figure [2, the areas between corresponding paths
70 and m; add up to a(r) =4+1+1+0=6.

Definition 3.3.4. Let 7 be a nest in a den (h, p,d, e). We define dinv,(7) to be the number
of tuples (P, 4,5, 7), where P is a non-sink lattice point on 7;, S is a south step on ;, P is
strictly left of S, and the line of slope —p through P passes through S (necessarily through
the interior of S, since we assume p is irrational).



DENS, NESTS AND THE LOEHR-WARRINGTON CONJECTURE 15

T v(m)

FIGURE 3. (i) The nest m drawn below a line y + px = s with p ~ 1.04
and s ~ 9.80. (ii) The tuple of skew diagrams v(7), arranged southwest to
northeast with dashed lines showing boxes of equal content.

In effect, dinv,(7) counts pairs P, S in 7 whose relative position is as indicated, with
multiplicities if P or S lies on more than one path in the nest.

(35) P \\\\\]lS

Ezample 3.3.5. In the den in Figure [} take p = 1 + € for a small ¢ > 0. Then P and S
contribute to dinv, () if P is northwest of the upper end of S on the same diagonal of slope
—1. In Figure [3] we have redrawn the nest 7 from Figure [2| displaying lattice points, as an
aid to checking that dinv,(7) = 22.

3.4. LLT polynomial associated with a nest. Next we define a tuple of skew diagrams
v(m) attached to each nest 7 in a den.

Given a den (h,p,d,e), fix a real number s such that the line y + pr = s passes weakly
above all the heads and feet. For i =1,...,h, let ¢; = {s —p (i — 1)} be the height of the
gap between the line y + px = s and the highest lattice point weakly below it at x = — 1,
where {a} = a — |a] denotes the fractional part of a real number a.

Let o € S, be the permutation such that o(1),...,0(h) are in the same relative order as
Cly...,Cp, Le., such that o(eq,...,¢p) is increasing. Note that the ¢; are distinct, since p is
irrational.

Definition 3.4.1. Given a den (h,p,d,e), fix s and define ¢1,...,¢; and o as above. For
each nest 7 in the den, v(n) is the tuple of skew diagrams (v(1y, ..., (n)) with v(;) defined
as follows.

Let k = 07'(j). By Remark (iii), the paths in 7 which have a non-sink lattice point
on the line x = k — 1 are my,..., 7, for g, defined in (24). For i =1,..., g, let y; and w;
be the maximum and minimum y-coordinates of lattice points on m; at © = k — 1. Then we
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set

(36) vy = B/a=(B1,...,Bg)/(a1,...,ay,),

where o; = |s—p(k—1)| —y;+iand §; = |[s—p(k—1)] —w;+i. Note that (y1,...,y,,) and
(w1, ..., w,, ) are strictly increasing, with y, > w,, so /a makes sense as a skew diagram.

Less formally, for each k =1,...,h, if Oy = (k — 1, [s — p(k — 1)]) is the highest lattice
point at x = k — 1 below the line y + px = s, we construct a skew diagram by turning runs
of south steps in paths in 7 at * = k — 1 into rows of a skew diagram, placed so that the
content of the box corresponding to a south step S is the distance between O, and the south
endpoint of S. Then v() is the list of these skew diagrams in increasing order of the gaps
cx- Note that this makes the reading order on boxes of v(m) correspond to the ordering of
south steps in 7 by increasing distance below the line y + px = s, with occurrences of the
same south step S on two paths m;, m; ordered by i < j.

Example 3.4.2. In Figure [3| we have re-drawn the nest 7 from Example [3.3.5] and Figure
below a line y + px = s with p = 1+ € for € &~ .04, and s =~ 9.8 chosen so the line passes a
little above the source at (0,9) and the sinks at (4,5), (6,3) and (7,2). The gaps ¢; between

this line and the highest lattice points below it increase in the order ¢; < --- < ¢4, giving
o = wy, the longest permutation in S;7. Accordingly, the skew diagrams vy, ..., (7 in v(7)
are associated to south runs on the lines x = k — 1 in the order £ =7,6,...,1.

The first three diagrams in v(7) are empty. The last four are plotted in Figure , arranged
from southwest to northeast and positioned so that boxes of equal content are on the same
diagonal line.

Remark 3.4.3. In terms of the parameterization in Lemma3.2.1} the skew diagram v(;) = 8/«
in (36) is given by o = (a%)+A_1), B = (b%)+ Ay, where k = o7 (j),a = [s —p(k—1)]—
er1t g1, 0= 1[s—pk—1)] —ex + g

Although the definition of v(7) involves an auxiliary choice of the line y+px = s, one can
check that when s varies, v(m) changes by rotations of the kind in Proposition m The
LLT polynomial G, () (X; q) therefore depends only on 7 and the slope parameter p. We can
make this more explicit as follows.

Let S(m) be the set of pairs (.5S,7) such that S is a south step on m;, and let ¢(S) denote
the vertical distance s — (I + p k) between the line y + pz = s and the south endpoint (k,1)
of S. We say that an ordered pair of elements (S,1), (S’,j) € S(w) is an attacking pair if
0 < ¢é(8") —¢é(S) < 1. This means that S and S” are distinct, some line of slope —p passes
through them both, and they are ordered with ¢(S) < ¢é(S’). The differences ¢(S") — ¢(.5)
and the set of attacking pairs do not depend on s. Via the natural correspondence between
S(m) and the set of boxes in v(7), attacking pairs in S(7) correspond to attacking pairs in
v(m).

Definition 3.4.4. A negative labeling of a nest 7 is a map N: S(7w) — Z, that satisfies the
conditions

(i) N is strictly increasing from north to south along each run of south steps in each m;;
(ii) if (S,4) and (S’,7 4+ 1) are on the same vertical line with S” immediately above S,
then N(S,i) < N(S",i+1).
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We define inv(/N) to be the number of attacking pairs (S5,7), (S’,7) in S(7) such that
N(S,i) > N(5',j).

A positive labeling P: S(m) — Z. is defined similarly, but with ‘weakly increasing’ in place
of ‘strictly increasing’ in (i), with P(S,i) < P(S’,i+ 1) in place of N(S,i) < N(S',i+ 1) in
(ii), and with P(S,i) > P(S’,j) in place of N(S,i) > N(S5’,j) when defining inv(P).

By construction, if we transfer labels from steps in S(7) to the corresponding boxes in
v(m), positive or negative labelings P or N correspond to tableaux T' € SSYT. (v(7)) with
positive or negative letters. The definition of G, and Proposition therefore yield

(37) Gum(X3q) = Y g™ %",
P

(38) WG (Xiq) =Y g™ xN,
N

where the sums are over positive and negative labelings P and N, respectively, and x” =
[T(si)es () TP(s,0), With x” defined similarly.

3.5. Main theorem. We have now defined the ingredients needed to state our main com-
binatorial result.

Theorem 3.5.1. Given a den (h,p,d,e), with g as in , define a Catalanimal
(39) H = H(Rg, Ry, Ry, ((do — e1)™, ..., (dn_1 — €n)™))

of length l = |g| = >, gx, taking R, = R; to be the set of positive roots c; (i < j) such that
i, j are in distinct blocks of the partition of [l] into intervals of lengths gi, and Ry to be the
subset of these roots with i, j in non-adjacent blocks.

Then the polynomial part of H is given by

(40) Hpol<z) = Z ta(ﬂ-)qdinvp(ﬂ-)gu(ﬁ) (217 ceey 2l qil)u
where the sum is over all nests m in the given den, and a(r), dinv,(7) and G,)(X;q) are
as defined in §43.3{3.4)

There are several alternative ways to formulate the conclusion of Theorem [3.5.1} Using
Proposition [2.3.2] we can connect it with the Schiffmann algebra, as follows. Note that the
root sets in (39) satisfy R, = [Ry, R:], so the Catalanimal H is tame.

Corollary 3.5.2. Given a den (h,p,d,e), let ( = Ya(H) € E' be the Schiffmann algebra
element represented by the tame Catalanimal H in (39). Then

(41) Q‘ .1 = Zta(ﬂ)qdinw(ﬂ)w gu(ﬂ) (X; qil).
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We can also reformulate and in terms of labeled nests using (37H38|). The

resulting identities are
(42) pol Z ta dll’le 1nv(P)ZP7

(43) C 1 = Zta ) dlnvp )—inv (V) N,

where the sums are over nests 7 and positive or negative labelings P or N of 7 (Defini-
tion |3.4.4)), with the positive labelings P in having labels between 1 and /.

Corollary 3.5.3. (i) The right hand sides of through are symmetric in q and t.
(i) The left hand sides of through (43)) are q,t Schur positive, i.e., they are linear
combinations of Schur functions with coefficients in N[q, t].

Proof. (i) The Catalanimal H in the theorem is symmetric in ¢ and ¢ by construction.

(ii) A priori, the coefficients are in Z[¢*!,t], but (i) implies that they are in Z[q, t]. It was
shown in [12] that LLT polynomials G,(X;q) are g Schur positive. Hence, the coefficients
are in N|g, ¢]. O

Remark 3.5.4. If the den (h,p,d,e) has no nests, Theorem implies that the left hand
sides of through are zero.

Example 3.5.5. To illustrate Theorem [3.5.1] we write everything out for the den defined by
1
(44) h=4, p= 3 +e, d=(3,2,2,1,-1), e=(1,2,2,1,1).

This den has sources at (0,2), (0,3) and sinks at (4,0), (4,1). Its nests are pairs (my, ) of
nested generalized Dyck paths, with m; from (0,2) to (4,0) and 79 from (0, 3) to (4, 1), each
path staying weakly below the line of slope —1/2 connecting its endpoints. For this den we
have g = (2,2,2,2), since each nest consists of two paths from x = 0 to z = 4.

The Catalanimal H = H(R,, R;, Ry, A) on the left hand side of has length 8, with
root sets and weight displayed below. Matrix position (7, j) in the diagram represents the
root a;;. The weight X is written along the diagonal.

1] olefefe
1 oo|e]e
0 oo
(45) 0 oo DRq:Rt
11 E]th
0L |
0

One can verify by expanding the raising operator series that the polynomial part of this
Catalanimal is given by

(46) Hpoi(z) = (Pt + 12 + qt) s31(2) + (¢* + Pt + 222 4+ q1* + 1) 599(2)
+ (q3 + 2 q2t + 2 qt2 + t3) 8211(2) + <q2 + qt + t2) 51111(Z).
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The following table displays each nest 7 in the den along with the corresponding term
te™glinvve(mM@G, o (z;¢7") on the right hand side of ([d0), with G,(r(z;¢™!) expanded as a
linear combination of Schur functions sy(z). The reader can verify that is the sum of
these terms.

¢ (q " s22(2) + ¢ *s211(2) + ¢ *s1111(2))
tl q3 (SSI(Z) + 822(2) + 2 q_18211 (Z) + q_281111<Z))
t2 q2 (SSI(Z) + SQZ(Z) + q_18211<Z))

(47)
2 ¢° (g s22(2) + ¢ *5011(2) + ¢ *s1111(2))

¢ (¢ " s31(2) + ¢ '522(2) + ¢ 25211(2))

3.6. The single path case. As a further class of examples, we examine more closely the
instances of Theorem and Corollary for dens (h, p,d, e) with just one source and
one sink, that is,

(48) d—e=(1,0,...,0,—1).

We assume that h > 1, as h = 1 gives trivial dens with at most one nest. We also note that
if p <0, then d; = ¢; < ¢, for 0 < ¢ < h. This again implies that the den has at most one
nest, so we assume that p > 0.

Let y+px = s be the highest line of slope —p that passes through one of the heads (= feet)
(i,d;) for 0 < i < h. Conditions (21422 hold if and only if all the heads for 0 < i < h lie
in the band s — 1 < y +px < s, and the source and sink at x = 0 and x = h are above the
lower boundary y + px = s — 1 of this band. In other words, for 0 < ¢ < h, the head (i, d;)
is the highest lattice point below y + px = s on the line x = i, and the source at x = 0 and
sink at x = h are weakly above the highest lattice points on these respective lines.

Translating the picture vertically, we can assume that e, = 0, i.e., the sink is on the x-axis.
A nest 7 in this den is then a lattice path from (0,dy) to (h,0) that stays weakly below the
line y + pxr = s except possibly for an initial south run along the y-axis and the final east
step along the x-axis.

Let r = s/p be the x-intercept of the line y + px = s. If r > h, the sink (h,0) is weakly
below the line, (h,1) is above the line, and every lattice path weakly below the line that
ends at (h,0) ends with an east step. If r < h, the sink (h,0) is above the line, the point
(h —1,0) is below the line, so h = [r] + 1, and deleting the final east step in each nest 7
gives a path ending at ([r],0). In either case, nests 7w correspond one-to-one with lattice



20 J. BLASIAK, M. HAIMAN, J. MORSE, A. PUN, AND G. H. SEELINGER

paths from (0, dp) to (min(|r|, k), 0) that stay weakly below y+px = s except for a possible
south run along the y-axis.

In this picture, a(r) is the area between the path 7 and the highest such path 7°. In
[6l Definition 5.4.1], dinv,(7) was defined to be the number of p-balanced hooks whose arm
and leg end on the path 7; but this was also shown in the proof of [0, Proposition 5.4.4] to
coincide with dinv,(7) as defined here.

Since there is only one path, we have g; = 1 for all 7, so the root sets for the Catalanimal
H in Theorem are R, = Ry = R, and R, = [R4, R4], and its weight is given by
i = d;_1 — e;, which is the number of south steps on z = i — 1 in the highest path 7°
under the line y +px = s. If r < h, so h = |r] + 1, then A = b, where b = (by,...,bp)
is as in [0, Theorem 5.5.1], H is equal to the function Hy(z) in [0, Definition 3.7.1] (which
is a Catalanimal), and we have ¢z(H) = Dy, in the notation of [0, §3.6] (Dy, is a Negut
element in E7). In general, h < [r] + 1, and H is a possibly shorter Catalanimal than Hy,,
with ¢s(H) = D,, where X is obtained by dropping some trailing zeroes from b. By [6)
Lemma 3.6.2], the trailing zeroes do not matter and we have Dy, -1 = D, - 1.

In the single path case, Corollary now reduces to the generalized shuffle theorem [6,
Theorem 5.5.1] for paths under the line y + px = s, including the more general version in
[6, Remark 5.5.2] for paths extended along the y-axis.

4. THE LOEHR-WARRINGTON CONJECTURE AND ITS (m,n) EXTENSION

In this section we construct a den such that the associated Catalanimal H in Theo-
rem represents the element s,[—MX™"] in the Schiffmann algebra, for any partition
w and coprime integers m,n > 0. In the case n = 1, Corollary then yields a combina-
torial formula for V™s,,, which we will show agrees with the one conjectured by Loehr and
Warrington in [15].

4.1. LW dens. Given a partition p of length ¢(u), we define the following for use in con-
structing its associated dens.

(49) h(p) = p1 + £(p) — 1 = largest hook length in p,
(50) 0i(1) = x(u1 — 1 — 7 is the content of the last box in some row of p),
(51) ei(p) = x(i = )

for 0 <i < h(p), where x(P) = 1if P is true, 0 if P is false. Note that the contents of boxes
in p range from py — h(p) to py — 1. Since p is a partition, for ¢ < h(u) we have g;(u) = 1
if and only if p1 — ¢ is the content of the first box in some row of .

Definition 4.1.1. The LW den associated to a partition p and a pair of coprime positive
integers m, n is the den (h,p,d,e) defined as follows:

(52) h=mh(p); p=n/m—e¢
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where € > 0 is small;
d; = e; = [nh(p) —in/m] for i not a multiple of m,
(53) djm =nh(p) —nj+0;(u) — 1,
ejm = nh(p) —nj+e;(p) —1,
for 0 <i <mh(u),0<j<h(u).
We will see below (Proposition that the LW den is indeed a den.

Remark 4.1.2. (i) The p dependence in all constructions involving dens and nests comes from
comparisons between p and finitely many rational numbers r. By saying that € > 0 is ‘small’
in , we mean that such comparisons give p < rif n/m <r,and p > rif n/m > r.

(ii) Since dy = nh(p) = (n/m)h, the line y + (n/m)x = dy meets the coordinate axes at
(h,0) and (0,dp). The quantity [nh(p) — (n/m)i] is the y-coordinate of the highest lattice
point on the line 2z = i weakly below y + (n/m)x = do.

If ¢ is not a multiple of m, the highest lattice point is strictly below y + (n/m)x = dy,
and (i,d;) = (i,e;) is this point. For i = jm, the highest lattice point is on the line
y+ (n/m)x = dy. In this case, (i,d;) and (i, ;) are each either on the line or one unit below,
depending on the values of §,(x) and ;(p). It follows that the sources and sinks in the LW
den all lie on the bounding line y + (n/m)z = dy, and that paths in every nest in this den
stay weakly below the bounding line.

For i = jm, if §;(1n) = €;(p) = 0, the head and foot (¢, d;) = (i, e;) are both one unit below
the bounding line. In this case there is no source or sink at x = jm, and the condition that
paths in a nest lie weakly below the heads forbids the paths from touching the bounding line
at x = ym. The other heads impose no further conditions. Every system of nested east end
paths from the sources to the sinks, which stay weakly below the bounding line and do not
touch it at the forbidden points, is therefore a nest in the LW den.

Example 4.1.3. For the partition u = (4, 3, 3,3, 2) we have h(u) = 8, 6 = (dp(1), ..., 08(n)) =
(1,0,1,1,1,0,1,0,0), and € = (go(p), - - ., es(pt)) = (0,0,0,0,1,1,1,1,1). In the simplest LW
den, for m =n =1, we get d, e by adding  — 1, € — 1 to the vector (8,7,...,1,0), giving

(54) (h,p,d,e) = (8, 1—¢, (8,6,6,5,4,2,2,0,—1), (7,6,5,4,4,3,2,1,0)).
For (m,n) = (2,1) we interleave the above d and e with the sequence (7,6,5,4,3,2,1,0) of
numbers |8 — /2] for i odd, to get
1
(55) (h,p,d,e) = (16, 5~ €, (8,7,6,6,6,5,5,4,4,3,2,2,2,1,0,0,—1),
(7,7,6,6,5,5,4,4,4,3,3,2,2,1,1,0,0)).

These two dens are plotted in Figure . In each den, we also display the nest 7% such that
a(m?) = 0, for later reference.

Proposition 4.1.4. The data (h,p,d,e) in Definition define a valid den.
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® head
O foot
© both
x forbidden point

FIGURE 4. LW dens for = (4,3,3,3,2) and m=n =1 (left), m =2, n=1
(right), with the highest nest 7° in each den. Sources and sinks are the points
on the bounding line that are heads or feet but not both.

Proof. For any p we have 6o(p) = 1, eo(pt) = 0, 6pu) (1) = 0 (because p1g —1—h(p) is less than
the content of any box in 41) and ey, (1) = 1. We also have Z?:(’é) 0i(p) = Zﬁi’é) gi(p) = L(p).
This implies dy —eqg =1 = e, — dj, and Z?:o d; = Z?:o e;, verifying condition (23)).

All heads and feet are between or on the lines y + (n/m)z = dy and y + (n/m)x = dy — 1,
which implies (d; —d; +1)/(j —i) > n/m > (e; —e; —1)/(j — i) for all i < j. Since all feet
on the lower line are left of all feet on the upper line, the second inequality is strict. This
implies conditions (21H22|) for p = n/m — e. O

4.2. An (m,n) Loehr-Warrington formula. Our next theorem is a combinatorial formula
for the symmetric function s,[—X"™"]-1. As we will see, this generalizes both the (km, kn)-
shuffle theorem [3| 18], when s, = e;, and the Loehr-Warrington conjecture [I5], when
n = 1.

Lemma 4.2.1. Let (h,p,d,e) be the LW den for p and m,n.

(i) With notation as in Definition [2.4.1] the sequence g in is the same as y((u°)™),
or equivalently v(u°) with each entry repeated m times.

(i) The Catalanimal H in Theorem is the same as the opposite Schur Catalanimal

H(muf)bm in Definition and Theorem .

Proof. The sources in the LW den have z-coordinate im for d;(u) = 1, €;(11) = 0, and the
sinks have x-coordinate im for 6;(u) = 0, ¢;(1r) = 1. By Remark (iii), the associated
sequence g is therefore obtained by repeating each entry of the sequence v = (y1,...,Ynuw)
m times, where ;11 —v; = 0;(1n) —ei(p) for i = 0,..., h(u) — 1, and we set 79 = 1. To prove
(i), we need to show that v = ~(u°), which is the reverse of ~(u).
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Consider the decomposition of p into hooks with corner on the main diagonal, as shown
here for the partition p = (4, 3,3, 3,2) in Example |4.1.3]

(56) :

l

From the definitions we see that 0;() = 1 and ¢;() = 0 if and only if gy — ¢ — 1 is the
content of the rightmost box in the arm of a main diagonal hook. This is also the condition
on i € [0,h(u)] to have v,41 (1) — v (u°) = 1, if we define ~;(1°) = 0 for i < 1 or i > h(u).

Noting that a diagonal of content ¢ < 0 contains the top of the leg in a main diagonal
hook if and only if the diagonal of content ¢ — 1 does not contain the box at the end of a row
of p, we see that 0;(11) = 0 and ¢;() = 1 if and only if p; — 7 is the content of the highest
box in a leg. This is the condition on ¢ to have ~;1(u°) — v (p°) = —1.

When neither of these two conditions hold, we have 7,1 (u°) = 7;(1°). Hence, v;11(p°) —
(1) = 6;(u) — e;(p) for all 4, and therefore v = v(u°), proving (i).

Part (i) implies that the Catalanimals H and H, EZZ;m have the same root sets. The weight

A for HZZZ;M, given by , is constant on blocks of lengths ¢1,...,g,. We need to verify
that its value on the i-th block is d;_1 — e;.
We can write in the form

(57) di = nh(p) = [in/m] 4+ x(mi)(di/m(n) — 1)

(58) e; = nh(p) = [in/m] + x(mli)(eim(p) = 1).

Combining with the definition of b(m,n) in gives

(59) di—1 — €; = b(m, M) mod,, (i) + X(M|i — 1)(0—1y/m (1) — 1) + x(m|i)(1 — 5/m (1))

To compare this with , note that the content ¢ on the i-th diagonal from northwest
to southeast in (1°)™ has ¢ = ¢ (mod m) by construction, so the term b(m, n)moa,, ) here

agrees with b(m, n)mod,, () in (19).

The i-th diagonal in (u°)™ always contains the first box in a row of (u°)™ifi Z 1 (mod m).
If i = jm + 1, the i-th diagonal contains the first box in a row of (u°)™ if and only if the
(7 +1)-st diagonal in ;° contains the first box in a row of ;°, that is, if and only if §,(u) = 1.
Hence,

(60) x(i-th diagonal in (u°)™ contains the first box in a row)
= 1+ x(mli = D(0(i-1)/m(p) = 1).

Similarly, the i-th diagonal in (u°)™ always contains the last box in a row of (u°)™ if i # 0
(mod m). If i = jm, the i-th diagonal contains the last box in a row of (u°)™ if and only
if the j-th diagonal in p° contains the last box in a row of p°, that is, if and only if j > ;.
Hence,

(61) x(i-th diagonal in (u°)™ contains the last box in a row)
— 1 x(mli) ) — 1.
Using and we see that agrees with . 0J
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Our (m,n) Loehr-Warrington formula is now given by the following theorem, which follows
from Proposition [2.3.3, Theorem [2.4.2, Corollary [3.5.2] and Lemma 4.2.1}{

Theorem 4.2.2. For every partition p and coprime positive integers m,n, we have the
identity

(62 sl =MX) 1= (1P 5D s Gy (X,

where p(p) is the magic number (not to be confused wzth p=n/m—c¢), n'(y(n)) is given by
(18), and the sum is over nests w in the LW den for p and m,n.
For n =1, the expression in is equal to Vs, (X).

Remark 4.2.3. In the case p = (1%), giving s, = e, we have p(u) = n/(y(n)) = 0. As
explained in [6 §6], Theorem is then equivalent to the (km, kn)-shuffle theorem con-
jectured by Bergeron et al. [3] and proven by Mellit [I8]. This case is also included in the
path case discussed in §3.6, above.

4.3. Comparison with the original Loehr-Warrington formula. Loehr and Warring-
ton [15, Conjecture 2.4] conjectured a combinatorial formula for V™s,,, which in their nota-
tion reads

(63) vmsM<X) _ Sgn(,u) Z tarea(G,R)qdinV(G,R)XR
(G,R)ELNDP™

We prove their conjecture (after correcting a mistake in the definition of dinv(G, R)—see
below) by verifying that this formula agrees with Theorem for n = 1, when we express
the latter in terms of labeled nests as in , namely

(64) VmSM(X) :( 1)p(u)(qt w)+mn'(y(w)) Ztaﬂ dinvp (m)— 1nV(N) N

We now work out some of the details needed to see that and (64]) agree.

The notation (G, R) € LNDP} stands for a system of labeled nested m-Dyck paths which,
after reflecting about a horizontal line, corresponds to a pair (7w, N'), where 7 is a nest in the
LW den for p and m,n with n = 1, and N is a negative labeling of 7 as in (38)).

In more detail, the proof of Lemma [4.2.1| shows that the sources and sinks in the LW den
are located on the bounding line at positions x = jm, where p; — 1 — j is the content of the
box at either end of a main diagonal hook in p. Loehr and Warrington start and end their
Dyck paths at corresponding positions constructed from a dissection of i into border strips
([15, Fig. 1]). To see that these agree, observe that the heights, widths and content ranges
of the border strips for any p match those of the main diagonal hooks, as in this example:

(65) ‘

+—HTH]

<+ I

l

This also shows that the statistic spin(p*) = adj(u) in [I5, §2.2], defined as the sum
> p(width(B) — 1) over border strips B in p, is equal to the magic number p(u), since
the latter is the number of boxes strictly below the main diagonal, and thus the sum of the
arm lengths of the main diagonal hooks.

]
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Loehr and Warrington introduce additional Dyck paths of length zero which serve to forbid
the other paths from touching the bounding line at certain points. These correspond to the
points where nests in the LW den cannot touch the bounding line, as in Remark (ii).
The rest of Remark (ii) then shows that nests 7 in the LW den correspond to systems
of m-Dyck paths G for (G, R) € LNDP.

(u)

Deciphering the notation in [I5] further, the indices (a,u) of entries gq ~, r$ in (G, R)
correspond to pairs (S,4), where S is a south step in a path 7; in the nest 7. When (a, u)
corresponds to (.59,7), the index u is a strictly increasing function of i. The integer gé") is
equal to m times the vertical distance from the north endpoint of S to the bounding line
y+ (1/m)xz = dy for the LW den. The labels r{ are subject to the same conditions as our
labels N(S,1).

To finish reconciling with , we need to show the following.

Lemma 4.3.1. For (G, R) corresponding to (w, N), the combinatorial statistics in [15] are
related to ours by

(66) san(p) € (=100 = (~1)7
(67) area(G, R) = p(u) +mn'(v(w)) + ()
(68) dinv(G, R) = p(u) + mn'(3(2)) + dinvy (m) — inv(N),

where p=1/m — €.

Proof. For (66]), we already observed that spin(u*) = p(u).

For (67)), the definition of area(G, R) corresponds to the sum of the areas |p/m;|, where p
is the highest lattice path from (0,dy) = (0, h(n)) to (h,0) = (mh(u),0) that stays weakly
below the bounding line y + (1/m)x = dy. To verify it therefore suffices to show that
for the nest 7° with a(7°) = 0, we have Y. |p/7?| = p(u) + mn/(y(w)).

Now Y. |p/7? = 3", ap, where the sum is over east steps F in 7°, and ap is the vertical
distance between E and the east step weakly above it in p. Recall that gy as defined in (24))
is the number of east steps from x = k—1 to x = k in any nest. For &k = jm with 1 < j < puy,
the point at x = k on the bounding line for the LW den is either a source or a forbidden
point, and thus is not the right endpoint of an east step in 7. For these values of k, the
numbers ag for east steps E fromx =k —1tox =k are 1,..., gx. For other values of k the
ag are 0,1,...,gr — 1. It may be instructive to verify this with the examples in Figure

It follows that

mh () p1—1
(69) S/l =Y ae= Y (5)+ X om

i B k=1 j=1
The first sum on the right is mn/(v(x)) by Lemma [4.2.1(i). Since gjp, is the number of boxes

on the diagonal of content py — j in p, the second sum is p(u).
For (68), the statistic dinv(G, R) is defined by [15, (11)], except that the expression y(a <
b) in the middle sum there should read x((a < b) V ((a =) A (u < v))), as in the last sum.
After correcting this mistake and exchanging indices (a,u) and (b, v) in the first two sums,
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we can rewrite [I5, (11)] in the form
(70) dinv(G, R) =
adj(p) + Y x(0 < g — gt <m) x(a
+Y x(0<g” —gi <m)x(a
+ 3 x(0 < g = gi < m) x(a=bAu<v)x(rl <)
+D gy =g +10,m=1) N [Lm—1][x((a>b) V(a=bAu>v)),

Y
=
SN~—
=
—~
ﬂ/\
£
AN
=3
S~ o
&
~— ~—

A
=
=

3

£

A

=

where the sums are over all pairs of valid indices (a,u), (b,v). Let (S,4), (S’, 7) be the south
steps on paths in 7 corresponding to (a,u) and (b,v). The condition

(71) (0<g” g <m)A(@=b)) Vv (0<g" —g

holds if and only if (S,i) and (9, 7) form an attacking pair in S(r), as defined in §3.4] for
p = 1/m — e. We leave it as an exercise for the reader to verify this, with the hint that if
gév) = gC(Lu), then S is strictly to the left of S’ if and only if a < b, while if gév) — gC(Lu) =m,
then S is strictly to the right of S’ if and only if @ > b. The first two sums in therefore
count attacking pairs that do not contribute to inv(/N), that is, they add up to

(72) A(r) — inv(N),

W < m) A (a <))

a

where A(7) is the number of attacking pairs in S(7), or equivalently in v(7).

Turning to the third sum in (70, If @ = b and g < gév), then S and S’ have the same
y-coordinates, with S” weakly to the left of S. If S’ is strictly to the left of S, then nesting
implies v < w. Hence, if v < v, then S = S’ is a shared south step on paths m; and

with ¢ < j. In this case, the conditions on the labeling imply ri < rév). The third sum in
therefore reduces to the number of pairs {(5,7), (S, )} of shared south steps in 7. We
denote this number by ss(7).

Now we consider the last sum in (70). The terms with a = b, gé” = gév) and u > v
contribute m — 1 for each pair of shared south steps, giving (m — 1) ss(7).

The remaining terms are zero if | glE”) — gé")\ > m. Otherwise, they correspond to pairs
(S,4), (5',7) with S # S” and some line of slope —1/m passing through the interiors of both
S and S'. If S’ is to the right of S, this implies b > a, with u < v if @ = b, by nesting. Hence,
S’ is to the left of S. To describe the contribution from such a term geometrically, let Bg be
the region bounded on the right by S and above and below by lines of slope —1/m through
the endpoints of .S, with open boundaries above and on the right, and a closed boundary
below. Then S’ has an endpoint in Bg, and the contribution from the corresponding term
is given by

(73) r—1, for l . r, for e
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FIGURE 5. The possibilities for components of the intersection of a path 7,
with Bg, illustrated with m =3, p=1/3 —e.

where r = m — |g£v) — gc(Lu)| is the integer such that the line segment S’ N Bg has length r/m.
Note that we require the upper endpoint of S’ in the second picture to be in the interior of
Bg (although if it were on the boundary, it would contribute zero anyway).
Let 6(m) denote the sum of the contributions in for all pairs (S,4), (5, j) with S and
S’ positioned as shown. Then the last sum in ([70)) is equal to 6(m) + (m — 1) ss(m).
Combining adj(u) = p(p) with the above, we obtain

(74) dinv(G, R) = p(p) + mss(m) + 0(7) + A(m) — inv(N).

The following lemma now completes the verification of . 0
Lemma 4.3.2. For p=1/m —¢€ and w a nest in the LW den for p and m,n with n = 1, we
have

(75) dinv, (1) = m ss(m) — mn'(v(n)) + A(r) + (n).

Proof. We evaluate dinv,(7) — A(m) — ().

For p = 1/m — ¢, each unordered pair {(S5,17), (S, j)} with S, S’ positioned as in forms
an attacking pair in S(7) when ordered with the smaller of ¢(5), ¢(S”) first. Every attacking
pair has this form, so A(7) is the number of such unordered pairs.

Given a pair (S,7) in S(7) and a path 7;, consider the connected components of 7; N Bg.
These are of four possible types, depicted in Figure [5, depending on whether they enter and
exit Bg along the upper or the lower boundaries.

For p = 1/m — ¢, dinv,(m) counts pairs (S,i), (P,j), where P is a point on ; that lies
in Bg. Using this, the description of A(7) above, and the definition of (), one can check
that each component of 7; N Bg contributes —m to dinv,(m) — A(w) — é() for components
that cross Bg from top to bottom, m for components that cross from bottom to top, and
zero for components of the other two types.

Since all sources are on the bounding line, the leftmost component (if any) of 7; N Bg
enters from above. From left to right, the components that cross Bg alternate between the
second and fourth types shown in Figure [5 possibly with components of the other types in
between.
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If i < j, so 7w is equal to or nested above m;, or if ¢ > j and the paths m; and 7; share
the south step S, then 7; N By is either empty, or its last component exits Bg on the upper
boundary. In this case, crossings from top to bottom cancel those from bottom to top, giving
a net contribution of zero to dinv,(m) — A(m) — §().

Otherwise, if ¢ > j and S is not on 7;, there is one more crossing from top to bottom than
from bottom to top, for a net contribution of —m. This shows that dinv,(7) — A(7) — 6(7)
is equal to —m times the number of tuples (5,4, j) with S on 7; and i > j, plus mss(m7). The
number of such tuples (5,7, 7) is the sum over all i > j of the number of south steps on ;.

For the LW den, the number of south steps on 7; is the length of the i-th main diagonal
hook in p, from southwest to northeast, and there are ¢ — 1 indices j < 7. If we write i — 1 in
each box on the i-th main diagonal hook, the sum of these numbers is therefore the number
of tuples (5,4, 7). But these numbers sum to (’27) on a content diagonal of length v, so the
sum of them all is n/(y(p)). This gives

(76) dinv, () — A(m) = 6(7) = m ss(m) —mn'(v(1),
as desired. 0

5. LLT SERIES AND SEMI-SYMMETRIC HALL-LITTLEWOOD POLYNOMIALS

Using a strategy similar to that in [6], we will prove Theorem by taking the polynomial
part of an infinite series identity between the full Catalanimal on the left hand side and a sum
of LLT series on the right. LLT series associated to a reductive group G' and Levi subgroup
L C G were defined in [12]; for G = GL;, they are series versions of the LLT polynomials
G, (X q). Since [12] is unpublished, in [6, §4] we gave a self-contained treatment (with some
improvements) of the case when G = GL; and L = T is the torus, which corresponds to
G, (X; q) when v is a tuple of single-row skew diagrams. Building on [6], we extend this here
to the case of any Levi subgroup L = GL,, x --- x GL,, C GL; and any G, (X;q).

5.1. Hecke algebra and root system preliminaries. We set k = Q(q,t) as in The

algebra of Laurent polynomials k[zi', ..., z] is the group algebra of the weight lattice of
GLy, with monomials z* = 2" --- 2 corresponding to weights A € Z!. As in , we denote

the roots by ay; = €; — ¢;. For simple roots we abbreviate this to a; = o ;1.

The Weyl group S; acts by permuting the variables, with Coxeter generators (simple
reflections) given by the transpositions s; = (i <> i + 1). Given w € S;, we let ¢(w) denote
the length of a reduced factorization w = s;, - - - s;,; this is also the number of inversions in
w. The longest element of S; or any finite Coxeter group is denoted wy. Usually it will be
clear from the context what group wg belongs to; otherwise we indicate it with a superscript
such as w)).

The Demazure-Lusztig operators

(77) Ti=gqsi+(1-q) (si —1)

l—z

generate an action of the Hecke algebra H(S;) on k[2, ..., 2"]. We have normalized them
so that (T; —¢)(T;+1) = 0. As usual, for w € S}, weset o, =T}, - - - T;,, where w = s;, - - - 5;
is a reduced factorization.

{4



DENS, NESTS AND THE LOEHR-WARRINGTON CONJECTURE 29

We use an overbar - to signify inverting the variables ¢, t, z; thus

(Si — 1)

(78) Ti=q'si+(1—q")

1 — 2z
One can then check that
(79) T,=T7" hence T,=T,".

Given a composition r = (rq,...,7,) of [, we denote the corresponding Levi subgroup of
GL; and its Weyl group (which is a Young subgroup of ;) by

(80) GL. = GL,, x --- x GL,, C GL,,
(81) Sp =5, X xS, C 8.

Note that Ry (GL,) is the set of positive roots «;; € R (GL;) such that 7, j are in the same
block of the partition of [I] into intervals of lengths ry, ..., 7.

Here we have implicitly taken r to be a strict composition with all entries r; > 0. If r is a
weak composition with entries r; = 0 allowed, we define GL, = GLs where s = (r,,...,7y))
is the subsequence of non-zero entries in r.

The Levi subgroup GL, has the same weight lattice Z! as GL;. A weight ) is dominant
(resp. dominant and regular) for GL, iff \; > X\;11 (resp. A\; > A\;11) for all ¢ such that
a; € Ry (GL;), or equivalently such that s; € S.. We denote the set of dominant weights by
X*(GL,) and the set of regular dominant weights by X+ (GL,).

We write p, (or just p if r = (1)) for a weight such that

(82) (@) pe) ()i = (pe)ig1 = 1 for every simple root oy € Ry (GLy).

Such a weight is unique up to adding an S, invariant weight. When we use this notation,
the choice of p, will either be fixed or make no difference.
We define the semi-symmetrization operator for GL, by means of the following lemma.

Lemma 5.1.1. For any composition v of I, there is an operator §, on ]k[zfd,

by either of two equivalent formulas

(83) o, = ! > (=1

Hoer o1 =27 =

-, 2] given

)

(84) — S (—q) T,

Hoer, oyl —a27) =
Proof. Fixing a choice of p,, formula can also be written
(85) 51‘ =z Oy Z_pra

where o, is the Weyl symmetrization operator for GL, in . In particular, the operator
0, defined by acts on k[z;7', ..., 2], Let 87 denote the operator defined by . We
are to prove that 7 = 4,.

Let V = Kk[z',...,z™]. For each i such that s; € Sy, let W; = Vs = {f € V|
sif = f} be the subspace of s; invariant functions. Let A, = >, o (—1)“)w denote
the antisymmetrization operator. It is a general property of Coxeter group representations
that >, W; is an invariant subspace and that V/) . W, carries the sign representation, thus
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every w € Sy acts on V/ Y, Wi as (=1)®) | and A, acts as the scalar |S.|. This implies, first,
that A, is surjective on V/) . W, that is, the space of all antisymmetric functions spans
V/ >, Wi, and, second, that if V' C V is any subspace such that A,V’ is the space of all
antisymmetric functions, then V' spans V/ . W;, that is, V = V' + > . W,. In particular,
this holds with V/ = z?V*>_ since every antisymmetric f € V has the form f = A, z"g,
where g € V' is S, invariant.

Since T f = q f for f € W;, both operators d, and 8¢ kill the subspaces W;. Both operators
also commute with multiplication by any S, invariant function g. Hence, to prove 8% = §,
it suffices to show that §7z” = §,z"". By (85)), we have 8,z = z’. Meanwhile, §7z"" = zr
is equivalent to the well-known identity [I]

(6) N ()T e =D [ (1-qz 7). O
wESy a€R(GLy)

Remark 5.1.2. For i such that s; € S;, the Hecke algebra antisymmetrization operator
Al = ZweSr(—q)*e(w)Tw in can be factored in the form B - (T; — ¢) for an element
B of the Hecke algebra, and therefore satisfies AYT; = —A%. More generally, this implies
AITHE = (1)) A9 for all w € S,, and consequently also 8, T=! = (—1)4®)§,.

5.2. Semi-symmetric Hall-Littlewood polynomials. As in [6, (72)], we define non-
symmetric Hall-Littlewood polynomials for GL; by

(87) Ex(z;q) = ¢ "™, 2™,

where A = w(Ay) with w € S; and A\, dominant. If A\ has non-trivial stabilizer, w is not
unique, but the formula does not depend on the choice. For o € S;, we also define twisted
versions

(88) ES(z;9) = g™ ) MOEOIT B (53 9)
(89) F{(z;q) = E73°(2; ),
where Inv((ay,...,a;)) = {(i < j) | a; > a;}, and € is small, so Inv(c™) = {(i < j) |

o (i) > o71(j)} and Inv(A + ep) = {(i < j) | \s > N\;}. Note that for o = 1, E{(z;q)
reduces to the untwisted F)(z;q).
From the definition, one can verify the recurrence [6, (76)]

XN=A) T RS g0 > 0
(90) EY = d > —11 SZsAa’ ' 7
ez “rl)Ti EY, sio<o.
The EY are determined by this recurrence and the initial condition £ = z* for all o if A is
a dominant weight.

Definition 5.2.1. (i) Given a composition r = (rq,...,7) and a permutation o € S, let
[ =|r| =ri+---+r, and define o € S to be the permutation that carries intervals of lengths
o~ (r) = (To(1), - - > To(k)) to intervals of lengths r in the order given by o. More precisely,
(91) 5'\(7”0(1) R ol T AR D j)=ri+---+ Toi)—1 17

fore=1,...,kand j=1,... 7154
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(ii) Given r and o as in (i), and g € XTT(GL,) a regular dominant weight for GL,, we
define semi-symmetric Hall-Littlewood polynomials

(92) E} (z:9) = 6: E;(z,9),  F7,(2;9) = 6: F;(2;9).

Remark 5.2.2. (i) For simplicity, we have suppressed r from the notation for . Although

1'is not given by o1 for

this should not usually cause confusion, one should note that o~
the same r, but rather by o~ defined relative to the composition o~ !(r).

For example, if 0 = (2,3, 1) in one-line notation, and r = (1,4, 3), then o~ = (3,1,2) and
o !(r) = (4,3,1). Partitioning the set {1,...,8} into intervals I = {1}, I, = {2,3,4,5},
I3 = {6,7,8} of lengths r and intervals J; = {1,2,3,4}, J, = {5,6,7}, J3 = {8} of lengths
o~ 1(r), the permutation o = (2,3,4,5,6,7,8,1) carries Jy, Jo, J3 to Iy = I,0), I3 = Iy,
I, = I,3). The inverse permutation o~ ! that carries I, I, Is back to Js, Jy, Jo is c?*\l
defined relative to the composition o~!(r) = (4, 3,1) that gives the intervals J;, rather than
the original composition r = (1,4, 3) that gave the intervals I;.

(ii) If r is a weak composition, so GL, = GLs where s = (ry,,...,7;,) is the subsequence
of non-zero entries in r, then the definitions of EY (z;¢) and FY (z;q) reduce to EY ,(z;q) =
E] (2;q), Y (z;q) = F{,(2;q) where T € S} is the permutation such that 77(1),...,77'(j)

are in the same relative order as o~ *(iy),...,0 1(i;).
Ezample 5.2.3. (i) At ¢ = 1, we have Ef(z;1) = 2 for any 0. Using (85)), it follows that
(93) z "EY 4, (21) = X (GLy)

if A € XT(GL,) is a dominant weight for GL,, where x,(GL,) is the irreducible GL, character
with highest weight .

(ii) For r = (1), we must have 0 = 1 € S;. If A is a dominant weight for GL;, then
E)i,(z;q) = 2", which implies z_pE(llMer(z; q) = X», independent of ¢q. Note that this is
quite different from the usual symmetric Hall-Littlewood polynomial Py(z;q).

We develop some initial properties of these polynomials for later use, beginning with
expressions for the semi-symmetric polynomials F7(z; ¢) in terms of E?(z;q).

Lemma 5.2.4. Givenr = (r1,...,7%), 0 € Sg and p € X+t (GL,), we have

r O"ll)k
(94) FY (z,q) = 2 0B (259)
_ r—wg (Pr wio .1
(95) = 20 (B o %47 )):

Note that pe — wi(pr) = D uer, (o1, @ does not depend on the choice of py.

Proof. From we find 6, = (—1)"d)zwr)=rr§. Applying &, on both sides of the

definition F E = Ef‘,jo therefore gives

(96> F:;u — (_1)£(w5)zpr—w6(pr)6rE§z:0.

Since owy is maximal in its coset Syowg, and —pu is regular and anti-dominant for GL;, it

—_

follows by repeated use of the recurrence that Ei‘j” = T_%El_u‘r)w?i) Now owf = wowo,
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and 8, T = —4, for s; € S, by Remark , hence 5rT_wg = (—1)"6)§,. Combining these,
r UT'LI7C r U'[,Uk o .

the right hand side of becomes z"r_wo(p’)érE_w%(u) = zpf_wo(”r)Er’_‘iUS(m, giving .
To prove , we use the identity

(97) E7\(2;9) = wo (B0 (2107 1)).-

Like the equivalent identity [5], (109)], one can prove by verifying that after applying wy,

both sides are characterized by the recurrence with the variables reversed and inverted.

We also observe that implies 8,wy = wody, where v’ = wf(r) = (rg,...,r1), and that

wo(cwk)we = wko, where wfo is defined with respect to r’ rather than r. Then follows

from and

U’U/'k U’U/'k ’LUkU — 'U_)ko' —
(98) By (2:0) = 6:E7.3 (2:0) = wo (8w By e (2:07")) = wo (B (2:071)) -
0

By [6, Corollary 4.3.1], E{ has the monic and triangular form

(99) E{(z:0) =2 + 3 eala) 2

p<A

with respect to a suitable partial ordering < on the weight lattice Z!. If y is a regular weight
for GL,, then z 7" 8,(z") = £x,(GL,), where v + p, is the unique dominant (and regular)
weight in the orbit Sy - 4. The ordering < has the property that the dominant weight for
GL, in any S, orbit is the unique minimal element in that orbit; hence v + p, < p in this
case. If u is not regular for GL,, then d,(z") = 0.

For every A € X*(GL,) it now follows from that z=rEZ has the form

r,A+pr
(100) 2 "By (2:0) = Xa(GLe) + > axu(q) xo(GLe).
veEX+(GLy)
v+pr<A+pr

More precisely, given the choice of p,, (100]) holds for all A € X*(GL,), although the coeffi-
cients ay,(q) and the set of weights v that occur depend on p,. In particular, for any fixed
choice of py, it follows that

(101) {z="E7, | pe XTH(GL)}

is a basis of k[z7™, ..., 2 ]%. Then implies that

(102) {z="F7,|pe X7 (GL)}

is also a basis. Note that k[z!,..., 2| is the algebra of virtual GL, characters with

coefficients in k.

Remark 5.2.5. The coefficients ¢y ,(¢) in (99), and therefore also a,,(q) in (100), are in
Z[q~']. Hence, EY ,(z;q) and FY (z;q) have coefficients in Z[g~'] and Z]g], respectively, and
(101H102|) are free module bases over these coefficient rings in place of k.
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Lemma 5.2.6. Given r, 0 and ¢ as in Definition p € XTH(GL,), and w € Sy, we

have
(103) w(u) = ¢ EE,
(104) oo =Tw F"

Proof. The case o = 1 of follows from the definition of E,, because p € X+t (GL,)
implies that if v € S; is such that p = v(p, ), and w € S, then w-v is a reduced factorization
of wv. For general o, let v = ¢~ 'wo, and note that v € S,-1(). Since ¢! is minimal in both
of its cosets S,—1;)d ! and 67! S;, each side of 7' - w = v -7~ is a reduced factorization,
giving T51T,, = T, T5-1, or equivalently T,,T5 = T5T,. We also have £(v) = ¢(w). Then

(105) ¢ T, ET = " " TT5 Bz = ¢ To ¢ " T, E5-1(
= ¢ T5 B0y = ¢° T E5-100(),

where e = [Inv(c~") N Inv(u + €ep)|. For the third equality, we used 0~ (1) € X (GLy-1p))

and the 0 = 1 case. Since 0! is increasing on intervals of lengths ry,...,r,, we have
e = [Inv(G~") NInv(w(p) + ep)| for any w € S;. The last formula in (105 therefore reduces
to E°

w(u)

For (104), let u = woo 'wowy (here wy = wj € S;), and note that u € Swlo—1(x)-
Since w03_1 is maximal in both of its cosets wyo 1S, and Swg _1(r)w08_1 the factorizations
(wog'w™") - w and u - (u~ wes ") are reduced, giving T, T, - =T, =\ =T,

leolg,lTu, or equivalently 7,15, = 15w, 1. Then

Lwes—1 —

(106) T E7% = ¢ Toy Truy E—wgs1(0) = @* Thwo Tu E—gs—1()

d—M( ) T Tawo E—uwoa L(u) = qd—M(U) Tawo E

) —wodlw(p)>

where d = |Inv(woo ') N Inv(—pu + ep)|. For the third equality, we used the ¢ = 1 case of
(103) with —weot(p) € X" (GLypo1(r)). Since weo ! is decreasing on intervals of lengths

T1,...,T, changing —u to —w(u) in the formula for d creates {(w) = ¢(u) new inversions,
giving d +£(u) = [Inv(wyo ™ D NInv(—w(u) + €p)|. The last formula in (106]) now reduces to
E‘”“0 > showing that E”w? y = T, E7}°. Taking - on both sides gives ((104]). O

Finally, since §, and T; commute with multiplication by z; - - - z;, we have the identities
(107) (21 2)" By (29) = B oy (20), (2100 20)" FY(230) = FY 4 (259).

5.3. Orthogonality. For f € k[zf',..., 2%, let (1o, ) f denote the coefficient of the
trivial character when f is expanded in terms of 1rreducible GL, characters. The formula

(108) (an)oelf) =@ £ T] o, (1= 7)

holds for any f € lk[zl ,...,zlﬂ], as can be verified by reducing to the case f = z*, for
which both sides become (—1)“) if X\ + p, = w(p,) for w € S, or zero otherwise. If f is S,
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invariant, then o.(f) = fo.(1) = f, and we obtain

— (0 . _ g«
(109) (o) f= 1] law% (1),
We define a symmetric inner product on ]k[zfﬂ, .. zl 5 by
def 1 -2z
11 v (1 -
(110) (f9)8 = (e fg H%RM+ 6 T—g 1z

For r = (1') this reduces to the inner product

1 -z
(1) TR IYT) |
in [0, Proposition 4.3.2]. For general r, (109)) implies that ( f9)5 and (f, g), are related by
1«
(12) (f.9 ngGR (g,
We remark that (110) and are to be 1nterpreted by expanding the factors
(1—-gq'z a) =14+qlz®+--- as geometric series, yielding a power series in ¢~! over
Z|z, ..., 2], which is S, invariant in the case of (T10). Upon taking the coefficient (1¢y, )

or (z%), only finitely many terms in the series survive. In the case of (L11f), this is clear, and
for (110)) it then follows from ((112]).

Proposition 5.3.1. Given r and o as in Definition and any choice of py as in (82,

we have dual bases of k[zi, .. Zlﬂ]Sr

(113) (z "EY,, 2 F"“> A\ p e X (GL,)).

Proof. We have already seen that the two sets {z=”E7, | A € X™"(GL,)} and {z=rF7 |
i€ XTT(GLy)} are bases of k[z1", ..., 2™]%. We also note that (z7*EY,, zrF¢ )
independent of the choice of p,, since ( f59)y is a function of fg. The case r = (ll) is [6,

Proposition 4.3.2]. We will use this result to prove the general case.
For € X*+(GL,), define

o,— _ (,—b(wf) et o __ N\ H(w) G

(114) BT = (g7 Haem(mr)(l gz *)) B¢, = Z;( q)~"T,ES,
wESY

o— __ —L(w) . —a o __ A (w) G

(115) Fo = (g7t Haem(%)(r qz~))F7, = ;( q)~"“T,F7.

Using Lemma [5.2.6] we can also write

(116) Efy = Y (D)™ E,).
’LUGS['
Defining A = Zwesr(_Q)_e(w)Tw as in Remark [5.1.2 we have
(117) Z (—q) 1T, = A7 = A9 (— )f(wo)T Q) Z (—q)"™)T,,

wESy wWESy
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and Lemma then implies
o,— (wg) £(w) a'
(118) Foo = 0> (—) ™ F

wWESy

Macdonald’s identity [16, Theorem (2.8)] for GL, gives

e w 1 - - —a
(119) Wr(Q) d:fz qg( )= Z v (Ha€R+(G’Lr) %) - ar(Ha€R+(G’Lr)(1_qz ))

wGSr weSr

Combining this with (L08]), if f is S, invariant, we find

(120) Waa) (1) 7 = (e oelTL L o (1 077)
_ /5,0 . _ o —a
=(z") f HaeR+(GLr) ((1 z°)(1—qz ))

Now we calculate
We(q)(z " EZ,, 2 FUM>

= Wr(q) (1orL,) Eg,)\ Fgu HaeR+\R+(GLr) 1 —qglzo
- _ _ 1—2z“
= (") B0\ TR, H — -], T

- <E A Ha€R+ oy 17 ) B Ha€R+(GLr)<1 —qz") >q

:<q4(w0)E7 ,q( OF ),

= ( D D) ™EL), ¢V Y (—) T EL ) ),

wESy wWESy

where we canceled ¢ in the penultimate line and used (116 and (118) to get the last
line. By [6, Proposition 4.3.2], the functions ES and F? are dual bases for (—, —),. Hence,
the last line in (121)) simplifies to Wy(q) dx,, and the result follows. O

1—2z¢

((
aER+ GLr

5.4. LLT series. Generalizing [6, Definition 4.4.1], we now define LLT series associated to
GL; and any Levi subgroup GL,.

Definition 5.4.1. Given a composition r = (ry,...,7,) of [, a permutation o € S, and
weights o, 8 € X**(GLy), the LLT series L] 5,,(2; g) is the infinite formal linear combination

of irreducible GL; characters with coefficients defined by

(122) () L2570 (207Y) = (BZ5(2:0)) X B (21 q)

in terms of the basis {E7 , | 1 € X™"(GL,)} of the space z7 k(2 ..., 2% (note that this
space is independent of the choice of p, and closed under multlphcatlon by GL; characters).

Remark 5.4.2. (i) The elements EY(z;q) in (114)) form a basis of the space of Laurent
polynomials antisymmetric with respect to the action of the Hecke algebra H(S;). In terms
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of this basis, an alternative formulation equivalent to (122 is

(123) (X)L 50z q7Y) = (BT (2:9)) o - B2y (2:9).

(ii) By Remark [5.2.5] the right hand side of (122]) belongs to Z[g']. The ¢~! on the left
hand side of (122)) serves to give L7 ; /a(z; q) coefficients in Z[qg|, while the indexing with ¢!
instead of o allows us to formulate the connection between LLT series and LLT polynomials

more naturally in §5.5]

The next proposition gives a formula for L7 ; /a(z; q), generalizing [6l, Proposition 4.4.2].
To state it we need the ¢-symmetrization operator

v f(z)
(124) Hy(f) = 0<HQGR+\R+(GM(1 — qza)>'

Here f(z1,..., ) is a Laurent polynomial, and is to be interpreted as a formal infinite
linear combination of irreducible GL; characters by expanding each factor (1 — ¢z®) =
14 qgz*+ --- as a geometric series before applying the Weyl symmetrization operator o.

Although we won’t use it, we mention that when f is S, invariant, Hy is a g-analog of
induction from GL, characters to GL; characters. When f is a product of Schur functions
[1; sx,, (Zi) in blocks of variables Z1 = z1,..., 2, Z2 = Zr415- -5 Zri4m, ebc, Hy(f) is a
g-analog of [[; sx (z), whose Schur expansion yields the generalized Kostka polynomials
studied by Shimozono, Weyman and Zabrocki in [21], 22].

Proposition 5.4.3. Forr, o, a, (8 as in Definition we have

(125) LS 470 (2:q) = HA® (wo(F7," E2,)).

r,a

Proof. By Proposition [5.3.1]

(00) £2.5/0(250) = (27 F, (Zq), 2" xn - B, (25471) )
(126)

—1

= (2% FZy (Z:q) EC, (2:q7Y)

[acr\r, ooy —a2%)

We can invert the variables z; and apply wy without changing the constant term, so the
above is equal to

HaeR+(1 - Za)

H(XER+\R+(GL1”§(T>) (]- —q Za)

(127) (2°) X wo (FC 5 (2:q) EZ,, (2;9))

Using (108) for GL;, this is the same as

wo(Fg; E7.)

r,a

(128) <1GL,>w( ) = (o) HYEO (up(F0) B2). O

Ha€R+\R+(Gng(r)) (1—qz)
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F1GURE 6. Examples of o-triples. The dashed lines show boxes of equal con-
tent in v(; and v, with i < j. If 0(i) < o(j), then (a,by,c1) and (as, bs, c3)
are o-triples. If o(i) > o(j), then (ag,be,co) and (ag,by,cy) are o-triples.
Triples (as, b3, c3) and (ay, by, ¢4) illustrate the point that a and/or ¢ may be
just outside a (possibly empty) row of ;).

5.5. Relation between LLT series and LLT polynomials. Here we derive an identity
relating the polynomial part L7 , /a(z; ¢)por of an LLT series to an LLT polynomial G, (X;q),

extending the treatment of the case r = (1') in [6, §4.5].

Definition 5.5.1. Let v = B8/a = (Bu)/aq), - -, Buy/ow)) be a tuple of skew diagrams,
and let o € Sg be a permutation. A o-triple in 3/ is an ordered triple of boxes (a, b, c)
such that
(i) b1is a box of v; = B/ for some i;
(ii) @ is either in or immediately left of a row of v(;) and c is either in or immediately
right of the same row, for some j > i;
(iii) a and ¢ are adjacent with a left of ¢; and
(iv) b has the same content as c if o(i) < o(j), or the same content as a if o(i) > o(j).
More precisely, (ii) and (iii) mean that if a(;) = (a1,..., ) and By = (B, ..., Bn), then
we have a = (z,y) and ¢ = (z + 1, y) for some 1 <y <m and a,, <z < f3,. In particular, a
and c can be the boxes left and right of an empty row with 8, = a,. The set of triples thus
depends on the presentation of v as 3/a and not just on the set of boxes in v.

Strictly speaking, the indices ¢ and j are part of the data of a triple, in keeping with our
understanding that the set of boxes of v is the disjoint union of the sets of boxes of the v/;.
Figure [6] illustrates the definition.

Definition 5.5.2. (i) Given a tuple of skew diagrams B/a = (B1)/ ), - - -, Bwy/aw)) and
o € Sy, an increasing o-triple in a negative tableau 7' € SSYT_(8/a) is a o-triple (a, b, ¢)
such that T'(a) < T'(b) < T'(c), with the convention T'(a) = —oo, T(¢) = 00 if a or ¢ is not a

box of B/a.
(ii) We define the generating function
(129) Ny Xig)= Y gDx"

TESSYT_ (B/cx)
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where hy(T) is the number of increasing o-triples in 7.

Although it is not obvious a priori, the next proposition implies that V, 3 /a(X ;q) is sym-
metric.

Proposition 5.5.3. We have the identity
(130) N§/a(Xiq) = " P/ Gg/0) (X507,
where h,(B/cx) is the number of o-triples in 3/ cx.

Proof. Let v be the tuple of skew diagrams given by 3/a and note that o(v) is the re-
arrangement of v with o(v) @) = V). For a € vy, let o(a) denote the corresponding box
of o)) We also use this notation for boxes adjacent to vy, which may occur in a
o-triple.

For a tableau T' € SSYT_(v) let o(7T') denote its image in SSYT_(o(v)), defined by
o(T)(0(a)) = T(a).

By Proposition the right hand side of can be written

(131) Z qhg(ﬁ/a)—inv(a(T))Xa(T).
TeSSYT_(B/ax)

Since x°") = xT' ([130]) will follow if we show that
(132) he(T) = ho(B/a) — inv(c(T)).

Consider the image (a/,0, ) = (o(a),o(b),o(c)) of a o-triple (a,b,c) in B/c. The defini-
tion of o-triple implies that (a’,0') is an attacking pair in o(v) if both boxes a and b are in
v, and similarly for (¢',¢). One also sees that every attacking pair in o(v) belongs in this
way to the image of a unique triple. Since a,c are in the same row, we have T'(a) < T'(c)
for every negative tableau T'. This holds even if a or c¢ is not in v, by the convention that
T(a) = —o0, T(c) = oo in these cases. Hence, at most one of the pairs (a’,V'), (V,c) is
an attacking inversion in o(7'), since we would have T'(a) > T'(b) > T'(c) if they both were.
Moreover, (a,b, c) is an increasing o-triple if and only if neither (a’,4") nor (I, ) is an at-
tacking inversion. Hence, the number of increasing o-triples is the total number of o-triples
minus the number of attacking pairs in o (7). O

Let r = (ry,...,7) be a composition of [, and let o, 5 € XTT(GL;) be dominant regular
weights for GL, such that o; < ; for all 1 < i < [. To these data we associate a tuple of

skew diagrams B/a = (Bay/aqy, - - -, Bwy/aw) by defining
(a(i))j = Qg 45 T+ Js
(ﬁ(i))j = ﬁr1+---+n‘71+j +J

for 1 <i<kand1<j <r. Inother words, (aq)|- - |ow)) = a — pr and (Bay|- - |Bu)) =
B — pr, where (-|---|-) denotes concatenation and p, = —((1,...,7r1)| - |(1,...,7%)).

This construction has the combinatorially natural feature that the contents of the boxes
in the j-th row of B;)/aq) are o, +1,..., By, where m = ry + -+ 4 1,1 + j is the index
corresponding to the j-th position in the i-th block of the partition of [I] into intervals of
lengths r;.

(133)



DENS, NESTS AND THE LOEHR-WARRINGTON CONJECTURE 39

Theorem 5.5.4. Given a composition v = (ry,..., 1) of I, 0 € Sk, and weights a, 3 €
Xt (GLy), we have

¢""PlNG g0y (21, a7 if ap < B forall1 < i <,

0 otherwise,

(134) L3 5/a(Z: @)pol = {

where B/a is the tuple associated to r, o, 5 by the construction above.
The proof will be based on Proposition [5.5.3| and the following lemma.
Lemma 5.5.5. For a, 8 € XTT(GL,) and o € Sy, we have

gl RN i 5o ey for I C (I, 1| = m,
0 otherwise,

<E:,7B_ (25 9)) em(z) EZE (z;q) = {

where e, is an elementary symmetric function, T = o 1, and &; is the 0-1 vector with 1’s
i positions 1 € 1.

Proof. Using ([116]), the coefficient <Efg) f of Eff 5 in any Sp-antisymmetric function f is
equal to (Ef)f. Applying this with f = e, E7

(135) (EZS) em ESy = (E) em ESy = Y (=1 “NES) e ES ).

UJESr
By [6, Lemma 4.5.1] the coefficient (E3) ey, Eg(a) vanishes unless § = w(a) + ¢; for some 1.
Since w € Sy and o € X+ (GL,), w(«) is not dominant for GL, if w # 1. In that case there
is an index i such that s; € Sy and w(a); < w(a);41. Since f € X+T(GL,) we then have
Bi —w(a); — (Bit1 —w(a)ir1) > 2, and therefore f — w(a) is not of the form ;. This shows
that the terms for w # 1 on the right hand side of (135 vanish, leaving
(136) (E75) em Bfy = (ES) en ET.
The lemma now follows from [6, Lemma 4.5.1]. O
Proof of Theorem[5.5.4} Let L] 5,,(X; ) be the unique linear combination of Schur functions
sx(X) with £(A) < [ that specializes in [ variables 21,..., 2 to L7 5/, (2;q) = L7 5,,(2; ¢)pol-
We will prove that
qhg(ﬁ/a)ga(ﬂ/a)(){; gl ifo; <Biforall<i<l,

137 L] X;q) =
( ) r,ﬁ/a( ’ q) {0 otherwise.

Clearly this implies (134]) (actually, (134)) and (137 are equivalent, by Corollary [2.2.3)).
By (123]), we have

(138) (sn L g/0(X507Y)) = (EZ;7) sa(z) BZ,

where (—, —) is the Hall inner product on symmetric functions. Note that (138)) holds even
if £(\) > [, since both sides are zero in that case. By linearity, (138)) therefore holds with

any symmetric function f in place of s). In particular, taking f =e, =€, ---€,,, we have

o — 071,— ol —
(139) <€M? Lr,ﬁ/a(X;q 1)> = <Er,5 >6M(Z> Er,a -
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Evaluating this last expression by using Lemma to multiply by e,, through e, in
succession gives a sum over chains of weights

(140) a=a9 oW o™ =p5 (e XTT(GL))

such that for each i = 1,...,n we have o) = oY) 4 ¢/ for some index set I; C []] of size
|I;| = p;. In particular, this shows that Lfﬁ/a(X;q) = 0 if the condition «; < B; for all ¢
does not hold, so we assume from now on that it does.

To the weights in (140]) we can now associate a chain of tuples of skew diagrams

(141) g=aPacaV/ac---Ca/a=48/a

by the construction in . The condition on the a”) means that each a” /a1 is a tuple
of vertical strips of size |a®/a(=1| = p;. In other words, a? /a=V) is the set of boxes a
with T'(a) = 7 in a negative tableau T' € SSYT_(8B/a) of weight x* = x*,

From Lemma , the term in ([139) corresponding to 7', or to the weight sequence (|140)),
is ¢~ MT) | where

(142) hT) = i Tnv(a' + e7) \ Tnv(a™ 4 e7)],

i=1

with 7 = (;*\1)_1. We claim that h(7T) = h,(T) is the number of increasing o-triples in 7.
Granting the claim, we then have

(143) (ew Liga(Xsq)) = Y g™

TEeSSYT_ (B/cx)

xT=x#

By definition, the sum on the right is the coefficient (x*) Ngjo = (€, ng/a). Using
Proposition [5.5.3], this implies

(144) Lg,ﬁ/a(X; q) = wNE/a(X; q) = qhg('@/a)ga(ﬁ/a)(X; qfl)-

It remains only to verify that h(T) = h,(T'). Let [I[] = Ji ][] - -] Jx be the partition of [I]
into intervals of lengths |J;| = r;. The weights o are strictly decreasing on each block Jj,
so |Inv(a® + e7) \ Inv(a™Y 4 ¢ 7)| only counts inversions between distinct blocks.

—

Now, 7 = (0=1)! carries the blocks J; to intervals of lengths o(r) in the order given
by o; in other words, for s € J;, s € J; with j < j', we have 7(s) < 7(s') if and only if
o(j) < o(y'). Thus, if ol = agf), we have (s, s') € Inv(a® + e7) if and only if o(j) > o(5').

By construction, ol is the content of the last box in the row of o /a corresponding to
the index s, or of the box immediately left of an empty row. For s € J;, s’ € J; with j < j',
it follows that (s,s') € Inv(a® + e7) \ Inv(a™V + e7) if and only if a®/al~Y has a box
b in the row corresponding to s, and one of the following two conditions holds, where a is
the last box in the row of a"™ /a corresponding to s’, or the box immediately to the left
if this row is empty:

(i) o(j) < o(j') and ¢(b) = ¢(a) + 1 and the box ¢ with content c¢(a) + 1 = ¢(b) in the

same row as @ is not in &' /a; or
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(i) o(j) > o(j") and ¢(b) = c(a) and the box ¢ with content ¢(a) + 1 = ¢(b) + 1 in the
same row as a is not in ¥ /a.

These conditions are equivalent to (a,b, ¢) forming an increasing o-triple in T with T'(b) = 1.

Since a triple is determined by the box b and the index of the row containing a and ¢, we see

that |[Inv(a® +e7) \ Inv(a®Y + €7)| counts o-triples in T such that T'(b) = i. Summing

over i yields h(T') = h,(T), as claimed. O

6. CAUCHY IDENTITY AND WINDING PERMUTATIONS

As in [6], the infinite series form of our main theorem will follow by combining a Cauchy
identity for Hall-Littlewood polynomials—semi-symmetric Hall-Littlewood polynomials EY ,

Fy,, in this case—with an identity that allows us to change the ‘twist’ o when the latter has

a special form. In this section we establish the two identities that we need.

6.1. Cauchy identity. Our next theorem generalizes the Cauchy identity for non-symmetric
Hall-Littlewood polynomials [6, Theorem 5.1.1]. A new feature that appears in the semi-
symmetric case is that different compositions r, s may govern the blocks of variables in the
functions EY ,(x,¢) and FY,(y,q) that play a role in the identity, subject to some conditions
which we now define.

Definition 6.1.1. Given o € S, a sequence (my, ..., my) € Z* is o-almost decreasing if
(145) m; >m; — x(e7'(i) > o7 1(j)) foralli < j,

and o-almost increasing if

(146) m; <m;+ x(o (i) < o71(j)) foralli< j.

If r = (rq,...,r) is a strict composition, then any choice of p, satisfying determines
two sequences (M, ..., M) and (mq,...,my) such that p, is the concatenation of blocks
(M;, M; — 1,...,m;) of length r;. We extend this to weak compositions as follows.

Convention 6.1.2. Let r = (rq,...,r;) be a weak composition. Whenever we choose p,
satisfying (82)), we also choose sequences of integers (M, ..., M) and (my,...,my) such
that for r; > 0, the corresponding block of p, is (M;, M; —1,...,m;), and for r; = 0 we have
M; < m;. We refer to M; and m; as the block mazxima and minima of p,, including any
artificial maxima and minima M; < m; that we may have ascribed to empty blocks.

Theorem 6.1.3. Suppose we are given weak compositions r = (r1,...,7%), 8 = (S1,...,Sk),
a permutation o € S, and a choice of py, ps with associated block maxima and minima, in
keeping with Convention[6.1.3. Assume that p, and ps have the same block mazima M;, and
let m; and n; be their respective block minima. Assume further that (mq, ... ,my) is o-almost
decreasing and (ny,...,nx) is o-almost increasing.

Then, using notation explained below, we have the identity

Hi< j Q[_thin]
(147) : = X B (g Yy L, (i),
Lo, o)~ 2 e
The variables on the right hand side are x = x1,...,%;, ¥ = Y1, ...,Ys, Wherer = |r| =D 1

and s = |s| = >, s;. The index X\ ranges over tuples of partitions (Aqy, ..., A\x)) such that
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C(Apy) < min(rg, s;), with [\ =), |)\( )| denoting the sum of all the parts. In the expression
A+ pr, we interpret A as a weight in X*(GLy) by padding Ay with zeroes to length r; and
concatenating; A + ps is interpreted in a similar way.

The expressions involving €2 on the left hand side are as defined in with plethystic
alphabets X1, ..., Xy constructed from blocks of length r; among the variables x, by the rule

(148) Xi=xi1+ -+, wherex;j =Ty 1oqr 4j-

The alphabets Y1, ..., Y. are similarly constructed from blocks of length s; among the y vari-
ables.

Remark 6.1.4. (i) The left hand side of (147 expands to

Hi<j Q[—qt X;Yj] Hz<] H L= qtziay;s)
Higj Q- XZYJ] Hz<] H” 1 Z] (1 txi,ayj,b)

(ii) If r = s = (1%) and p, = ps is constant, the theorem reduces to [6, Theorem 5.1.1]. A
little more generally, if r = s = (1!), the hypotheses on the block maxima and minima are
satisfied when p, = ps has the form o(1,1,...,1,0,0,...,0) + (constant).

(iti) f k = 1, sor = (r), s = (s) and 0 = 1 € Sy, we have x " EZ,  (x;¢7") =
sa(z1,...,2p) and y P FY, (y;9) = sa(v1, - -, ys) by Example (ii) and . In this
case the theorem reduces to the classical Cauchy identity for Schur functions.

(iv) Adding a constant vector to p, or ps does not change the conclusion, so the hypothesis
that p, and ps have the same block maxima can be weakened to having block maxima that
differ by a constant. The hypotheses with this weakening seem to be essentially as general
as possible.

(v) The artificial maxima and minima ascribed to any zero-length blocks in p, or ps have
no effect on the identity . Nevertheless, to conclude that the identity holds, we require
that such maxima and minima can be chosen satisfying the hypotheses of the theorem.

(149)

Before proving Theorem [6.1.3], we develop a series of lemmas.

Lemma 6.1.5. Given 0 € S}, let m,n € Z' be o-almost decreasing sequences such that
m < n coordinate-wise, and m # n. Then there is an index k € [l] such that my < ng, and
m + € 1S o-almost decreasing, where €, is the k-th unit coordinate vector.

Proof. In fact, let k£ be the smallest index such that m; < ng. In positions ¢ < j, condition
for m + € is the same as the condition on m if k& & {i,j}, and is weaker than the
condition on m if ¢ = k. If 7 = k, then since m; = n; for « < k by assumption, the condition
on m —+ €y in positions ¢ < j is weaker than the condition on n. O

Lemma 6.1.6. Given 0 € S; and 1 < k <[, if m = (my,...,my) is o-almost decreasing,
then the sequence

(150) m' = (ma, ..., Mg_1, My, My, Mit2, - .., My)
is (sko)-almost decreasing, where
mj, = max (my, — x(c~ ' (k+1) > o' (k)), mps1)

(151) ,
mk+1 = M.
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Proof. We have m] = my, ) for i # k, so if i < j and k & {i,j}, then s;(i) < si(j)
and the condition m; > m/ — x((sx0)7"(i) > (sx0)7'(j)) becomes my, iy > My, () —
x(07 s1(7) > 07 1sx(4)), which holds by hypothesis.

For i = k and j > k+1, the condition becomes mj, > m; — x(¢ ' (k + 1) > o~ '(j)), which
follows from myy1 > m;—x (o~ k+ 1) > o7(4)) and mj, > my1. For (i,5) = (k,k+1) the
condition becomes mj, > mj_, — x(c~'(k +1) > o~ '(k)), which follows from the definition
of mj, and mj ;.

For i < k = j, the condition becomes m; > m}) —x(c7'(i) > 071 (k + 1)). By the definition
of mj, this is the conjunction of m; > my,1 — x(o7'(i) > o7 (k+ 1)) and m; > my —
x(@e™ ' (k+1) >07Y(k)) — x(¢7'(i) > 07" (k +1)). The first of these holds by hypothesis.
The second follows from the hypothesis m; > my, — x(c7'(i) > ¢~ *(k)) and the inequality

(152) X(e (i) > o7 (k) < x(o () > o7 (k+ 1)) + x(07 (k+1) > 0} (k)),
which is logically equivalent to the transitive law (c71(i) < o' (k + 1)) A (e (k+ 1) <
o k) = (c71(1) < o7 (k)). O

Lemma 6.1.7. The Demazure-Lusztig operators Ty, in have the following properties,
where (r,s) > (a,b) means r > a and s > b.

(i) If (r,s) > (c,c+ 1), then every term zjzy, | in Tp(2, 25, ) has (u,v) > (c+1,¢).

(it) If (r,s) > (c+ 1,¢), then every term zizp .y in Ty, "(2525,) has (u,v) > (c,c+ 1).

(iii) If (r, ) > (c,c), then every term 2z}, in Ty (2525 1) or Ty, (2525 1) has (u,v) > (¢, c).
(v) If r > s, then ¢ Ty (252,1) = 232 + O3 ).

(v) If r > s, then T}, ' (2725,1) = zj2n, + O(z01).

Proof. All the properties follow from the explicit formulas

.
S T T8 r—1_s+1 s+1_r—1
q 252540 + (@ = ) (22551 + 2 AT S 74 Zk+1) r>s,

Te(2p2551) = § 4202011 r=s,

(159 >z;§z£+1 + (=@ g + 2y 2o+ 22 r<s,
¢ 2z (@ = D T a0 T ) <,
T (zzp0) = g7t A r=s,
Zzi F =g Y E g a2 g 0+ T m) s

O

Lemma 6.1.8. Letoc € S;, 1 <k <, and m,m’' € Z' be as in Lemma and suppose
v € Z' is such that v > m/ coordinate-wise. Let V,, = Z[¢*'|{z" | p > m}. Then the
operator Ty, satisfies

(i) Ti(z") € Vi if o~ H (k) < o™ Mk +1);

(ii) T, ' (z") € Vy, if o7 H(k) > o (k + 1).

Proof. Since T}, acts only on the variables zx, zx11, we need only consider the exponents ji,
ftes1 of terms z# occurring in T (z¥).

In case (i), we have (vy, vpr1) > (max(my — 1, myyq), my) with myg; < my and want to
show that (ug, trr1) > (Mg, mygy1) for every term z* in Ti(z"). If myy1 < my, this follows
from Lemma m (i) with ¢ = my — 1. If my = my.q, it follows from Lemma m (iii).
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In case (ii), we have (vy, vgy1) > (max(mg, mgi1), mg) with mg; < my + 1 and want to
show that (i, fter1) > (Mg, myi1) for every term z# in T, '(z"). If my 1 = my + 1, this
follows from Lemma (i) with ¢ = my. If mypr < my, it follows from Lemma [6.1.7]
(i). 0
Lemma 6.1.9. Given 0 € S; and m,\ € Z', if m is o-almost decreasing and X\ > m

coordinate-wise, then for every term z* with non-zero coefficient in E{(z;q), we have pr > m
coordinale-wise.

Proof. If X is dominant, then z* is the only term and the result is a tautology. Otherwise,
pick an index k such that Ay < Agi1. Then the recurrence gives

B {q-lTkE;:@, o7 (k) <o M (k+1),

154 ES =
(154) YT ESR, oM k) > o (R + 1),

Let m’ be the (syo)-almost decreasing sequence given by Lemma for this o, m and k.
Then mj, < max(mg, mey1) < max(Ag, Agr1) = Agt1. Since m’ and sx(m) agree in all but

the k-th position, this shows that si(\) > m’. By induction on |Inv(—M\)|, we can assume

that all terms z” in E;’:&) satisfy v > m’. The result now follows from Lemma . OJ

Remark 6.1.10. Suppose A itself is o-almost decreasing. Then Lemma [6.1.9] with m = A
implies that ;1 > X\ coordinate-wise for every term z* in Ef. Since EY is homogeneous of
degree |A|, 4 > X implies = \. Hence, E§ = z*. In fact, it can be shown that E{ = z* if
and only if A is o-almost decreasing.

Lemma 6.1.11. Given o, m and X as in Lemma[0.1.9, suppose that m+¢; is also o-almost
decreasing, where €; is the j-th unit coordinate vector. Then the coefficient of Z;nj in B s
given by

m4 Ez— g e ey 477 . Sy ; )\: ,’
(155) <Zj J>E§(z; q) — { )\(Zl Zj—15 Zj+1 2] q) J my;

0 /\j > myj,

where \ = ALy N1, Ajy1y -, A) and T € Sj_1 is the permutation such that 77(1),...,
771 — 1) are in the same relative order as o=*(1),...,07(j —1),07 (G +1),...,07 ().

Proof. It \; > m;, we have A\ > m + ¢;. Since m + ¢; is assumed to be o-almost decreasing,
the result follows from Lemma in this case. Now assume that \; = m,.

If ) is dominant, so is A. Then both sides of reduce to 2} - - - z;\i_llz;\ﬁl c2)M U TEN
is not dominant, we proceed by induction on |Inv(—\)|, again using the recurrence for
some index k such that \p < A\giq.

If k¢ {j—1,7}, then using Lemma for this o, m and k, and using it again with
m + ¢; in place of m, we get a sequence m' such that both m’ and m’ + ¢; are (s;0)-almost
decreasing. We also have s,(\) > m/, as in the proof of Lemma[6.1.9) Then we have

(156) <z;nj> ESS;"F/\) (z;q9) = Ej:l'&)(zl, ey By Zls - 215 Q)

~

by induction, where ¥’ = k if k < j—1and ¥’ =k — 1 if &k > j. Note that sp7 and sg/())
are to sxo and sx(A) as 7 and A are to o and .
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Letting z denote the variables with z; omitted, the recurrence for EX takes the form

71 Sp! T ~ —1 —1
r(arq) { TkES ()\)(z q), o '(k)<o Hk+1),

T, ES’“'(T)(A'q), o k) > o Y k+1).

To see this, observe that the variables zy, ;11 on which T} acts are in positions &', k¥'+1 in z,
and that 771 (k) < T‘l(k’ +1) if and only if 71 (k) < O'_l(k - 1) For k¢ {j - 1 ,j}, taking
the coefficient of z; " commutes with T, so (154)), ([156), and (157) imply (z]”) ES(z;q) =
E;(Z q), as desired.

Since m + ¢; is o-almost decreasing, we have A\;_; > m;_; > m; = );, so we never have
k = 7 — 1. This leaves the case k = j. In this case, let

(157)

(158) m = (ml,...,mj_l,m mj+1,m]+2,...,ml),
where

my =m; +x(0'(j) > 071 (j + 1)),
(159) T

Then s;(A) > m/, since \j;; > A; implies A\j41 > m; +1 > m’. Provided that m' and
m’ + €41 are (s;0)-almost decreasing, the inductive hypothesis implies

(160) <ZJ+31+1>E5 (,\)(Z q) ES (21,---,Zj,ZjJ,-Q,---,Zl;q),

since deleting position j + 1 from s;o and sj()\) gives the same 7 and )\ as deleting position
j from o and A. We now verify that m’ and m’ + ¢4, are indeed (s;0)-almost decreasing.
We then complete the proof by showing that ( NES(z;q) = ((zﬁjl)Ejj&)(z, q)), which is
equal to E;(z, q) by (160) and the fact that m; = m/, .

For j & {r, s}, the Conditions on entries in positions r < s for m’ and m' 4+ €41 to be
(sjo)-almost decreasing reduce to the conditions in positions s;(r) < s;(s) for m and m +¢;
to be o-almost decreasing.

In positions r < j, the required condition for both m’ and m' + ;41 is m, > m} —
x(e7(r) > o71(j + 1)). This follows from m,. > mj—i—l—x( ~Y(r) > o71(4)), which holds be-
cause m+¢; is o-almost decreasing, and 1 —x (o7 '(r) > o7 1(j)) > x(¢7'(j) > o1 (j + 1)) —
x(e7(r) > o71(j + 1)), which is logically equivalent to (c7'(r) < c7'(j + 1)) A (c71(j) >
o (j+1)) = (o7 (r) <o7'(j)).

In positions j and s > j 4 1 the required condition is m/; > my — x(o™(j + 1) > a7'(s)).
This follows from m; > ms — x(¢7(j) > o~ '(s)), which holds because m is o-almost de-
creasing, and x(o71(j) > o7 1(s)) < x(c7'(j) > o (j+ 1))+ x(c7(j + 1) > 07(s)), which
is logically equivalent to (c71(j) < o '(G+1))A (e (G+1) <o (s)) = (7)) < o7 (s)).

Finally, in positions j, j+ 1, the condition on m'+¢; 1, which is stronger than the one on
m/, is mj > mf +1—x(07'(j+1) > 07'(j)). This holds with equality by the definition
of m;, m/ ;.

We have left to prove that (z])ES(z;q) = s;((z J+'1>Ejj_'€\)(z; q)). We do this by using the

expression for £ in terms of Esj( N given by the recurrence (|154) with k& = j.

By Lemma|6.1.9, every term z” of E:ETA) satisfies v > m/.
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In the case 0_1(j) < o 4(j+1), this gives (vj,vj11) > (mj,m;). If vjz1 = m;, then we
have (z;n> Tzt = s]((zﬁl) z") by Lemma (iv). If vj41 > my, then <z;nj)sz” =0=
(272" by Lemma (i), and we again have (z;") ¢~ 'Tjz" = s;((2,},) 2").

In the case 07'(j) > o7 (j + 1), we have (vj,v;11) > (mj + 1 m]) If Vi1 = m, then
(z]) T 'z = s;((2]7) 2) by Lemma( ). vy > my, then (z7)Tjz” = 0 = (z},)z"
by Lemma (iii) again giving < Ty lzv = sj((z]mJjI) z").

In either case, (154) yields (z ;ﬂJ>E" =s;((z ?jl)Ej;()\)), as desired. O

The next two lemmas will be stated and proved for a composition r that we implicitly
assume is strict. However, both lemmas generalize immediately to weak compositions by

Remark (ii).

Lemma 6.1.12. Given a composition v = (r1,...,71), a permutation o € Sy, and a choice

of pr, let v/ = wk(r) and py = wow?(py); i-e., the blocks of py are those of py in reverse

order. Then for any tuple of partitions A = (Aqy, ..., Aw)) such that {(Au)) < r;, we have

(161) 2 " FY i, (25.0) = wo(2 ”P’Erf°§+p,(Z'q_1)),

with notation X\ + py and N + pp as in Theorem and X' = (A, -, A1)

Proof. Follows from ((95)). O
Lemma 6.1.13. Given a compositiont = (rq,...,rg) and a permutation o € Sy, fix a choice

of pr with o-almost decreasing block minima. Then the Laurent polynomials z~EY . (z;q)

for weights A € NI 0 X+(GL,) are polynomials in z, and form a basis of the ring k[z|> of
Sy invariant polynomials.

Remark 6.1.14. The condition A € NFl N X*(GL,) means that X is a concatenation of
partitions A1y, ..., Ag) of lengths £(\;)) < 75, where Aj;y is padded with zeroes to length ;.

Proof of Lemmal[6.1.13 Let m = (mf',...,m;") be the concatenation of constant blocks
(m;"), where my,...,my are the block minima of p,. Then m is o-almost decreasing and
A+ pp > i for every A € NIl 0 X*(GL ), so Lemma [6.1.9] implies that z_mE)\Jr (z;q) is a
polynomial in z. Note that p. = p. — m is the weight satisfying (82]) whose block minima
are equal to zero. Since d, commutes with multiplication by the Sy 1nvariant monomial z™,
we have z7/FE7, == z2 P, z_mE§+p

We now check that the S, invariant Laurent polynomial z~*r§,z ™EY +pe 18 In fact a
polynomial in z. Consider a monomial z” appearing in z~"E{ o (z; q), which must satisfy

v € NIl by the previous paragraph. From we obtain

23, +Xv, - (GLy) if v is GL, regular,
(2") = .
0 otherwise,

(162)

where v, is the GL, dominant weight in the S, orbit of v. If v € NI*l is GL, regular, then
v, e NFInXx t*(GLy) satisfies vy > pl. coordinate-wise, so X, —, is a polynomial character.
Since the polynomial characters yx(GL,) for A € NFI N X*(GL,) are a basis of k[z]%, it

follows from ([100]) that the polynomials z=*E7,, = are also a basis. O
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Corollary 6.1.15. [If, instead, the block minima of p, are o-almost increasing, Lemmal6.1.15

holds with z=P" F7,, , (2;q) in place of z P K7, (2;q)

Proof. The reverse of a o-almost increasing sequence is (wyo)-almost decreasing. In particu-
lar, if the block minima of p, are g-almost increasing, then those of p, in Lemma |6.1.12] are
(wfo)-almost decreasing. The corollary now follows from Lemmas |6.1.12{ and [6.1.13] O

Lemma 6.1.16. Suppose we are given weak compositions v = (r1,..., 1), ¥’ = (1, ..., 7%)
such that r; < v} for all i, a permutation o € S, and a choice of py, py with associated
block mazima and minima, in keeping with Convention [6.1.9 Assume that p, and py have
the same block maxima M;, and that the block minima m; of pp and n; of pr are o-almost
decreasing and satisfy m; < n; for alli (note that r; < r} already implies m; < n; forr. >0).
Let z (resp. z') be a list of |r| (resp. |r'|) variables, subdivided into blocks Zi,. .., Zy
(resp. Z1,...,Z) of lengths ry,... v (resp. 71,...,1). Let Aqy,...,A\w) be partitions
with (@) < 1}, and define X + py as in Theorem [6.1.3, so that by Lemma
(2) " EY \sp, (2'5q) is a symmetric polynomial in each block of variables Z;, and if {(A;)) <
r; for alli, then z" 7 E7, (z;q) is a symmetric polynomial in each block of variables Z;.
Upon specializing r; of the variables in each block Z! to Z; and setting the other variables

to zero, we then have

7prE0' . - ) < .
(163) (2) " EY xip (250) | 41y g = {Z i (Z10) if L(Apy) <1y for alld,

0 otherwise.

Proof. Observe that the specialization property is ‘transitive’—that is, given r <1’ <
r” coordinate-wise, if holds for specialization from z” to z’ and from 2z’ to z, then it
holds for specialization from z” to z. This is true even if r, ¥/, r” are weak compositions,
with some blocks of variables empty. Using this and Lemma [6.1.5] we can reduce to the case
that the block minima of p, and p, differ by a unit coordinate vector ;.

If 72 = 0, then r = r’ and the specialization property is trivial, so we assume that 77 > 0.
Then r; = r; — 1, and r; = r] for all i # j. Thus, we are specializing one variable in Z} to
zero and leaving the other blocks Z! unchanged, apart from renaming the variables. We can
also assume for simplicity that r; > 0 for ¢ # j, since deleting any parts r; = r; = 0 preserves
the hypotheses and does not change the conclusion.

Let m = (myq, ..., my) be the sequence of block minima of p,.. That of p, is then m +¢;.
Let m be the concatenation of constant blocks (m;’), except for the j-th block, which we
take to be ((m; + 1)"%,m;), so its length is r; = r; + 1. The assumption that m and
m + ¢; are o-almost decreasing implies that m and m + 5 are -almost decreasing, where
J=r1+---+r;+1is the last index in the j-th block.

Now consider the right hand side of . By Lemma , since A + pp > m, the
coefficient ((27)™7) ES, »,(Z';q) becomes EX, (z;q) after renaming the variables if £(A;)) <
7, or zero if £(\;)) = r}. Note that 7 in E§+pr is defined with respect to r, and that this is
the 7 in Lemma when we take o there to be & defined with respect to r’, and j to be
7. Hence, the right hand side of is given by

i’%z) ?

(164) 26, ((((5)™) S, (250)
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where z’ stands for z’ with z;A omitted.

To complete the proof we need to show that (164]) is equal to the left hand side of (163)),
which by definition is

(165) (Z/>7prl6rl E;\U\‘F,Dr/ (Z/; Q) Zl—Z;
For this it suffices to show that
(166) ()0 8 ) g, = 70 ((U)) )) )

for all terms (z')” occurring in EY, p,(Z';q). Thus, by Lemma , we can assume v > 1.

If v is not GLy regular, then (z') "6, (z')" = 0. If v is GLy regular, then
(2") 776y (2')" = £x,u(GLy), where v = pi+ py is the dominant GL, weight in the S, orbit
of v, that is, v, is the weight obtained by sorting each block of v into decreasing order. As
in the proof of Lemma only polynomial characters x,(GLy) arise, so we can regard
the index p as a tuple of partitions (f(1y, - . ., k) With €(ue) < 75

If v; > m;, the right hand side of (L66) vanishes. Since v > m, all entries of v in the
j-th block (of length 77 = r; + 1) are greater than m;, and the same holds for v,. If v
is not GL, regular, the left side of vanishes immediately. If v is GL, regular, then
the corresponding character x,,(GLy) has £(p(;)) = 7. In that case x,(GLy) vanishes upon
specializing one of the variables Z} to zero. Hence the left hand side of vanishes in
either case.

If v; = m;, then (((z%)"”) (Z/)V)|2’—>z = z", where k is just v with the entry in position
7 deleted. In this case vj is strictly less than all other entries in the j-th block. Hence,
v is GLy regular if and only if k is GL, regular, and when these hold, the permutation
v € Sy, € 5 such that k = v(ky) has the same length as the permutation w € ST; C Sy
such that v = w(v; ). Indeed, the two permutations agree on the interval [7—r;,7— 1], and
w fixes 7.

Hence, we have (z')"""dy (2')" = £x,(GLy) and 27776, 2" = £x,(GL,) for the same
tuple of partitions p such that ¢(p;) < r;, and with the same sign. Now follows
because x,(GLy) specializes to x,(GL;) upon setting one variable in the j-th block Z} to
Zero. U

Corollary 6.1.17. If the block minima of py and py are o-almost increasing instead of o-
almost decreasing, then Lemma holds with (z')=P= F5 (z'5q) and 2z~ P FYy, , (2;q)

r’,)\+pr/
in place of (z')"" EJ ., (2'iq) and z" " E7,,  (z;q).

Proof. Follows from Lemmal6.1.16{using Lemma|6.1.12|in the same way that Corollary[6.1.15
follows from Lemma [6.1.13 O

Proof of Theorem [6.1.5. First we consider the case when r = s. Inverting the variables y;
and ¢, we are to prove
[T, Q=g "t XiYj]
(167) : == Mx "B (xa)y P E, (via),
Higj Q[_t XZYJ] ; 8 e
where the index A ranges over all k-tuples of partitions with £();)) < r;. By Corollary|6.1.15]

the functions y=rF7,

y;q) appearing in the sum form a basis of kly; !, ...,y ']%. We
o) 1 r
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need to show that the coefficient of each such basis element in the product on the left hand
side is ¢t X P E7 )\, (X5 q). By Proposition , the coefficient in question is given by
P [L.; Q¢! tXi?j]
(168) <y prEr,)\+pr (ya Q)7 = — >
Higj Q[_t XZYJ]

where the inner product is in the y variables. Note that it is permissible to perform such
operations term by term in the power series in t on each side of (167)).

By Lemma 6.1.13, y™ " EY . (y;q) is in fact a polynomial in y and not just a Laurent
polynomial. Moreover, it is homogeneous of degree |\|. Hence, the result follows if we show
that

(169) fltx) = (f(),

r

q

)

[L.;Q—q"t X,Y]] >r
Higj Q[_t XZY}] I

for every S, invariant polynomial f € k[y]®r. Let X; and Y; outside the plethystic brackets
stand for the list of variables in each block, so that f(y) = f(Y1,...,Y%), for instance. Using
the definition (110]) of the inner product, the right hand side of (169 can then be written

Hi<j Q—q 't XZ?J]
Higj Q[_t Xzy}]

QYT
11 [ ]

(170) (Low) f(Yi,... . Yy) Q[—¢ ;Y]

i<j
where the coefficient (14, ) is taken in the y variables. Note that this is the same as taking
the coefficient of 15, (Vi) in each block of variables separately.

The only part of (T70]) that involves Y] is the factor Q[—tX,Y;]™' = Q[tX,Y]]; everything
else involves only symmetric polynomials in Y;. The classical Cauchy identity implies

(171) (Lo, )9(Y1) QX Y1) = g(tXy)

for every symmetric polynomial g(Y;), by reducing to the case that g is a Schur function.

Taking the coefficient (1¢,) by starting with GL,, and using ((171)) reduces (170]) to
H1<i<j9[_qfltXi7j] H Q[-Y;Y]]
Q

(172) <1G’L(T2 >f<tX17Yv2>7Yvk) Ve

,,,,, o oo, At XY} 21, QYY)

once we observe that after removing the factor Q[t X1Y;] and setting Y; = ¢ X, in the rest,
all factors with index ¢ = 1 cancel. We can assume by induction on £ that reduces to
F(tx).

For the general case, choose an integer N less than or equal to all M;, m; and n;. Definer’ =
(ry,...,7) by ri = M;— N +1 and choose p, to have block maxima M; and (hence) constant
block minima m/ = N. The constant sequence (N, ..., N) is both o-almost decreasing and
o-almost increasing, so the case of the theorem with equal compositions holds for r’ and p,,
by what was shown above (note that since we chose N < M; for all i, p has no artificial
zero-length blocks). Denote the blocks of variables in this case by X/, Y/. By the choice of
N, we have 1;, s; < 1}, so there are at least as many variables in each block X/, Y/ as in X,
Y;.

Specializing r; of the variables in each X! to X; and s; of the variables in Y/ to Y,
and setting the other variables to zero, the left hand side of with both compositions
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equal to r’ reduces to the left hand side for compositions r and s. By Lemma [6.1.16| and
Corollary [6.1.17), the same thing happens on the right hand side. Thus, the general case
follows from the case already proven. 0

6.2. Winding permutations. We use the following notions from [6, Definition 5.2.1].

Definition 6.2.1. A permutation o € Sy is a winding permutation if o(1),...,0(k) are in

the same relative order as ¢y, ..., ¢, where ¢; = {y + zi} are the fractional parts of an

arithmetic progression, for any real x, y with x assumed irrational, so the ¢; are distinct.
The descent indicator of o is the {0, 1}-valued vector (ny,...,nx_1) defined by

(173) n; = x(o(i) > o(i +1)).
The head and tail of o are the permutations 7,6 € Si_; such that 7(1),...,7(k—1) are in
the same relative order as o(1),...,0(k — 1) and 6(1),...,0(k — 1) are in the same relative

order as 0(2),...,0(k).

Proposition [6.2.4] below, is the counterpart of [0, Proposition 5.2.2] for semi-symmetric
Hall-Littlewood polynomials. We start with a more general identity.

Lemma 6.2.2. Let 7,0 € Sy and n € ZF be such that |n; —n;| <1 for all i, j, and
(a) n; = n; implies (i) < 7(j) < 0(i) < 0(j), i.e., T and 0 are in the same relative order
m positions 1, j;
(b) m; —n; = 1 implies 7(i) > 7(j) and 0(i) < 6(j), i.e., 8(n) is dominant and T(n) is

antidominant.
Given a composition v = (r1,...,7%), let 7 = (i, ..., ") be the concatenation of constant
blocks (n;"). Then for every u € X (GL,) we have the identities
—1 = 7_—1
(174) EY, (zq) = 2" B, +(zq),
—1 R |
(175) Fy, (z:q) = 2" F],_5(259).

Proof. First we show that ((174) implies (175]). Note that wor, wef and —n satisfy the same
hypothesis as 7, § and 1. Hence, assuming the validity of (174]), we have

(176) E?'(z:q) = 2“6 B (z:¢)

r7—w3 (:u)

PN ~ )1 ~ T_1
= zfr wO(pr)Z_nEI(_?lfw%(M)_,rﬁ(z; Q) =z Fr,,uf?)(z; q>7

using and ([107). It remains to prove ([174)).

Let ~ denote equality up to a non-zero scalar factor. Since 7 is S, invariant, (100]) implies
that both sides of have leading term z*x,_, with coefficient 1. Hence, if (174]) holds
up to ~ equivalence, then it holds with equality.

Let [ = |r|, and let A denote the dominant weight in the S; orbit of any GL; weight
A € Z'. The entries of n and 7 take at most two values ¢ and ¢ + 1. As in the proof
of [0, Proposition 5.2.2], this implies that there is a w € S; such that p = w(u;) and
uw—n=w((—"n)s). Note that (u—7); = py —w™ (7). Hence, up to ~ equivalence,
can be written

(177) 8, T5 ' T, (2) ~ 27 8, T Try (27 @ 2),
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where § = (9/\ LT = (7'—1)*1. Since multiplication by the S, invariant monomial z” com-
mutes with 8, (177 - ) follows if we prove the operator identity 7 5 ! 15, ~ 2" T Tk, z—w @),
or equivalently

(178) T Ty 2 T Ty ~ 2

We now prove (178)) for all w € S; by induction on ¢(w). For this we use the well-known
operator identities (the same as [6, (115)])

(179) Tzt T =T 2 T =2 =2 it (o ) < i = i = 0,
(180) T,2"T; = qz"" if (o), p) = —1,
(181) T2 T =g e i (o) ) = 1,

which follow directly from the definition of 7T;.
The base case w = 1 of the induction is trivial. Otherwise, let w = vs; > v, and assume
by induction that

(182) T Ty 2 T Ty~ 2”0,

We have Ta’w - Tfng’vl and 1%, = 13,17, where

-1 @vvsi > fv 1 TUS; > TV
183 = ~ ~ = N .
(183) “ {1 Ovs; < Qv 2 {—1 TUS; < TV

Then ((182)) implies ((178)), provided we show that
(184) Ter g0 e o g @) — g @),

Set a = v(i), b =v(i + 1), and let ',V € [k] be the indices of the blocks containing a and
b in the partition of [I] into intervals of lengths r1,...,7,. Note that vs; > v implies a < b,
and that, in the same way, we have Tvs; > Tv < 7(a) < 7(b) and Qvs; > v < é\( ) < g(b)

Case I: j, = 7. One way this can happen is if ¢’ = ¥/, so a and b are in the same
block. Since 7 and 6 are mcreasmg on each block, we then have stz > 91} TUS; > TV,
er = —1, es = 1. Otherwise, if a’ # b, we have 1, = ny. By hypothesis, we then have
T(a') < 7(t') < 0(a’) < O(b'). By construction, this implies 7(a) < 7(b) < 6(a) < 6(b), or
equivalently 7vs;, > Tv & gvsi > 5?}, hence ey = —e;. Thus, we have ey = —e; either way,
and since (o), v (7)) =7, — M = 0, (184) reduces to (L79).

Case II: j, — 1y = N — ny = 1. Then 7(a’) > 7(¥') and 0(a’) < 6(b') by hypothesis,
which implies 7(a) > 7(b) and 8(a) < 6(b) by construction. In other words, 7vs; > 7v and
fvs; < Ov, so e, = e5 = —1. In this case, (@), v (7)) = 1, so reduces to ([L81]).

Case III: n, — 1y, = 1y — ny = —1. The reasoning in Case II with a and b exchanged gives
e; = ey = 1. Since (o), v (7)) = —1, (184) reduces to (180). O

Remark 6.2.3. In the proof of Lemma [6.2.2] we implicitly assumed that r was a strict com-
position. However, with the conventions in Remark (ii), the weak composition case
follows from the strict composition case.
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Proposition 6.2.4. If 0 € Siy1 is a winding permutation, then its descent indicator n =
(M1, ...,m) and head and tail 7,0 € Sy satisfy the hypotheses of Lemma [6.2.3. Hence,
given a (strict or weak) composition v = (r1,...,73), identities (174179) hold for every
we Xt (GL,).

Proof. By definition, 7 is {0, 1}-valued, so |n; —n;| < 1 for all 4, j. Let ¢ = (c1,...,ck41) be
the sequence ¢; = {y + xi} in the definition of the winding permutation ¢. Since adding an
integer to x does not change c, we can assume 0 < x < 1. Then, since ¢ and c are in the
same relative order, we have

=1 & O'(Z>>O'(Z+1) & G > Ciyl & C¢+1:Ci+$—1,

185
(185) =0 & o(i)<o(i+l) & ¢ <ci1 & 1 =¢ +x.

If n; = n;, then ¢;11 — ¢ = ¢j41 — ¢, 80 ¢iy1 — ¢jp1 = ¢ — ¢ and ¢; < ¢ & Cip1 < Cjp1.
Then o(i) < 0(j) © o(i+ 1) < o(j + 1), or equivalently, 7(:) < 7(j) < 0(i) < 6(j). This
shows that hypothesis (a) in Lemma is satisfied.

If ; —n; = 1, that is, if ; = 1 and n; = 0, then ¢;41 = ¢; + 2 — 1 and ¢j;; = ¢; + 2 imply
Cit1 — Cjp1 = ¢; — ¢j — 1. Since |¢; — ¢;| < 1 and |¢;41 — ¢j41| < 1, we must have ¢; —¢; > 0
and ¢;41 — ¢j+1 < 0. Then o(i) > o(j) and (i + 1) < o(j + 1), or equivalently, 7(i) > 7(j)
and (i) < 0(j). This shows that hypothesis (b) in Lemma is satisfied.

By Remark , we can conclude that (174H175) hold even if r is a weak composition. [J

7. PROOF OF THE MAIN RESULTS

7.1. Stable form of the main theorem. In §7.2, we prove the combinatorial Theo-
rem by restricting to the polynomial part of a stronger infinite series identity, given by
the following theorem, which expresses the full Catalanimal in in terms of LLT series.

Theorem 7.1.1. Given a positive integer h and real numbers s, p with p irrational, let

(186) bi=|s—p(i—-1]—|s—pi], ca={s—pli-1)}
fori=1,...,h+ 1, where {a} = a — |a] denotes the fractional part of a. Let o € Sy be
the permutation such that o(1),...,0(h + 1) are in the same relative order as cy,...,cpyi1,
and let 7,0 € Sy, be its head and tail. Let (uy,...,up), (v1,...,vn) be integer sequences which
are respectively 0~'-almost decreasing and T~'-almost increasing, that is,

(187) w; > u; — x(0(2) > 0(5)), v <wv;+x(7(i) <71(j)) for all i < j,

and let v = (y1,...,7m) € Z" be a sequence of positive integers with first differences

(188) Yi+1 — Vi = Ui — Vig1-

Fix pr(A,),piﬂo(_y) satisfying Jor GLuyy(y), with block minima wpq1—; for puyy) and vpy1—;
for piﬂo(,\/). Then

(189)  H(Rg, Ry, Ryt (ur — v +b1)™, ..., (wp, — v + b))

_ Al pTWO

g wo(y), (ON) B D7)+ P )/ (Ol ) (7 9),
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where A ranges over tuples of partitions (A1, ..., Aq)) such that £(Ag)) < min(vy;, Yig1),
we form (0; \) and (X\;0) by prepending or appending an empty partition to \, and we in-
terpret these as weights in X (GLuyy(~)) by padding the i-th component to length Yp41—; and
concatenating, as in Theorem[6.1.5,

The root sets are defined by o,;; € Ry = Ry if 1 < j are in distinct blocks of the partition
of {1,...,|v|} into intervals of length ~;, and cu; € Ry if i < j are in distinct, non-adjacent
blocks; in other words, Ry = R; = Ry \ Ri(GLy) and Ry = [Ry, Ry].

Example 7.1.2. Before turning to the proof, we give an example to clarify the notation in
Theorem [7.1.1] Let h = 4, p & .67, and s = 6.5. Then (by,...,b5) = (1,0,1,1,0) and
(c1,...,¢5) =~ (.5,.83,.16,.49,.82). The permutation o with the same relative order as the
numbers ¢; is 0 = (3,5,1,2,4) in one-line notation. Its head and tail are 7 = (3,4, 1,2) and

0=(4,1,2,3).
The sequences (ug,...,us) = (1,2,0,0) and (vq,...,v4) = (1,0, 3,2) satisfy the required
almost-decreasing /i 1ncreasmg condltlons The sequence v = (3,4,3,1) has first differences

(ulau27u3) (/027/0377)4) (17_17_2)
On the left hand side of (189) we have the Catalanimal

H(R,, R, Ry, (1,1,1,2,2,2,2, =2, -2, -2, —1))
in |y| = 11 variables z = 2y,...,211. A root a;; (i < j) belongs to R, = R, if i and j are
in distinct blocks of the partition {{1,2,3},{4,5,6,7},{8,9,10},{11}}, and to R, if i and
J are in non-adjacent blocks.

The terms on the right hand side of (189)) are indexed by triples of partitions Ay = (As1),
A@) = (A21, A2.2, A23), Ay = (A1,1, A2, A1 s) of lengths at most 1, 3 and 3, respectively. More
explicitly, the term indexed by a given triple is

B=(1 1, 1, 1 0

+(0, 2 1, 0, 5 4, 3

+( 0, )\371, 0 0 2
a=(2 5 4 3 3 2 1,0 3 2 1

+ (X315 Ao15 Aoz, Aoz, Art, Aig, Ais, 0, 0, 0, 0 ).

Note that for A = &, § — a reduces to the reverse of the weight vector in the Catalanimal.

Proof of Theorem |7.1.1. We will prove a stronger identity

2,1,4,3
Egl 3433 5/a(2:q), where

(190) Z((ul_vl“l‘bl)’yl ..... (uh—Uh+bh)'Yh) Haeth(l - th )

HaGRt(l - tza)
=SB ) B oo )
wo ~,) (OX)F(Bp" b7 ) +Pu () 1 4) Fg (), (N0 +0 () 4 )

Then ((189)) follows from Proposition after applying the operator HY in (124)) to both

sides of ((190)).

By construction, we have ~; + u; = ;41 + v;11. Define

(191) My=y+u—-1L, My=ypntve-—1l=mntu -1 ..., My =7, +u,— 1.
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We now apply our Cauchy identity, Theorem [6.1.3] with k = h + 1, taking the o there to be
(owp) ™!, setting

(192) r:(Oa’yha"'?/Yl)v S:(7ha---771a0)7

and taking p, and ps to have block maxima Mj.q,...,M;. We ascribe arbitrarily large
artificial minima denoted by oo to the empty first block of p, and last block of ps. The block
minima are then

(193) pr: (00, Uh, .. v1),  ps: (Upy ... Uy, 00).
By ([187), these sequences are (owp) '-almost decreasing and (cwg) !-almost increasing,
respectively, so the hypotheses of Theorem are satisfied. Note that (193)) also implies
that p, = %m and ps = Puy(y)-

We set the variables x and y in (147) to x = wo(2z), y = wo(z), that is, 2, = 2,
Y; = 21414, where [ = |y|. Grouping the variables x into blocks X; of size r;, the variables

y into blocks Y; of size s;, and the variables z into blocks Z; of size ~;, we then have

(X1,.., Xpy1) = (0,2, ..., Zy) and (Y,...,Yn11) = (Zh,...,Z1,0). Theorem now
yields

Haeth(l —qtz%) _ Hi+1<j Q[—qt Z:Zj]

_ (=), (p—up)TR) Al (owo) ™! ) (owo)~! .
(T h—Un Zt Wo (Fs,(o;)\)+pr(,y) (Z7 Q>Er,(>\;0)+p;0<_y> (Z, Q)>7
A

where we used p, = pévo(.y), Ps = Puo(~)s and

(194)

(195) y X = wo(zpﬁﬂo(q)_ﬂwo(w)) — (1 =un)M s (vp—up )R )

Because of the zero-length first block in r and last block in s, the sum in is over tuples
of partitions of the form (0, A(n_1), ..., A@),0), where £(A;)) < min(v;,7i41). These become
(A;0) and (0; A) when interpreted as weights for GL, and GLg, respectively.

Dropping zero-length blocks as in Remark (i) gives

(owo) ™! Y preo) .
(196) Er,()\;O)+pL)O(’Y) (Z’ q) - Ewo("r’)v()‘§0)+ﬁ;,0(7) (Z7 q)’
(197) ES . (zq) = FO (z;9).

8,(032) +Puwg () wo (7),(03A) +Puwg (+)

To complete the proof, we observe that

i > Citl1,
(198) bl =p+Cy1 —C = LpJ, ¢ Git1
Uﬂ, Ci < Ciy1-

Hence (by,...,b1) = n+ |p](1"), where 7 is the descent indicator of the permutation owy €
Shi1. Since owy is a winding permutation with head fw! and tail 7w, (107) and (175))
imply

(Bwo) ™! . = b7 (Two) Tt .
(199) F ) (00 g BT D) = 2 OB b g oy B D)

Combining (194)), (196H197]), and (199)) gives ((190)). O
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7.2. Proof of the main combinatorial theorem. We now prove Theorem [3.5.1] using
Theorem [7.1.1} Before giving the full proof, we outline the argument. Theorem [7.1.1] gives
an expansion

H = thﬁm ).6/a(% 0)

for the Catalanimal H in Theorem (3.5.]] _, in which f and o depend on A. Applying
Theorem , we find that the surviving terms in H,, belong to those A for which we
have § > « coordinate-wise, and these correspond one-to-one with nests in the given
den by Lemma [3.2.1, Theorem [5.5.4] also gives us an expression t’\‘/lmov) P /a(z;q)pol =

S tPlghrwoB/G  5/a)(z;q7") for these terms. We then complete the proof by using
the results of §§3.3 to verify that for the corresponding nest m, we have a(m) = |)[,

dinv,(m) = hry (B/a), and Two(B/a) = v(m).

Proof of Theorem[3.5.1. Let (h,p,d,e) be the given den, with g as in (24). We fix s such
that the line y + px = s passes above the heads and feet, as in §3.4 and define f; = |s —pi]|
to be the y-coordinate of the highest lattice point below the line y + px = s at x = i. For
1=1,...,h, we set

(200) U; = fi — €, U= fifl —di_;.

We will apply Theorem with these values of s, p, u; and v;. The numbers in are
then given by b; = f;_1 — fi and ¢;0.1 = s —p1 — f;.

We start by verifying that the hypotheses in are satisfied. The hypothesis on the wu;
can be restated as u; > uj — x(¢i41 > ¢;41) for i < j. Since the ¢; are distinct and ¢; € [0, 1)
for all 4, this is equivalent to u; + ¢iy1 > uj + ¢y — 1, ortow; —pi— fi >u; —pj— f; — 1.
The latter reduces to condition in the definition of a den. Similarly, the hypothesis on
the v; is equivalent to v; + ¢; < v; + ¢; + 1 for i < j, which reduces to (21]).

In (188)), we have u; — v;11 = d; — €;, so we can take v; = g;. We also have u; — v; + b; =
d;_1 — e;. Hence, the Catalanimal in ((189) coincides with the Catalanimal H in .

Turning to the right hand side of we use Theorem 4] to evaluate the polynomial

part of £T"’° ,CWO )8 /a(z q), where

(05 (O (b b7 g () (NSO H7y )(#9) =

(201) B=(0;X)+ ()", ..., 0") + puo(y)

(202) a=(\0)+ pﬁUO(,Y).

The weight [ is the concatenation of blocks

(203) Ay + (1 —€)™) + (g = Lge = 2,-++,0)

in the order k = h,h—1,...,1, if we set A\(,) = &. Similarly, « is the concatenation of blocks
(204) At-1) + ((fe-1 = de1)™) 4+ (g — Loge — 2,---,0)

in the same order, with Ay = @. The Ay, for 1 < k < h — 1 vary over partitions of length
((Aky) < min(gy, gr+1). By Theorem , Loty 3/a(Z: @)pot = 0 unless a < coordinate-
wise. From (203) and (204)), we see that a < 3 if and only if (Ag—1))i — dr—1 < (A@))i — €x
fork=1,...,hand ¢ < gg. Since dp_1 = €x_1+ gr — gr_1, this is equivalent to the condition
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er — 9 — (A))i < ep—1 — gr—1 — (Ag—1)); in Lemmam By that lemma, the indices A for

which /j;‘(’:?ﬂ 5/ (2; @)port # 0 correspond to nests 7 in the given den.
For these indices, Theorem [5.5.4] gives
(205) E;lg€7)75/a(z; Q)pol = thwO (ﬁ/a)gﬂ-wo(ﬁ/a)(zh <y Rl q_l)7

where [ = |g|, and B/« is related to a and g by the recipe in for blocks of lengths
Ghy -, g1. Writing B/ac = (Bny/amy, - - -, Bay/aq)) with decreasing indices and using
and , this recipe gives By = ((fr—1 —ek—i-gk)g’“)—l—)\(k) and o) = ((fe—1—dp—1+gr)%)+
Ak=1) = ((fro—1 — €1+ gr—1)%)+ Ak—1). The permutation o in Deﬁnitionfor the given
den and choice of s is the same as 7 in . Hence, by Remark By /vy = V()7 k),
SO Two(,@/a) = T(ﬂ(l)/a(l g ,ﬁ(h)/a(h)) = I/(ﬂ').

As noted in Definition , we have a(m) = || for the nest m corresponding to A.

We now show that dinv,(m) = hry,(8/a). Because the components f(;) /o ;) of B/a are
indexed in decreasing order, a (Twp)-triple (a,b,c) in B/a has a,c in B /o) and b in
By /s for @ > j, with content ¢(b) equal to c(a) if 7(i) > 7(j), or to c(a) + 1 if 7(i) < 7(j).
As in §3.4] the box b € (/) corresponds to an element (S, k) € S(m) with S on the line
x =1 — 1, with ¢(b) + ¢; equal to the vertical distance between the line y + px = s and the
south endpoint of S. Similarly, even though boxes a and ¢ need not actually be in 8/,
the boundary between them corresponds to a non-sink lattice point P at x = j — 1 on some
path 7 in 7, with ¢(a) + ¢; equal to the vertical distance between y + pxr = s and P.

The tuple (P, k', S, k) is counted by dinv,(7) if and only if 0 < ¢(b) — ¢(a) +¢; —¢; < 1.
Since ¢;,¢; € [0,1), we have |¢; — ¢j| < 1, and by the definition of 7, we have 7(i) < 7(j)
if and only if ¢; < ¢;. If 7(d) > 7(j), it follows that 0 < ¢(b) — ¢(a) + ¢; — ¢; < 1 if and
only if ¢(b) = c(a), while if 7(i) < 7(j), it follows that 0 < ¢(b) — c(a) + ¢; —¢; < 1 if
and only if ¢(b) = ¢(a) + 1. Hence, tuples (P, k', S, k) counted by dinv,(7) are in bijective
correspondence with (7wp)-triples in 3/a, giving dinv,(7m) = A, (8/ ).

From and the expressions for a(m) and dinv,(7) we see that the polynomial part of
the series on the right hand side of is equal to

(206) D g G, o (2,2,

where the sum is over nests 7 in the given den. Since the Catalanimal on the left hand side

of (189) is equal to H, this proves Theorem |3.5.1| O
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