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Abstract. We prove and extend the longest-standing conjecture in ‘q, t-Catalan combina-
torics,’ namely, the combinatorial formula for ∇msµ conjectured by Loehr and Warrington,
where sµ is a Schur function and ∇ is an eigenoperator of Macdonald polynomials.

Our approach is to establish a stronger identity of infinite series of GL` characters in-
volving Schur Catalanimals; these were recently shown by the authors to represent Schur
functions sµ[−MXm,n] in subalgebras Λ(Xm,n) ⊂ E isomorphic to the algebra of symmetric
functions Λ over Q(q, t), where E is the elliptic Hall algebra of Burban and Schiffmann. We
establish a combinatorial formula for Schur Catalanimals as weighted sums of LLT poly-
nomials, with terms indexed by configurations of nested lattice paths called nests, having
endpoints and bounding constraints controlled by data called a den.

The special case for Λ(Xm,1) proves the Loehr-Warrington conjecture, giving ∇msµ as
a weighted sum of LLT polynomials indexed by systems of nested Dyck paths. In general,
for Λ(Xm,n) our formula implies a new (m,n) version of the Loehr-Warrington conjecture.
In the case where each nest consists of a single lattice path, the nests in a den formula
reduces to our previous shuffle theorem for paths under any line. Both this and the (m,n)
Loehr-Warrington formula generalize the (km, kn) shuffle theorem proven by Carlsson and
Mellit (for n = 1) and Mellit. Our formula here unifies these two generalizations.

1. Introduction

1.1. Background. In this paper we prove and extend the oldest unresolved conjecture in
‘q, t-Catalan combinatorics,’ namely, the combinatorial formula for ∇msµ conjectured by
Loehr and Warrington [15], where sµ is a Schur function and ∇ is the operator from [2] which
is important in the theory of Macdonald polynomials. Like other results and conjectures in
this area, beginning with the shuffle theorem conjectured by Haglund et. al. [13] and proven
by Carlsson and Mellit [8], the Loehr-Warrington formula is expressed as a sum over Dyck
paths (in this case, systems of nested Dyck paths) of LLT polynomials weighted by monomials
in q and t.

Our main result, Theorem 3.5.1, is considerably more general than the Loehr-Warrington
formula. We briefly describe some of its further consequences.

The simplest case of the Loehr-Warrington formula, when sµ = ek is an elementary sym-
metric function, reduces to the original shuffle theorem. The latter is the n = 1 case of an
extended (km, kn) shuffle theorem conjectured by Bergeron et. al. [3] and proven by Mellit
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[18]. A new consequence of our main result here, not previously formulated even as a con-
jecture, is a corresponding (m,n) extension of the Loehr-Warrington formula, which reduces
to the (km, kn) shuffle theorem when sµ = ek.

Another generalization of the (km, kn) shuffle theorem is given by our shuffle theorem for
paths under any line [6]. This too is a consequence of our main theorem here. Thus our
theorem unifies a number of previous results and conjectures, as summarized in the following
diagram.

Theorem 3.5.1

Shuffle theorem for paths
under any line

(m,n) Loehr-Warrington

(km, kn) Shuffle theorem Loehr-Warrington for ∇msµ

Shuffle theorem for ∇mek

1.2. Overview. In [4], we introduced raising operator series H(z; q, t) called Catalanimals;
among them, we constructed examples for which the polynomial truncation H(z; q, t)pol is
equal, up to an explicit factor of the form ±qrts, to ω∇msµ(z), where ω is the standard
involution on symmetric functions.

Our main result, Theorem 3.5.1, gives a combinatorially defined expansion

(1) H(z; q, t)pol =
∑
π

ta(π)qdinvp(π)Gν(π)(z; q−1),

in terms of LLT polynomials Gν(z; q), for a special class of Catalanimals H(z; q, t) including
those for which H(z; q, t)pol = ±qrts ω∇msµ(z), as just discussed.

The terms on the right hand side of (1) are indexed by configurations of nested lattice
paths π = (π1, . . . , πr), called nests, with endpoints and bounding constraints controlled by
combinatorial data called a den. The statistics a(π), dinvp(π) generalize the ‘area’ and ‘dinv’
statistics found in the shuffle theorem and its friends. We define these combinatorial notions
in §3.

In the case where the left hand side of (1) becomes ±qrts ω∇msµ(z), formula (1) proves
the Loehr-Warrington conjecture (see Theorem 4.2.2 and §4.3).

Formula (1) also applies to more general Schur Catalanimals H(z; q, t) = Hm,n
(µ◦)m , which

were shown in [4] to represent (again up to a factor ±qrts) Schur functions sµ[−MXm,n] in
subalgebras Λ(Xm,n) ⊂ E isomorphic to the algebra of symmetric functions Λ over Q(q, t),
where E is the elliptic Hall algebra of Burban and Schiffmann [7]—see §2 for details. Under
the action of E on Λ constructed by Schiffmann and Vasserot [20], the Schur Catalanimal
H = Hm,n

(µ◦)m satisfiesHpol = ±qrtsω(sµ[−MXm,n]·1)(z). For n = 1, we have sµ[−MXm,1]·1 =

∇msµ. In this case, the Schur Catalanimals are the Catalanimals referred to above.
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For general n, (1) yields a combinatorial formula for sµ[−MXm,n] · 1, made precise in
Theorem 4.2.2, which can be naturally understood as an (m,n) extension of the Loehr-
Warrington conjecture. For µ = (1k), sµ = ek is the k-th elementary symmetric function,
and our (m,n) Loehr-Warrington theorem reduces to the (km, kn) shuffle theorem of [3, 18],
just as the original Loehr-Warrington conjecture for ∇msµ reduces to the classical shuffle
theorem [8, 13] for ∇mek.

Finally, for dens such that each nest consists of a single lattice path, (1) reduces to our shuf-
fle theorem for paths under any line [6, Theorem 5.5.1], which also generalizes the (km, kn)
shuffle theorem. Thus, we have the diagram of implications in §1.1, above, with formula (1)
at the top.

As with other instances of q, t-Catalan combinatorics, the left hand side of (1) is symmetric
in q and t by construction; hence the right hand side shares this symmetry. No purely
combinatorial explanation of this symmetry is yet known, even in the case of the classical
shuffle theorem for ∇ek.

In addition, since LLT polynomials are q-Schur positive [12]—i.e., their coefficients in terms
of Schur functions belong to N[q]—it follows that the Catalanimals to which (1) applies are
(q, t)-Schur positive. The general question of which Catalanimals are (q, t)-Schur positive
seems to be a difficult one. See [6, Conjecture 7.1.1] for one conjecture in this direction.

1.3. Method and outline. We prove our main theorem by a method parallel to the one
we used to prove the shuffle theorem for paths under any line in [6].

We obtain the combinatorial formula in Theorem 3.5.1 by taking the polynomial part of
an identity between infinite series of GLl characters. The latter identity, equation (189) in
Theorem 7.1.1, expands the full Catalanimal H(z; q, t) associated with a den as an infinite
sum of LLT series Lσr,β/α(z; q) weighted by powers of t.

Upon taking the polynomial part, all but a finite number of the terms taLσr,β/α(z; q) in (189)
vanish. The surviving terms are indexed by nests π in the given den, and have polynomial
parts taLσr,β/α(z; q)pol = ta(π)qdinvp(π)Gν(π)(z; q−1), yielding (1).

Given a Levi subgroup GLr = GLr1 × · · · × GLrk of GLl, the LLT series Lσr,β/α(z; q) in l

variables z = z1, . . . , zl (Definition 5.4.1) encapsulates the matrix coefficients of multiplica-
tion by arbitrary GLl characters with respect to chosen basis elements Eσ

r,α(z; q), Eσ
r,β(z; q)

of the space of virtual GLr characters. Here Eσ
r,λ(z; q) denotes a (twisted) semi-symmetric

Hall-Littlewood polynomial (Definition 5.2.1).
The orthogonality of semi-symmetric Hall-Littlewood polynomials (Proposition 5.3.1)

leads to a formula for LLT series in terms of these polynomials (Proposition 5.4.3). Us-
ing this formula, the desired infinite series identity (189) follows from a Cauchy identity
for semi-symmetric Hall-Littlewood polynomials, Theorem 6.1.3, along with an auxiliary
identity, Proposition 6.2.4, that relates semi-symmetric Hall-Littlewood polynomials with
different twists.

The steps just outlined parallel those in the proof of [6, Theorem 5.5.1], although many of
the details are more intricate. Readers may find the simpler argument in [6], which covers
the case r = (1l), a helpful guide to the argument here.

Chief among the new intricacies is that the Cauchy identity for semi-symmetric Hall-
Littlewood polynomials in Theorem 6.1.3 is more subtle than the one for non-symmetric



4 J. BLASIAK, M. HAIMAN, J. MORSE, A. PUN, AND G. H. SEELINGER

Hall-Littlewood polynomials in [6, Theorem 5.1.1]. The new Cauchy identity involves semi-
symmetric Hall-Littlewood polynomials for two separate Levi subgroups GLr and GLs, along
with the choice of minimal dominant regular weights ρr, ρs for each of them. These choices
must satisfy certain compatibilities in order for the Cauchy identity to hold. Because of this
greater complexity, we are not able to give a short proof of Theorem 6.1.3 like we did for
[6, Theorem 5.1.1]. Instead, we devote most of §6.1 to developing a series of properties of
semi-symmetric Hall-Littlewood polynomials, which we then use to prove Theorem 6.1.3.

2. Catalanimals and LLT polynomials

2.1. Symmetric function conventions. The (French style) diagram of a partition λ is
the set of lattice points {(i, j) | 1 ≤ j ≤ `(λ), 1 ≤ i ≤ λj}, where `(λ) is the length of λ.
We often identify λ and its diagram with the set of lattice squares, or boxes, with northeast
corner at a point (i, j) ∈ λ. A skew diagram is a difference ν = λ/µ of partition diagrams
µ ⊆ λ, or any translate of such a diagram. This allows for skew diagrams ν = β/α in which
the x-coordinates αi, βi of the left and right ends of the rows may be negative.

The content of a box a = (i, j) in row j, column i of a (skew) diagram is c(a) = i− j.
Let Λ = Λ(X) be the algebra of symmetric functions in infinitely many variables X =

x1, x2, . . ., with coefficients in the field k = Q(q, t). We follow Macdonald’s notation [17] for
the graded bases of Λ, the Hall inner product 〈−,−〉 in which the Schur functions sλ are
orthonormal, and the automorphism ω : Λ → Λ such that ωsλ = sλ∗ , where λ∗ denotes the
transpose of a partition λ.

Given f ∈ Λ and any expression A involving indeterminates, such as a polynomial, ra-
tional function, or formal series, the plethystic evaluation f [A] is defined by writing f as a
polynomial in the power-sums pk and evaluating with pk 7→ pk[A], where pk[A] is the result of
substituting ak for every indeterminate a occurring in A. The variables q, t from our ground
field k count as indeterminates.

By convention, the name of an alphabet X = x1, x2, . . . stands for x1 + x2 + · · · inside a
plethystic evaluation. Then f [X] = f [x1 + x2 + · · · ] = f(x1, x2, . . .) = f(X). A special case
of this convention that will arise often is the following. We fix

(2) M = (1− q)(1− t)

here and throughout. Then the evaluation f [−MX] is the image of f(X) under the k-algebra
automorphism of Λ that sends pk to −(1− qk)(1− tk)pk.

We also allow plethystic evaluation term by term in a symmetric formal series, provided
the result makes sense formally. In particular, the series

(3) Ω =
∞∑
n=0

hn = exp
∞∑
k=1

pk
k

(with h0 = 1) has the property

(4) Ω[x1 + x2 + · · · − y1 − y2 − · · · ] =

∏
i(1− yi)∏
i(1− xi)

.
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The linear operator ∇ on Λ, introduced in [2], is defined to act diagonally in the basis of
modified Macdonald polynomials H̃µ(X; q, t) [11], with

(5) ∇H̃µ = tn(µ)qn(µ∗)H̃µ,

where n(µ) =
∑

i(i− 1)µi.

2.2. LLT polynomials. We recall the definition and basic properties of LLT polynomials
[14], using the ‘attacking inversions’ formulation from [13].

Let ν = (ν(1), . . . , ν(k)) be a tuple of skew diagrams. We consider the set of boxes in ν to
be the disjoint union of the sets of boxes in the ν(i), and define the adjusted content of a box
a ∈ ν(i) to be c̃(a) = c(a) + i ε, where ε is a fixed positive number such that k ε < 1.

A diagonal in ν is the set of boxes of a fixed adjusted content, that is, a diagonal of fixed
content in one of the ν(i).

The reading order on ν is the total ordering < on the boxes of ν such that a < b⇒ c̃(a) ≤
c̃(b) and boxes on each diagonal increase from southwest to northeast. An attacking pair is
an ordered pair of boxes (a, b) in ν such that a < b in reading order and 0 < c̃(b)− c̃(a) < 1.

A semistandard tableau on the tuple ν is a map T : ν → Z+ which restricts to a semis-
tandard Young tableau on each component ν(i). The set of these is denoted SSYT(ν). An
attacking inversion in T is an attacking pair (a, b) such that T (a) > T (b). The number of
attacking inversions in T is denoted inv(T ).

Definition 2.2.1. The LLT polynomial indexed by a tuple of skew diagrams ν is the gen-
erating function, which is known to be symmetric [13, 14],

(6) Gν(X; q) =
∑

T∈SSYT(ν)

qinv(T )xT ,

where xT =
∏

a∈ν xT (a).

A similar formula expresses ω Gν(X; q) as a generating function for tableaux, as follows.
Fix an ordered alphabet A− of ‘negative’ letters 1 < 2 < · · · (since Gν(X; q) is symmetric,
the choice of ordering is arbitrary).

A negative tableau on ν is a map T : ν → A− that is strictly increasing on rows and
weakly increasing on columns. Let SSYT−(ν) be the set of these. An attacking inversion
in a negative tableau is an attacking pair (a, b) such that T (a) ≥ T (b) (like for ordinary
tableaux except that equal negative entries also count as inversions). The number of attack-
ing inversions is again denoted inv(T ).

Proposition 2.2.2 ([6, Corollary 4.1.3]). Setting xi = xi for indices i ∈ A−, we have

(7) ω Gν(X; q) =
∑

T∈SSYT−(ν)

qinv(T )xT .

As in [6], formula (7) leads to the following corollary.

Corollary 2.2.3 ([6, Lemma 4.1.6]). The LLT polynomial Gν(X; q) is a linear combination
of Schur functions sλ with `(λ) ≤ l, where l =

∑
i `(ν(i)) is the total number of rows in the

skew diagrams ν(i).



6 J. BLASIAK, M. HAIMAN, J. MORSE, A. PUN, AND G. H. SEELINGER

We also need the invariance of Gν(X; q) under shifted rotations of ν.

Proposition 2.2.4. Let ν = (ν(1), . . . , ν(k)) and set ν ′ = (ν+
(j+1), . . . , ν

+
(k), ν(1), . . . , ν(j)) for

any 1 ≤ j < k, where ν+
(i) is a translation of ν(i) such that the content of every box is increased

by 1. Then Gν(X; q) = Gν′(X; q).

Proof. From the construction of ν ′, there is a natural bijection between boxes of ν and boxes
of ν ′ that preserves the reading order and the set of attacking pairs. This induces a bijection
SSYT(ν) ∼= SSYT(ν ′) that preserves xT and inv(T ). �

2.3. Catalanimals. Let l be a positive integer and let R+ = R+(GLl) = {αij = εi − εj |
i < j} be the set of positive roots for GLl, where εi denotes the i-th unit coordinate vector
in Zl. Given subsets Rq, Rt, Rqt ⊆ R+ and a weight λ ∈ Zl, we define the Catalanimal
H(Rq, Rt, Rqt, λ) of length l as in [4] to be the symmetric rational function in l variables
z = z1, . . . , zl given by

(8) H(Rq, Rt, Rqt, λ)
def
=
∑
w∈Sl

w

(
zλ
∏

α∈Rqt(1− q t z
α)∏

α∈R+
(1− z−α)

∏
α∈Rq(1− q zα)

∏
α∈Rt(1− t zα)

)
,

where zλ stands for zλ11 · · · z
λl
l . The defining formula can also be written

(9) H(Rq, Rt, Rqt, λ) = σ

(
zλ
∏

α∈Rqt(1− q t z
α)∏

α∈Rq(1− q zα)
∏

α∈Rt(1− t zα)

)
,

where

(10) σ(f) =
∑
w∈Sl

w

(
f∏

α∈R+
(1− z−α)

)
is the Weyl symmetrization operator for GLl. Recall that σ(zλ) = χλ is an irreducible GLl
character if λ is a dominant weight. For an arbitrary weight µ ∈ Zl, either σ(zµ) = ±χλ for
a suitable dominant weight λ, or σ(zµ) = 0.

Expanding the factors (1 − q zα)−1 = 1 + q zα + · · · and (1 − t zα)−1 = 1 + t zα + · · · as
geometric series before applying σ, we can regard (9) as a raising operator series, express-
ing H(Rq, Rt, Rqt, λ) as an infinite formal linear combination

∑
µ aµχµ of irreducible GLl

characters with coefficients aµ ∈ Z[q, t].
The polynomial characters of GLl are the irreducible characters χµ with µ ∈ Nl; thus µ is

an integer partition with at most l parts and possible trailing zeroes, and χµ is equal to the
Schur function sµ(z1, . . . , zl). The polynomial part

(11) H(Rq, Rt, Rqt, λ)pol

of a Catalanimal is the truncation of its raising operator series expansion to terms aµχµ for
polynomial characters χµ. Then H(Rq, Rt, Rqt, λ)pol is a symmetric polynomial, homoge-
neous of degree |λ| =

∑
i λi, in the variables z1, . . . , zl.

We will need several results from [4] concerning Catalanimals and their connection with
the elliptic Hall algebra E of Burban and Schiffmann [7] (or Schiffmann algebra). Before
stating them, we fix notation and recall some facts about E .
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For each pair of coprime integers (m,n), the Schiffmann algebra E contains a distinguished
subalgebra Λ(Xm,n) isomorphic to the algebra of symmetric functions. By a theorem of
Schiffmann and Vasserot [20], the ‘right half-plane’ subalgebra E+ ⊆ E generated by the
Λ(Xm,n) for m > 0 is isomorphic to the shuffle algebra of Feigin et al. [9], Feigin and
Tsymbauliak [10], and Negut [19]. This shuffle algebra has many different realizations. Here
we use the realization SΓ̂ in [4, §3.2]; it is a graded algebra whose degree l component is
a certain subspace S l

Γ̂
⊆ k(z1, . . . , zl)

Sl of the space of symmetric rational functions in l
variables. The isomorphism that we use is the one denoted

(12) ψΓ̂ : SΓ̂

'−→ E+

in [4, equations (26, 28)]. In [20], Schiffmann and Vasserot also constructed an action E on
Λ(X). We use the version of this action given by [6, Proposition 3.3.1].

The results stated below summarize everything we need to know for the purposes of this
paper about the above algebras, isomorphism and action. For more details, the reader can
consult [7, 19, 20]; the translation between the notation in these papers and ours can be
found in [6, §§3.2–3.3], the defining relations of E written in our notation are in [5, §3.2], and
the relationship between SΓ̂ and the shuffle algebra studied by Negut in [19] is explained in
[4, §3.6].

Proposition 2.3.1 ([4, Proposition 4.1.3]). Let H = H(Rq, Rt, Rqt, λ) be a tame Cata-
lanimal as in [4, Definition 4.1.2]—that is, the root sets satisfy [Rq, Rt] ⊆ Rqt, where
[Rq, Rt] = (Rq + Rt) ∩ R+. Then H, considered as a symmetric rational function, is an
element of SΓ̂, and as such represents an element ψΓ̂(H) ∈ E+ of the Schiffmann algebra.

Proposition 2.3.2. If a Catalanimal H = H(Rq, Rt, Rqt, λ) of length l belongs to SΓ̂, and
ζ = ψΓ̂(H) is the corresponding element of E+, then ζ acting on 1 ∈ Λ(X) satisfies

(13) ω(ζ · 1)(z1, . . . , zl) = Hpol.

In addition, ω(ζ · 1) is a linear combination of Schur functions sµ indexed by partitions µ
with at most l parts, so it is determined by (13).

Proof. This follows from [6, Proposition 3.5.2] in the same way that [4, Proposition 3.5.2]
does. �

Proposition 2.3.3 ([4, Lemma 3.5.1]). For any symmetric function f , the element
f [−MXm,1] ∈ E acting on 1 ∈ Λ(X) is given by

(14) f [−MXm,1] · 1 = ∇mf(X).

2.4. Schur Catalanimals. Given any LLT polynomial Gν(X; q), we constructed Catalani-
mals Hm,n

νm in [4] such that ψΓ̂(Hm,n
νm ) is equal, up to a sign and a monomial factor in q, t, to

Gν [−MXm,n]. For the proof of the Loehr-Warrington conjecture we need the special case of
this result when ν is a single diagram and the LLT polynomial Gν(X; q) is a Schur function.
To describe this case, we recall some combinatorial notions from [4, §§8.1–8.2].

Given (m,n) ∈ Z+ × Z, we define the sequence of m integers as in [4, (104)]

(15) b(m,n)i = din/me − d(i− 1)n/me (i = 1, . . . ,m).
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The m-stretching of a (skew) diagram ν is the skew diagram νm constructed by dilating
ν vertically by a factor of m in the following way: for each box x of content c in ν, the
m-stretching νm has m boxes of contents mc −m + 1, . . . ,mc − 1,mc in the same column
as x. For example, the 3-stretching of the partition diagram ν = (3, 2) is shown here, with
shaded bars showing the three boxes in ν3 that correspond to each box in ν.

(16) ν = ν3 =

We define

(17) γ(ν) = (γ1, . . . , γh)

to be the sequence of lengths of diagonals {x ∈ ν | c(x) = c} in increasing order of the
content c, and set

(18) n′(γ(ν)) =
h∑
i=1

(
γi
2

)
.

The magic number p(ν) is the sum of the lengths of the diagonals that do not contain the first
box in a row of ν. Note that the diagonals of νm correspond to diagonals of ν, each repeated
m times vertically. Using this one sees that n′(γ(νm)) = mn′(γ(ν)) and p(νm) = p(ν).

A more subtle property of the magic number, which follows from [4, Lemma 7.2.2], is that
if ν◦ is the 180◦ rotation of ν, then p(ν◦) = p(ν).

Definition 2.4.1. Given a (skew) diagram ν and coprime integers m, n with m > 0,
the (skew) Schur Catalanimal Hm,n

νm = H(Rq, Rt, Rqt, λ) is the tame Catalanimal of length
l = m |ν| = |νm| constructed as follows, where νm is the m-stretching of ν.

The root sets and weight are defined with reference to the partition of [l] = {1, . . . , l}
into intervals of lengths γ(νm). For the root sets, we take αij ∈ Rq = Rt if i < j are in
distinct blocks of this partition, and αij ∈ Rqt if i < j are in distinct, non-adjacent blocks;
equivalently, Rqt = [Rq, Rt].

The weight λ is defined to be constant on blocks, as follows: for every i ∈ [l] belonging to
the k-th block of the partition, we set

(19) λi = χ(Dk contains the first box in a row of νm)

− χ(Dk contains the last box in a row of νm) + b(m,n)modm(c),

where Dk is the k-th diagonal of νm, c is the content of boxes on that diagonal, and modm(c)
is the integer j ∈ [m] such that j ≡ c (mod m).

When µ is a (non-skew) partition diagram, we call Hm,n
µm a Schur Catalanimal and Hm,n

(µ◦)m

the opposite Schur Catalanimal, where µ◦ is the 180◦ rotation of µ.
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Theorem 2.4.2 ([4, Theorem 8.3.1]). The Schur Catalanimal Hm,n
µm satisfies the identity

(20) sµ[−MXm,n] = (−1)p(µ)(q t)p(µ)+mn′(γ(µ))ψΓ̂(Hm,n
µm ).

This identity also holds with the opposite Schur Catalanimal Hm,n
(µ◦)m in place of Hm,n

µm .

3. Nests in a den formula

Our main combinatorial result, Theorem 3.5.1 below, is an identity expanding the poly-
nomial parts of certain tame Catalanimals as weighted sums of LLT polynomials indexed by
configurations of nested lattice paths. In this section, we define the required combinatorial
notions and then state the theorem. The proof will be given in §7.

3.1. Dens and nests. We begin by defining the data that will serve as input to Theo-
rem 3.5.1.

Definition 3.1.1. A den is a tuple (h, p,d, e), where h is a positive integer, p is an irrational
real number, and d = (d0, . . . , dh) and e = (e0, . . . , eh) are sequences of integers, subject to
the following conditions:

(di − dj + 1)/(j − i) > p for 0 ≤ i < j ≤ h− 1;(21)

(ei − ej − 1)/(j − i) < p for 1 ≤ i < j ≤ h;(22)

d0 > e0, dh < eh, and
h∑
i=0

di =
h∑
i=0

ei.(23)

The reason for assuming p irrational is to avoid having to disambiguate equalities that
might otherwise occur in comparisons such as those in (21, 22).

With any den we also define the following auxiliary notions. The lattice points (i, di) are
heads, and (i, ei) are feet. Points {(i, j) | ei < j ≤ di} weakly below a head and strictly
above a foot on the same vertical line x = i are sources. Points {(i, j) | di < j ≤ ei} weakly
below a foot and strictly above a head are sinks. We also set

(24) g = (g1, . . . , gh), where gk =
k−1∑
i=0

(di − ei).

A den can be pictured by plotting the heads, feet, sources and sinks, as shown for example
in Figure 1. On each line x = i for 0 ≤ i ≤ h, the head, foot, and any sources or sinks are
arranged in one of the ways shown here.

(25)

head
sources

foot

head = foot

foot
sinks

head

di > ei di = ei di < ei

Condition (21) means that for heads P left of Q, excluding the last head (h, dh), some line
of slope −p passes above Q and below P + (0, 1). Similarly, condition (22) means that for
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head
foot
both

source

sink

Figure 1. Heads, feet, sources and sinks in the den with h = 7, d =
(9, 7, 6, 5, 4, 3, 2, 0), e = (8, 6, 4, 5, 5, 3, 3, 2). These data define a valid den
for any p ∈ (1, 6

5
).

feet P left of Q, excluding the first foot (0, e0), some line of slope −p passes above P and
below Q+ (0, 1), as pictured here.

(26) P

Q

P

Q

heads feet

Condition (23) says that there is at least one source on the line x = 0 and at least one
sink on the line x = h, and that the total number of sources is equal to the total number of
sinks. Conditions (21) and (22) imply

(27) dj − ej ≤ di − ei + 1

for all 0 < i < j < h. If there is a sink with x coordinate i and a source with x coordinate
j, then di − ei < 0 and dj − ej > 0. In particular, no source and sink can be on the same
vertical line x = i, and (27) implies that all sources are strictly left of all sinks.

Next we define the systems of nested lattice paths that will be attached to a den.

Definition 3.1.2. An east end path is a lattice path with south (0,−1) and east (1, 0) steps
that ends with an east step. East end paths π, π′ are nested with π below π′ if

(i) the interval [a′, b′] of x-coordinates of points of π′ is contained in the interval [a, b] of
x-coordinates of points of π, and

(ii) for every integer i ∈ [a′, b′] the respective intervals [vi, wi] and [v′i, w
′
i] of y-coordinates

of points on π ∩ (x = i) and π′ ∩ (x = i) satisfy vi < v′i and wi < w′i.
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1

2

3

4

1

2

3

4

π π0

source

sink
head = foot

Figure 2. A typical nest π in the den in Figure 1, and the unique nest π0

such that a(π0) = 0. The sequence g = (1, 2, 4, 4, 3, 3, 2) associated with the
den gives the number of east steps at each x-coordinate.

An example of a pair of nested east end paths is shown below. Note that nested paths
can share south steps, but not east steps.

(28)
π

π′

It is not hard to see that nesting is transitive, i.e., if π is nested below π′ and π′ is nested
below π′′, then π is nested below π′′.

Definition 3.1.3. A nest in a den (h, p,d, e) is a system of nested east end paths π =
(π1, . . . , πr) from the sources to the sinks, numbered with πk nested below πl for k < l, which
satisfies the condition j ≤ di for every lattice point (i, j) other than the sink on each of the
paths πk. In other words, all non-sink lattice points in π lie weakly below the heads.

Figure 2 shows two nests belonging to the den in Figure 1. We have marked the head
(= foot) on each line x = i that has no source or sink in order to make visible the condition
that paths in the nest must lie weakly below the heads.

Remark 3.1.4. (i) The numbering of the paths πi from nested below to nested above implies
that πi starts at the i-th source from left to right, with sources on the same vertical line
numbered bottom to top. Similarly, πi ends at the i-th sink from right to left, again from
bottom to top on vertical lines.

(ii) Because paths in a nest are nested, any non-sink lattice point (i, j) on a path auto-
matically lies weakly below the head (i, di) unless the head equals the foot (i, ei). Only when
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di = ei, so there is no source or sink on the line x = i, does the requirement j ≤ di impose
an extra condition.

For example, the head and foot at (3, 5) in the den in Figure 1, shown as the upper left
gray dot in Figure 2, prohibits the highest path π4 from starting with an east step to (3, 6),
although nesting alone would allow this. Similarly, the head and foot at (5, 3) prohibits π3

from passing through (5, 4).
(iii) The number gk in (24) counts sources minus sinks with x-coordinate less than k.

Hence, for every nest π in the den, gk is the number of paths πj in π that have an east step
from x = k− 1 to x = k, or equivalently, have a non-sink lattice point on the line x = k− 1.
These are the first gk paths π1, . . . , πgk , since if πj has an east step from x = k− 1 to x = k,
then so does every path πi nested below πj. Since all sources are left of all sinks, and there
is assumed to be at least one source at x = 0 and at least one sink at x = h, the sequence g
is positive and unimodal, with maximum equal to the number of sources (or sinks). These
properties can be seen in Figure 2.

(iv) It is possible to have an ‘abandoned’ den with no nests. The most obvious way this
can happen is if some source is lower than the matching sink.

3.2. Parameterizing nests. Nests in a den can be parameterized by tuples of partitions
satisfying certain inequalities, as follows.

Lemma 3.2.1. Let (h, p,d, e) be a den, with g as in (24).
(i) If π = (π1, . . . , πr) is a nest in the den, then

(a) for 1 ≤ k ≤ h, πi has a non-sink lattice point on the line x = k − 1 if and only if
1 ≤ i ≤ gk;

(b) there are unique partitions λ(1), . . . , λ(h−1) of length `(λ(k)) ≤ min(gk, gk+1) such that
for 1 ≤ k ≤ h and 1 ≤ i ≤ gk, the y-coordinates of all non-sink lattice points of πi
on the line x = k − 1 form the interval

(29) Ik,i = [ek − gk + i− (λ(k))i, ek−1 − gk−1 + i− (λ(k−1))i]

where we set λ(0) = λ(h) = ∅, extend partitions with trailing zeroes if needed, and set
g0 = 0.

(ii) Set λ(0) = λ(h) = ∅ and g0 = 0. Let λ(1), . . . , λ(h−1) be partitions of length `(λ(k)) ≤
min(gk, gk+1) such that for 1 ≤ k ≤ h and 1 ≤ i ≤ gk,

(30) ek − gk − (λ(k))i ≤ ek−1 − gk−1 − (λ(k−1))i

(so the intervals Ik,i are non-empty). Then there is a unique nest π = (π1, . . . , πr) in the
den such that the y-coordinates of all non-sink lattice points of πi on the line x = k− 1 form
the interval Ik,i for all 1 ≤ k ≤ h and 1 ≤ i ≤ gk.

Proof. Given a nest π, part (i)(a) holds by Remark 3.1.4 (iii), and the east steps from
x = k − 1 to x = k in π are on paths π1 through πgk . Let yk,1 < . . . < yk,gk be the y-
coordinates of these east steps. The right endpoint of any east step is weakly below the foot
on the same vertical line, so yk,gk ≤ ek. Hence,

(31) yk,i ≤ ek − gk + i

for all k and i ≤ gk.
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Every east step from x = h − 1 to x = h ends at a sink, so yh,i = eh − gh + i is fixed for
all i ≤ gh, independent of the nest. If k < h and gk > gk+1, there are gk − gk+1 sinks on the
line x = k. In this case the top gk − gk+1 east steps from x = k − 1 to x = k are fixed, with
yk,i = ek − gk + i for gk+1 < i ≤ gk. This leaves the yk,i for k < h and i ≤ min(gk, gk+1) free
to vary with the nest. To establish part (i)(b), let

(32) λ(k) = (ek − gk + 1− yk,1, . . . , ek − gk + rk − yk,rk),
for k = 1, . . . , h − 1, where rk = min(gk, gk+1). We also set λ(0) = λ(h) = ∅ and (λ(k))i = 0
for i > rk.

Since the yk,i are strictly increasing and bounded by (31), λ(k) is a partition of length
`(λ(k)) ≤ min(gk, gk+1) with possible trailing zeroes. Since equality holds in (31) for the
fixed east steps that end at sinks, we have

(33) yk,i = ek − gk + i− (λ(k))i

for all 1 ≤ k ≤ h and i ≤ gk.
The lattice point at x = k − 1 on πi with the smallest y-coordinate is the left endpoint

of the east step with y-coordinate yk,i. If k > 1 and i ≤ gk−1, the point with the largest
y-coordinate is the right endpoint of the east step with y-coordinate yk−1,i. Otherwise, if
k = 1 or gk−1 < i ≤ gk, this highest point is the i-th source, with y-coordinate ek−1−gk−1 +i,
if we take g0 = 0 in the case k = 1. This shows that the y-coordinates of the points on πi
at x = k − 1 are given by the interval Ik,i in all cases. These intervals clearly determine the
partitions λ(k).

For part (ii), suppose we are given partitions λ(1), . . . , λ(h−1) with `(λ(k)) ≤ min(gk, gk+1)
such that (30) holds. By Remark 3.1.4 (iii), the sequence g is positive and unimodal with
maximum equal to the number r of sources (or sinks) in the den, and for each i = 1, . . . , r
the set {k ∈ [h] | gk ≥ i} is the non-empty interval [k0, k1] such that the i-th source and its
matching sink are at x = k0 − 1 and x = k1. For each i, we start by constructing an east
end path πi such that the intervals Ik,i for k ∈ [k0, k1] describe the lattice points on πi.

Fix i and the corresponding interval [k0, k1]. The i-th source has y-coordinate ek0−1 −
gk0−1 + i, if we set g0 = 0 for k0 = 1. Since k0 is minimal with i ≤ gk0 , we have i > gk0−1

and therefore (λ(k0−1))i = 0 since `(λ(k0−1)) ≤ gk0−1. Hence, the upper endpoint of the
interval Ik0,i is the y-coordinate of the i-th source. The sink matching the i-th source has
y-coordinate ek1 − gk1 + i. Since k1 is maximal with i ≤ gk1 , either k1 = h or i > gk1+1, and
therefore (λ(k1))i = 0. Hence, the lower endpoint of Ik1,i is the y-coordinate of the matching
sink. For the rest, if k0 ≤ k < k1, the lower endpoint of Ik,i is equal to the upper endpoint
of Ik+1,i. Hence, there exists a unique east end path πi from the i-th source to the i-th sink
with non-sink lattice points at x = k−1 given by the intervals Ik,i for this i and k0 ≤ k ≤ k1.

By construction, the paths πi defined in this way are nested with πi below πj for i < j.
The upper endpoint of the interval Ik,i is at most ek−1− gk−1 + gk, which is equal to dk−1 by
the definition of gk, so the paths πi form a nest in the den. �

Example 3.2.2. Nests in the den in Figure 1 are parameterized by partitions λ(1), . . . , λ(6) of
lengths at most 1, 2, 4, 3, 3, 2, subject to the inequalities in (30). The nest π0 on the right
in Figure 2 corresponds to λ(i) = ∅ for all i = 1, . . . , 6. The nest π on the left in Figure 2
corresponds to λ(1) = (1), λ(2) = (1), λ(3) = (1), λ(4) = (1, 1, 1), λ(5) = λ(6) = ∅.



14 J. BLASIAK, M. HAIMAN, J. MORSE, A. PUN, AND G. H. SEELINGER

3.3. Combinatorial statistics associated with nests. We now define statistics a(π) and
dinvp(π) for each nest π in a den, closely related to the area and dinv statistics seen in the
Loehr-Warrington conjecture and the various generalizations of the shuffle theorem.

Definition 3.3.1. Let π be a nest in a den (h, p,d, e) and let g be the sequence in (24), so
there are gk east steps from x = k − 1 to x = k in π. For k = 1, . . . , h, let yk,1 < · · · < yk,gk
be the y-coordinates of these east steps. We define

(34) a(π) =
h∑
k=1

gk∑
i=1

(ek − gk + i− yk,i).

Equivalently, by (33), a(π) = |λ| =
∑

k |λ(k)| in terms of the parameterization in
Lemma 3.2.1.

If we let area(πi) denote the number of lattice squares above πi and below some fixed
boundary—for instance, the number of lattice squares above πi in the rectangle with corners
at its source and sink—then both a(π) and

∑
i area(πi) have the form (constant−

∑
k,i yk,i).

Hence, a(π) differs from
∑

i area(πi) by a constant not depending on π.
If there is a nest π0 in the den such that a(π0) = 0, it must correspond via Lemma 3.2.1

to λ(k) = ∅ for all k, or equivalently to yk,i = ek − gk + i for all k and i. Since this is always
an upper bound on yk,i, the path πi in any nest π lies weakly below the path π0

i , and a(π)
is equal to the sum of the areas area(πi) between πi and π0

i . We can make this more precise
as follows.

Corollary 3.3.2. A den (h, p,d, e) has a nest π0 such that a(π0) = 0 if and only if ek ≤ dk−1

for all k = 1, . . . , h. Such a nest π0 is unique. If it exists, then each path πi in any nest π
lies weakly below π0

i , and a(π) is equal to the sum of the areas area(πi) = |π0
i /πi| enclosed

between the paths πi and π0
i .

If d is weakly decreasing, which is always the case if p > 0 by condition (21), then the den
is either abandoned (has no nests), or it has a nest π0 as above.

Proof. By the definition of g in (24), we have ek ≤ dk−1 if and only if ek − gk ≤ ek−1 − gk−1,
taking g0 = 0. This is equivalent to (30) for all λ(k) = ∅. The first paragraph then follows
from the preceding observations and Lemma 3.2.1.

For the last part, assume that d is weakly decreasing. If ek > dk−1 for some k, it follows
that ek > dk, so (k, ek) is a sink. The east step ending at this sink in any nest would start
at (k − 1, ek), but this is not allowed, since ek > dk−1. Hence, the den is abandoned unless
ek ≤ dk−1 for all k = 1, . . . , h. �

Example 3.3.3. The den in Figure 1 has a unique nest π0 with a(π0) = 0, shown on the right
in Figure 2. For the nest π on the left in Figure 2, the areas between corresponding paths
π0
i and πi add up to a(π) = 4 + 1 + 1 + 0 = 6.

Definition 3.3.4. Let π be a nest in a den (h, p,d, e). We define dinvp(π) to be the number
of tuples (P, i, S, j), where P is a non-sink lattice point on πi, S is a south step on πj, P is
strictly left of S, and the line of slope −p through P passes through S (necessarily through
the interior of S, since we assume p is irrational).
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π ν(π)

Figure 3. (i) The nest π drawn below a line y + p x = s with p ≈ 1.04
and s ≈ 9.80. (ii) The tuple of skew diagrams ν(π), arranged southwest to
northeast with dashed lines showing boxes of equal content.

In effect, dinvp(π) counts pairs P , S in π whose relative position is as indicated, with
multiplicities if P or S lies on more than one path in the nest.

(35) SP

Example 3.3.5. In the den in Figure 1, take p = 1 + ε for a small ε > 0. Then P and S
contribute to dinvp(π) if P is northwest of the upper end of S on the same diagonal of slope
−1. In Figure 3 we have redrawn the nest π from Figure 2, displaying lattice points, as an
aid to checking that dinvp(π) = 22.

3.4. LLT polynomial associated with a nest. Next we define a tuple of skew diagrams
ν(π) attached to each nest π in a den.

Given a den (h, p,d, e), fix a real number s such that the line y + px = s passes weakly
above all the heads and feet. For i = 1, . . . , h, let ci = {s − p (i − 1)} be the height of the
gap between the line y + p x = s and the highest lattice point weakly below it at x = i− 1,
where {a} = a− bac denotes the fractional part of a real number a.

Let σ ∈ Sh be the permutation such that σ(1), . . . , σ(h) are in the same relative order as
c1, . . . , ch, i.e., such that σ(c1, . . . , ch) is increasing. Note that the ci are distinct, since p is
irrational.

Definition 3.4.1. Given a den (h, p,d, e), fix s and define c1, . . . , ch and σ as above. For
each nest π in the den, ν(π) is the tuple of skew diagrams (ν(1), . . . , ν(h)) with ν(j) defined
as follows.

Let k = σ−1(j). By Remark 3.1.4 (iii), the paths in π which have a non-sink lattice point
on the line x = k − 1 are π1, . . . , πgk , for gk defined in (24). For i = 1, . . . , gk, let yi and wi
be the maximum and minimum y-coordinates of lattice points on πi at x = k − 1. Then we
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set

(36) ν(j) = β/α = (β1, . . . , βgk)/(α1, . . . , αgk),

where αi = bs−p (k−1)c−yi+ i and βi = bs−p (k−1)c−wi+ i. Note that (y1, . . . , ygk) and
(w1, . . . , wgk) are strictly increasing, with yr ≥ wr, so β/α makes sense as a skew diagram.

Less formally, for each k = 1, . . . , h, if Ok = (k − 1, bs − p (k − 1)c) is the highest lattice
point at x = k − 1 below the line y + p x = s, we construct a skew diagram by turning runs
of south steps in paths in π at x = k − 1 into rows of a skew diagram, placed so that the
content of the box corresponding to a south step S is the distance between Ok and the south
endpoint of S. Then ν(π) is the list of these skew diagrams in increasing order of the gaps
ck. Note that this makes the reading order on boxes of ν(π) correspond to the ordering of
south steps in π by increasing distance below the line y + p x = s, with occurrences of the
same south step S on two paths πi, πj ordered by i < j.

Example 3.4.2. In Figure 3, we have re-drawn the nest π from Example 3.3.5 and Figure 2
below a line y + p x = s with p = 1 + ε for ε ≈ .04, and s ≈ 9.8 chosen so the line passes a
little above the source at (0, 9) and the sinks at (4, 5), (6, 3) and (7, 2). The gaps ck between
this line and the highest lattice points below it increase in the order c7 < · · · < c1, giving
σ = w0, the longest permutation in S7. Accordingly, the skew diagrams ν(1), . . . , ν(7) in ν(π)
are associated to south runs on the lines x = k − 1 in the order k = 7, 6, . . . , 1.

The first three diagrams in ν(π) are empty. The last four are plotted in Figure 3, arranged
from southwest to northeast and positioned so that boxes of equal content are on the same
diagonal line.

Remark 3.4.3. In terms of the parameterization in Lemma 3.2.1, the skew diagram ν(j) = β/α
in (36) is given by α = (agk)+λ(k−1), β = (bgk)+λ(k), where k = σ−1(j), a = bs− p (k − 1)c−
ek−1 + gk−1, b = bs− p (k − 1)c − ek + gk.

Although the definition of ν(π) involves an auxiliary choice of the line y+p x = s, one can
check that when s varies, ν(π) changes by rotations of the kind in Proposition 2.2.4. The
LLT polynomial Gν(π)(X; q) therefore depends only on π and the slope parameter p. We can
make this more explicit as follows.

Let S(π) be the set of pairs (S, i) such that S is a south step on πi, and let ĉ(S) denote
the vertical distance s− (l + p k) between the line y + p x = s and the south endpoint (k, l)
of S. We say that an ordered pair of elements (S, i), (S ′, j) ∈ S(π) is an attacking pair if
0 < ĉ(S ′) − ĉ(S) < 1. This means that S and S ′ are distinct, some line of slope −p passes
through them both, and they are ordered with ĉ(S) < ĉ(S ′). The differences ĉ(S ′) − ĉ(S)
and the set of attacking pairs do not depend on s. Via the natural correspondence between
S(π) and the set of boxes in ν(π), attacking pairs in S(π) correspond to attacking pairs in
ν(π).

Definition 3.4.4. A negative labeling of a nest π is a map N : S(π)→ Z+ that satisfies the
conditions

(i) N is strictly increasing from north to south along each run of south steps in each πi;
(ii) if (S, i) and (S ′, i + 1) are on the same vertical line with S ′ immediately above S,

then N(S, i) ≤ N(S ′, i+ 1).
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We define inv(N) to be the number of attacking pairs (S, i), (S ′, j) in S(π) such that
N(S, i) ≥ N(S ′, j).

A positive labeling P : S(π)→ Z+ is defined similarly, but with ‘weakly increasing’ in place
of ‘strictly increasing’ in (i), with P (S, i) < P (S ′, i+ 1) in place of N(S, i) ≤ N(S ′, i+ 1) in
(ii), and with P (S, i) > P (S ′, j) in place of N(S, i) ≥ N(S ′, j) when defining inv(P ).

By construction, if we transfer labels from steps in S(π) to the corresponding boxes in
ν(π), positive or negative labelings P or N correspond to tableaux T ∈ SSYT±(ν(π)) with
positive or negative letters. The definition of Gν and Proposition 2.2.2 therefore yield

Gν(π)(X; q) =
∑
P

qinv(P )xP ,(37)

ω Gν(π)(X; q) =
∑
N

qinv(N)xN ,(38)

where the sums are over positive and negative labelings P and N , respectively, and xP =∏
(S,i)∈S(π) xP (S,i), with xN defined similarly.

3.5. Main theorem. We have now defined the ingredients needed to state our main com-
binatorial result.

Theorem 3.5.1. Given a den (h, p,d, e), with g as in (24), define a Catalanimal

(39) H = H
(
Rq, Rt, Rqt, ((d0 − e1)g1 , . . . , (dh−1 − eh)gh)

)
of length l = |g| =

∑
k gk, taking Rq = Rt to be the set of positive roots αij (i < j) such that

i, j are in distinct blocks of the partition of [l] into intervals of lengths gk, and Rqt to be the
subset of these roots with i, j in non-adjacent blocks.

Then the polynomial part of H is given by

(40) Hpol(z) =
∑
π

ta(π)qdinvp(π)Gν(π)(z1, . . . , zl; q
−1),

where the sum is over all nests π in the given den, and a(π), dinvp(π) and Gν(π)(X; q) are
as defined in §§3.3–3.4.

There are several alternative ways to formulate the conclusion of Theorem 3.5.1. Using
Proposition 2.3.2, we can connect it with the Schiffmann algebra, as follows. Note that the
root sets in (39) satisfy Rqt = [Rq, Rt], so the Catalanimal H is tame.

Corollary 3.5.2. Given a den (h, p,d, e), let ζ = ψΓ̂(H) ∈ E+ be the Schiffmann algebra
element represented by the tame Catalanimal H in (39). Then

(41) ζ · 1 =
∑
π

ta(π)qdinvp(π)ω Gν(π)(X; q−1).
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We can also reformulate (40) and (41) in terms of labeled nests using (37–38). The
resulting identities are

Hpol(z) =
∑
π,P

ta(π)qdinvp(π)−inv(P )zP ,(42)

ζ · 1 =
∑
π,N

ta(π)qdinvp(π)−inv(N)xN ,(43)

where the sums are over nests π and positive or negative labelings P or N of π (Defini-
tion 3.4.4), with the positive labelings P in (42) having labels between 1 and l.

Corollary 3.5.3. (i) The right hand sides of (40) through (43) are symmetric in q and t.
(ii) The left hand sides of (40) through (43) are q, t Schur positive, i.e., they are linear
combinations of Schur functions with coefficients in N[q, t].

Proof. (i) The Catalanimal H in the theorem is symmetric in q and t by construction.
(ii) A priori, the coefficients are in Z[q±1, t], but (i) implies that they are in Z[q, t]. It was

shown in [12] that LLT polynomials Gν(X; q) are q Schur positive. Hence, the coefficients
are in N[q, t]. �

Remark 3.5.4. If the den (h, p,d, e) has no nests, Theorem 3.5.1 implies that the left hand
sides of (40) through (43) are zero.

Example 3.5.5. To illustrate Theorem 3.5.1, we write everything out for the den defined by

(44) h = 4, p =
1

2
+ ε, d = (3, 2, 2, 1,−1), e = (1, 2, 2, 1, 1).

This den has sources at (0, 2), (0, 3) and sinks at (4, 0), (4, 1). Its nests are pairs (π1, π2) of
nested generalized Dyck paths, with π1 from (0, 2) to (4, 0) and π2 from (0, 3) to (4, 1), each
path staying weakly below the line of slope −1/2 connecting its endpoints. For this den we
have g = (2, 2, 2, 2), since each nest consists of two paths from x = 0 to x = 4.

The Catalanimal H = H(Rq, Rt, Rqt, λ) on the left hand side of (40) has length 8, with
root sets and weight displayed below. Matrix position (i, j) in the diagram represents the
root αij. The weight λ is written along the diagonal.

(45)

1
1

0
0

1
1

0
0

Rq = Rt

Rqt

One can verify by expanding the raising operator series that the polynomial part of this
Catalanimal is given by

(46) Hpol(z) = (q3t+ q2t2 + q t3) s31(z) + (q4 + q3t+ 2 q2t2 + q t3 + t4) s22(z)

+ (q3 + 2 q2t+ 2 q t2 + t3) s211(z) + (q2 + q t+ t2) s1111(z).
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The following table displays each nest π in the den along with the corresponding term
ta(π)qdinvp(π)Gν(π)(z; q−1) on the right hand side of (40), with Gν(π)(z; q−1) expanded as a
linear combination of Schur functions sλ(z). The reader can verify that (46) is the sum of
these terms.

(47)

t0 q5
(
q−1s22(z) + q−2s211(z) + q−3s1111(z)

)
t1 q3

(
s31(z) + s22(z) + 2 q−1s211(z) + q−2s1111(z)

)
t2 q2

(
s31(z) + s22(z) + q−1s211(z)

)
t2 q3

(
q−1s22(z) + q−2s211(z) + q−3s1111(z)

)
t3 q2

(
q−1s31(z) + q−1s22(z) + q−2s211(z)

)
t4 q0 s22(z)

3.6. The single path case. As a further class of examples, we examine more closely the
instances of Theorem 3.5.1 and Corollary 3.5.2 for dens (h, p,d, e) with just one source and
one sink, that is,

(48) d− e = (1, 0, . . . , 0,−1).

We assume that h > 1, as h = 1 gives trivial dens with at most one nest. We also note that
if p < 0, then di = ei ≤ eh for 0 < i < h. This again implies that the den has at most one
nest, so we assume that p ≥ 0.

Let y+p x = s be the highest line of slope −p that passes through one of the heads (= feet)
(i, di) for 0 < i < h. Conditions (21–22) hold if and only if all the heads for 0 < i < h lie
in the band s− 1 < y + p x ≤ s, and the source and sink at x = 0 and x = h are above the
lower boundary y + p x = s− 1 of this band. In other words, for 0 < i < h, the head (i, di)
is the highest lattice point below y + p x = s on the line x = i, and the source at x = 0 and
sink at x = h are weakly above the highest lattice points on these respective lines.

Translating the picture vertically, we can assume that eh = 0, i.e., the sink is on the x-axis.
A nest π in this den is then a lattice path from (0, d0) to (h, 0) that stays weakly below the
line y + p x = s except possibly for an initial south run along the y-axis and the final east
step along the x-axis.

Let r = s/p be the x-intercept of the line y + p x = s. If r ≥ h, the sink (h, 0) is weakly
below the line, (h, 1) is above the line, and every lattice path weakly below the line that
ends at (h, 0) ends with an east step. If r < h, the sink (h, 0) is above the line, the point
(h − 1, 0) is below the line, so h = brc + 1, and deleting the final east step in each nest π
gives a path ending at (brc, 0). In either case, nests π correspond one-to-one with lattice



20 J. BLASIAK, M. HAIMAN, J. MORSE, A. PUN, AND G. H. SEELINGER

paths from (0, d0) to (min(brc, h), 0) that stay weakly below y+p x = s except for a possible
south run along the y-axis.

In this picture, a(π) is the area between the path π and the highest such path π0. In
[6, Definition 5.4.1], dinvp(π) was defined to be the number of p-balanced hooks whose arm
and leg end on the path π; but this was also shown in the proof of [6, Proposition 5.4.4] to
coincide with dinvp(π) as defined here.

Since there is only one path, we have gi = 1 for all i, so the root sets for the Catalanimal
H in Theorem 3.5.1 are Rq = Rt = R+ and Rqt = [R+, R+], and its weight is given by
λi = di−1 − ei, which is the number of south steps on x = i − 1 in the highest path π0

under the line y + p x = s. If r < h, so h = brc + 1, then λ = b, where b = (b1, . . . , bh)
is as in [6, Theorem 5.5.1], H is equal to the function Hb(z) in [6, Definition 3.7.1] (which
is a Catalanimal), and we have ψΓ̂(H) = Db in the notation of [6, §3.6] (Db is a Negut
element in E+). In general, h ≤ brc + 1, and H is a possibly shorter Catalanimal than Hb,
with ψΓ̂(H) = Dλ, where λ is obtained by dropping some trailing zeroes from b. By [6,
Lemma 3.6.2], the trailing zeroes do not matter and we have Db · 1 = Dλ · 1.

In the single path case, Corollary 3.5.2 now reduces to the generalized shuffle theorem [6,
Theorem 5.5.1] for paths under the line y + p x = s, including the more general version in
[6, Remark 5.5.2] for paths extended along the y-axis.

4. The Loehr-Warrington conjecture and its (m,n) extension

In this section we construct a den such that the associated Catalanimal H in Theo-
rem 3.5.1 represents the element sµ[−MXm,n] in the Schiffmann algebra, for any partition
µ and coprime integers m,n > 0. In the case n = 1, Corollary 3.5.2 then yields a combina-
torial formula for ∇msµ, which we will show agrees with the one conjectured by Loehr and
Warrington in [15].

4.1. LW dens. Given a partition µ of length `(µ), we define the following for use in con-
structing its associated dens.

h(µ) = µ1 + `(µ)− 1 = largest hook length in µ,(49)

δi(µ) = χ(µ1 − 1− i is the content of the last box in some row of µ),(50)

εi(µ) = χ(i ≥ µ1)(51)

for 0 ≤ i ≤ h(µ), where χ(P ) = 1 if P is true, 0 if P is false. Note that the contents of boxes
in µ range from µ1 − h(µ) to µ1 − 1. Since µ is a partition, for i ≤ h(µ) we have εi(µ) = 1
if and only if µ1 − i is the content of the first box in some row of µ.

Definition 4.1.1. The LW den associated to a partition µ and a pair of coprime positive
integers m,n is the den (h, p,d, e) defined as follows:

(52) h = mh(µ); p = n/m− ε,
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where ε > 0 is small;

(53)

di = ei = bnh(µ)− i n/mc for i not a multiple of m,

djm = nh(µ)− n j + δj(µ)− 1,

ejm = nh(µ)− n j + εj(µ)− 1,

for 0 ≤ i ≤ mh(µ), 0 ≤ j ≤ h(µ).

We will see below (Proposition 4.1.4) that the LW den is indeed a den.

Remark 4.1.2. (i) The p dependence in all constructions involving dens and nests comes from
comparisons between p and finitely many rational numbers r. By saying that ε > 0 is ‘small’
in (52), we mean that such comparisons give p < r if n/m ≤ r, and p > r if n/m > r.

(ii) Since d0 = nh(µ) = (n/m)h, the line y + (n/m)x = d0 meets the coordinate axes at
(h, 0) and (0, d0). The quantity bnh(µ)− (n/m)ic is the y-coordinate of the highest lattice
point on the line x = i weakly below y + (n/m)x = d0.

If i is not a multiple of m, the highest lattice point is strictly below y + (n/m)x = d0,
and (i, di) = (i, ei) is this point. For i = jm, the highest lattice point is on the line
y+ (n/m)x = d0. In this case, (i, di) and (i, ei) are each either on the line or one unit below,
depending on the values of δj(µ) and εj(µ). It follows that the sources and sinks in the LW
den all lie on the bounding line y + (n/m)x = d0, and that paths in every nest in this den
stay weakly below the bounding line.

For i = jm, if δj(µ) = εj(µ) = 0, the head and foot (i, di) = (i, ei) are both one unit below
the bounding line. In this case there is no source or sink at x = jm, and the condition that
paths in a nest lie weakly below the heads forbids the paths from touching the bounding line
at x = jm. The other heads impose no further conditions. Every system of nested east end
paths from the sources to the sinks, which stay weakly below the bounding line and do not
touch it at the forbidden points, is therefore a nest in the LW den.

Example 4.1.3. For the partition µ = (4, 3, 3, 3, 2) we have h(µ) = 8, δ = (δ0(µ), . . . , δ8(µ)) =
(1, 0, 1, 1, 1, 0, 1, 0, 0), and ε = (ε0(µ), . . . , ε8(µ)) = (0, 0, 0, 0, 1, 1, 1, 1, 1). In the simplest LW
den, for m = n = 1, we get d, e by adding δ − 1, ε− 1 to the vector (8, 7, . . . , 1, 0), giving

(54) (h, p,d, e) =
(
8, 1− ε, (8, 6, 6, 5, 4, 2, 2, 0,−1), (7, 6, 5, 4, 4, 3, 2, 1, 0)

)
.

For (m,n) = (2, 1) we interleave the above d and e with the sequence (7, 6, 5, 4, 3, 2, 1, 0) of
numbers b8− i/2c for i odd, to get

(55) (h, p,d, e) =
(
16,

1

2
− ε, (8, 7, 6, 6, 6, 5, 5, 4, 4, 3, 2, 2, 2, 1, 0, 0,−1),

(7, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0)
)
.

These two dens are plotted in Figure 4. In each den, we also display the nest π0 such that
a(π0) = 0, for later reference.

Proposition 4.1.4. The data (h, p,d, e) in Definition 4.1.1 define a valid den.
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head
foot
both
forbidden point

Figure 4. LW dens for µ = (4, 3, 3, 3, 2) and m = n = 1 (left), m = 2, n = 1
(right), with the highest nest π0 in each den. Sources and sinks are the points
on the bounding line that are heads or feet but not both.

Proof. For any µ we have δ0(µ) = 1, ε0(µ) = 0, δh(µ)(µ) = 0 (because µ1−1−h(µ) is less than

the content of any box in µ) and εh(µ)(µ) = 1. We also have
∑h(µ)

i=0 δi(µ) =
∑h(µ)

i=0 εi(µ) = `(µ).

This implies d0 − e0 = 1 = eh − dh and
∑h

i=0 di =
∑h

i=0 ei, verifying condition (23).
All heads and feet are between or on the lines y+ (n/m)x = d0 and y+ (n/m)x = d0− 1,

which implies (di − dj + 1)/(j − i) ≥ n/m ≥ (ei − ej − 1)/(j − i) for all i < j. Since all feet
on the lower line are left of all feet on the upper line, the second inequality is strict. This
implies conditions (21–22) for p = n/m− ε. �

4.2. An (m,n) Loehr-Warrington formula. Our next theorem is a combinatorial formula
for the symmetric function sµ[−Xm,n] · 1. As we will see, this generalizes both the (km, kn)-
shuffle theorem [3, 18], when sµ = ek, and the Loehr-Warrington conjecture [15], when
n = 1.

Lemma 4.2.1. Let (h, p,d, e) be the LW den for µ and m,n.
(i) With notation as in Definition 2.4.1, the sequence g in (24) is the same as γ((µ◦)m),

or equivalently γ(µ◦) with each entry repeated m times.
(ii) The Catalanimal H in Theorem 3.5.1 is the same as the opposite Schur Catalanimal

Hm,n
(µ◦)m in Definition 2.4.1 and Theorem 2.4.2.

Proof. The sources in the LW den have x-coordinate im for δi(µ) = 1, εi(µ) = 0, and the
sinks have x-coordinate im for δi(µ) = 0, εi(µ) = 1. By Remark 3.1.4 (iii), the associated
sequence g is therefore obtained by repeating each entry of the sequence γ = (γ1, . . . , γh(µ))
m times, where γi+1− γi = δi(µ)− εi(µ) for i = 0, . . . , h(µ)− 1, and we set γ0 = 1. To prove
(i), we need to show that γ = γ(µ◦), which is the reverse of γ(µ).
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Consider the decomposition of µ into hooks with corner on the main diagonal, as shown
here for the partition µ = (4, 3, 3, 3, 2) in Example 4.1.3.

(56)

From the definitions we see that δi(µ) = 1 and εi(µ) = 0 if and only if µ1 − i − 1 is the
content of the rightmost box in the arm of a main diagonal hook. This is also the condition
on i ∈ [0, h(µ)] to have γi+1(µ◦)− γi(µ◦) = 1, if we define γi(µ

◦) = 0 for i < 1 or i > h(µ).
Noting that a diagonal of content c ≤ 0 contains the top of the leg in a main diagonal

hook if and only if the diagonal of content c−1 does not contain the box at the end of a row
of µ, we see that δi(µ) = 0 and εi(µ) = 1 if and only if µ1 − i is the content of the highest
box in a leg. This is the condition on i to have γi+1(µ◦)− γi(µ◦) = −1.

When neither of these two conditions hold, we have γi+1(µ◦) = γi(µ
◦). Hence, γi+1(µ◦)−

γi(µ
◦) = δi(µ)− εi(µ) for all i, and therefore γ = γ(µ◦), proving (i).

Part (i) implies that the Catalanimals H and Hm,n
(µ◦)m have the same root sets. The weight

λ for Hm,n
(µ◦)m , given by (19), is constant on blocks of lengths g1, . . . , gh. We need to verify

that its value on the i-th block is di−1 − ei.
We can write (53) in the form

di = nh(µ)− di n/me+ χ(m|i)(δi/m(µ)− 1)(57)

ei = nh(µ)− di n/me+ χ(m|i)(εi/m(µ)− 1).(58)

Combining (57–58) with the definition of b(m,n) in (15) gives

(59) di−1 − ei = b(m,n)modm(i) + χ(m|i− 1)(δ(i−1)/m(µ)− 1) + χ(m|i)(1− εi/m(µ)).

To compare this with (19), note that the content c on the i-th diagonal from northwest
to southeast in (µ◦)m has c ≡ i (mod m) by construction, so the term b(m,n)modm(i) here
agrees with b(m,n)modm(c) in (19).

The i-th diagonal in (µ◦)m always contains the first box in a row of (µ◦)m if i 6≡ 1 (mod m).
If i = j m + 1, the i-th diagonal contains the first box in a row of (µ◦)m if and only if the
(j+1)-st diagonal in µ◦ contains the first box in a row of µ◦, that is, if and only if δj(µ) = 1.
Hence,

(60) χ(i-th diagonal in (µ◦)m contains the first box in a row)

= 1 + χ(m|i− 1)(δ(i−1)/m(µ)− 1).

Similarly, the i-th diagonal in (µ◦)m always contains the last box in a row of (µ◦)m if i 6≡ 0
(mod m). If i = j m, the i-th diagonal contains the last box in a row of (µ◦)m if and only
if the j-th diagonal in µ◦ contains the last box in a row of µ◦, that is, if and only if j ≥ µ1.
Hence,

(61) χ(i-th diagonal in (µ◦)m contains the last box in a row)

= 1 + χ(m|i)(εi/m(µ)− 1).

Using (60) and (61) we see that (59) agrees with (19). �
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Our (m,n) Loehr-Warrington formula is now given by the following theorem, which follows
from Proposition 2.3.3, Theorem 2.4.2, Corollary 3.5.2, and Lemma 4.2.1.

Theorem 4.2.2. For every partition µ and coprime positive integers m,n, we have the
identity

(62) sµ[−MXm,n] · 1 = (−1)p(µ)(q t)p(µ)+mn′(γ(µ))
∑
π

ta(π)qdinvp(π)ω Gν(π)(X; q−1),

where p(µ) is the magic number (not to be confused with p = n/m− ε), n′(γ(µ)) is given by
(18), and the sum is over nests π in the LW den for µ and m,n.

For n = 1, the expression in (62) is equal to ∇msµ(X).

Remark 4.2.3. In the case µ = (1k), giving sµ = ek, we have p(µ) = n′(γ(µ)) = 0. As
explained in [6, §6], Theorem 4.2.2 is then equivalent to the (km, kn)-shuffle theorem con-
jectured by Bergeron et al. [3] and proven by Mellit [18]. This case is also included in the
path case discussed in §3.6, above.

4.3. Comparison with the original Loehr-Warrington formula. Loehr and Warring-
ton [15, Conjecture 2.4] conjectured a combinatorial formula for ∇msµ, which in their nota-
tion reads

(63) ∇msµ(X) = sgn(µ)
∑

(G,R)∈LNDPmµ

tarea(G,R)qdinv(G,R)xR.

We prove their conjecture (after correcting a mistake in the definition of dinv(G,R)—see
below) by verifying that this formula agrees with Theorem 4.2.2 for n = 1, when we express
the latter in terms of labeled nests as in (43), namely

(64) ∇msµ(X) = (−1)p(µ)(q t)p(µ)+mn′(γ(µ))
∑
π,N

ta(π)qdinvp(π)−inv(N)xN .

We now work out some of the details needed to see that (63) and (64) agree.
The notation (G,R) ∈ LNDPm

µ stands for a system of labeled nested m-Dyck paths which,
after reflecting about a horizontal line, corresponds to a pair (π,N), where π is a nest in the
LW den for µ and m,n with n = 1, and N is a negative labeling of π as in (38).

In more detail, the proof of Lemma 4.2.1 shows that the sources and sinks in the LW den
are located on the bounding line at positions x = jm, where µ1− 1− j is the content of the
box at either end of a main diagonal hook in µ. Loehr and Warrington start and end their
Dyck paths at corresponding positions constructed from a dissection of µ into border strips
([15, Fig. 1]). To see that these agree, observe that the heights, widths and content ranges
of the border strips for any µ match those of the main diagonal hooks, as in this example:

(65)

This also shows that the statistic spin(µ∗) = adj(µ) in [15, §2.2], defined as the sum∑
B(width(B)− 1) over border strips B in µ, is equal to the magic number p(µ), since

the latter is the number of boxes strictly below the main diagonal, and thus the sum of the
arm lengths of the main diagonal hooks.
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Loehr and Warrington introduce additional Dyck paths of length zero which serve to forbid
the other paths from touching the bounding line at certain points. These correspond to the
points where nests in the LW den cannot touch the bounding line, as in Remark 4.1.2 (ii).
The rest of Remark 4.1.2 (ii) then shows that nests π in the LW den correspond to systems
of m-Dyck paths G for (G,R) ∈ LNDPm

µ .

Deciphering the notation in [15] further, the indices (a, u) of entries g
(u)
a , r

(u)
a in (G,R)

correspond to pairs (S, i), where S is a south step in a path πi in the nest π. When (a, u)

corresponds to (S, i), the index u is a strictly increasing function of i. The integer g
(u)
a is

equal to m times the vertical distance from the north endpoint of S to the bounding line

y + (1/m)x = d0 for the LW den. The labels r
(u)
a are subject to the same conditions as our

labels N(S, i).
To finish reconciling (63) with (64), we need to show the following.

Lemma 4.3.1. For (G,R) corresponding to (π,N), the combinatorial statistics in [15] are
related to ours by

sgn(µ)
def
= (−1)spin(µ∗) = (−1)p(µ)(66)

area(G,R) = p(µ) +mn′(γ(µ)) + a(π)(67)

dinv(G,R) = p(µ) +mn′(γ(µ)) + dinvp(π)− inv(N),(68)

where p = 1/m− ε.

Proof. For (66), we already observed that spin(µ∗) = p(µ).
For (67), the definition of area(G,R) corresponds to the sum of the areas |ρ/πi|, where ρ

is the highest lattice path from (0, d0) = (0, h(µ)) to (h, 0) = (mh(µ), 0) that stays weakly
below the bounding line y + (1/m)x = d0. To verify (67) it therefore suffices to show that
for the nest π0 with a(π0) = 0, we have

∑
i |ρ/π0

i | = p(µ) +mn′(γ(µ)).
Now

∑
i |ρ/π0

i | =
∑

E aE, where the sum is over east steps E in π0, and aE is the vertical
distance between E and the east step weakly above it in ρ. Recall that gk as defined in (24)
is the number of east steps from x = k−1 to x = k in any nest. For k = jm with 1 ≤ j < µ1,
the point at x = k on the bounding line for the LW den is either a source or a forbidden
point, and thus is not the right endpoint of an east step in π0. For these values of k, the
numbers aE for east steps E from x = k− 1 to x = k are 1, . . . , gk. For other values of k the
aE are 0, 1, . . . , gk − 1. It may be instructive to verify this with the examples in Figure 4.

It follows that

(69)
∑
i

|ρ/π0
i | =

∑
E

aE =

mh(µ)∑
k=1

(
gk
2

)
+

µ1−1∑
j=1

gjm.

The first sum on the right is mn′(γ(µ)) by Lemma 4.2.1(i). Since gjm is the number of boxes
on the diagonal of content µ1 − j in µ, the second sum is p(µ).

For (68), the statistic dinv(G,R) is defined by [15, (11)], except that the expression χ(a ≤
b) in the middle sum there should read χ((a < b) ∨ ((a = b) ∧ (u < v))), as in the last sum.
After correcting this mistake and exchanging indices (a, u) and (b, v) in the first two sums,
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we can rewrite [15, (11)] in the form

(70) dinv(G,R) =

adj(µ) +
∑

χ(0 < g
(v)
b − g

(u)
a ≤ m)χ(a ≥ b)χ(r(u)

a < r
(v)
b )

+
∑

χ(0 ≤ g
(v)
b − g

(u)
a < m)χ(a < b)χ(r(u)

a < r
(v)
b )

+
∑

χ(0 ≤ g
(v)
b − g

(u)
a < m)χ(a = b ∧ u < v)χ(r(u)

a < r
(v)
b )

+
∑
|(g(v)

b − g
(u)
a + [0,m− 1]) ∩ [1,m− 1]|χ((a > b) ∨ (a = b ∧ u > v)),

where the sums are over all pairs of valid indices (a, u), (b, v). Let (S, i), (S ′, j) be the south
steps on paths in π corresponding to (a, u) and (b, v). The condition

(71)
(
(0 < g

(v)
b − g

(u)
a ≤ m) ∧ (a ≥ b)

)
∨
(
(0 ≤ g

(v)
b − g

(u)
a < m) ∧ (a < b)

)
holds if and only if (S, i) and (S ′, j) form an attacking pair in S(π), as defined in §3.4, for
p = 1/m − ε. We leave it as an exercise for the reader to verify this, with the hint that if

g
(v)
b = g

(u)
a , then S is strictly to the left of S ′ if and only if a < b, while if g

(v)
b − g

(u)
a = m,

then S is strictly to the right of S ′ if and only if a ≥ b. The first two sums in (70) therefore
count attacking pairs that do not contribute to inv(N), that is, they add up to

(72) A(π)− inv(N),

where A(π) is the number of attacking pairs in S(π), or equivalently in ν(π).

Turning to the third sum in (70), If a = b and g
(u)
a ≤ g

(v)
b , then S and S ′ have the same

y-coordinates, with S ′ weakly to the left of S. If S ′ is strictly to the left of S, then nesting
implies v < u. Hence, if u < v, then S = S ′ is a shared south step on paths πi and πj
with i < j. In this case, the conditions on the labeling imply r

(u)
a < r

(v)
b . The third sum in

(70) therefore reduces to the number of pairs {(S, i), (S, j)} of shared south steps in π. We
denote this number by ss(π).

Now we consider the last sum in (70). The terms with a = b, g
(u)
a = g

(v)
b and u > v

contribute m− 1 for each pair of shared south steps, giving (m− 1) ss(π).

The remaining terms are zero if |g(v)
b − g

(u)
a | ≥ m. Otherwise, they correspond to pairs

(S, i), (S ′, j) with S 6= S ′ and some line of slope −1/m passing through the interiors of both
S and S ′. If S ′ is to the right of S, this implies b ≥ a, with u < v if a = b, by nesting. Hence,
S ′ is to the left of S. To describe the contribution from such a term geometrically, let BS be
the region bounded on the right by S and above and below by lines of slope −1/m through
the endpoints of S, with open boundaries above and on the right, and a closed boundary
below. Then S ′ has an endpoint in BS, and the contribution from the corresponding term
is given by

(73) r − 1, for
S

S ′

r, for
S

S ′

,
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S

Figure 5. The possibilities for components of the intersection of a path πj
with BS, illustrated with m = 3, p = 1/3− ε.

where r = m− |g(v)
b − g

(u)
a | is the integer such that the line segment S ′ ∩BS has length r/m.

Note that we require the upper endpoint of S ′ in the second picture to be in the interior of
BS (although if it were on the boundary, it would contribute zero anyway).

Let δ(π) denote the sum of the contributions in (73) for all pairs (S, i), (S ′, j) with S and
S ′ positioned as shown. Then the last sum in (70) is equal to δ(π) + (m− 1) ss(π).

Combining adj(µ) = p(µ) with the above, we obtain

(74) dinv(G,R) = p(µ) +m ss(π) + δ(π) +A(π)− inv(N).

The following lemma now completes the verification of (68). �

Lemma 4.3.2. For p = 1/m− ε and π a nest in the LW den for µ and m,n with n = 1, we
have

(75) dinvp(π) = m ss(π)−mn′(γ(µ)) +A(π) + δ(π).

Proof. We evaluate dinvp(π)−A(π)− δ(π).
For p = 1/m− ε, each unordered pair {(S, i), (S ′, j)} with S, S ′ positioned as in (73) forms

an attacking pair in S(π) when ordered with the smaller of ĉ(S), ĉ(S ′) first. Every attacking
pair has this form, so A(π) is the number of such unordered pairs.

Given a pair (S, i) in S(π) and a path πj, consider the connected components of πj ∩BS.
These are of four possible types, depicted in Figure 5, depending on whether they enter and
exit BS along the upper or the lower boundaries.

For p = 1/m − ε, dinvp(π) counts pairs (S, i), (P, j), where P is a point on πj that lies
in BS. Using this, the description of A(π) above, and the definition of δ(π), one can check
that each component of πj ∩BS contributes −m to dinvp(π)−A(π)− δ(π) for components
that cross BS from top to bottom, m for components that cross from bottom to top, and
zero for components of the other two types.

Since all sources are on the bounding line, the leftmost component (if any) of πj ∩ BS

enters from above. From left to right, the components that cross BS alternate between the
second and fourth types shown in Figure 5, possibly with components of the other types in
between.
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If i ≤ j, so πj is equal to or nested above πi, or if i > j and the paths πi and πj share
the south step S, then πj ∩BS is either empty, or its last component exits BS on the upper
boundary. In this case, crossings from top to bottom cancel those from bottom to top, giving
a net contribution of zero to dinvp(π)−A(π)− δ(π).

Otherwise, if i > j and S is not on πj, there is one more crossing from top to bottom than
from bottom to top, for a net contribution of −m. This shows that dinvp(π)−A(π)− δ(π)
is equal to −m times the number of tuples (S, i, j) with S on πi and i > j, plus m ss(π). The
number of such tuples (S, i, j) is the sum over all i > j of the number of south steps on πi.

For the LW den, the number of south steps on πi is the length of the i-th main diagonal
hook in µ, from southwest to northeast, and there are i− 1 indices j < i. If we write i− 1 in
each box on the i-th main diagonal hook, the sum of these numbers is therefore the number
of tuples (S, i, j). But these numbers sum to

(
γ
2

)
on a content diagonal of length γ, so the

sum of them all is n′(γ(µ)). This gives

(76) dinvp(π)−A(π)− δ(π) = m ss(π)−mn′(γ(µ)),

as desired. �

5. LLT series and semi-symmetric Hall-Littlewood polynomials

Using a strategy similar to that in [6], we will prove Theorem 3.5.1 by taking the polynomial
part of an infinite series identity between the full Catalanimal on the left hand side and a sum
of LLT series on the right. LLT series associated to a reductive group G and Levi subgroup
L ⊆ G were defined in [12]; for G = GLl, they are series versions of the LLT polynomials
Gν(X; q). Since [12] is unpublished, in [6, §4] we gave a self-contained treatment (with some
improvements) of the case when G = GLl and L = T is the torus, which corresponds to
Gν(X; q) when ν is a tuple of single-row skew diagrams. Building on [6], we extend this here
to the case of any Levi subgroup L = GLr1 × · · · ×GLrk ⊆ GLl and any Gν(X; q).

5.1. Hecke algebra and root system preliminaries. We set k = Q(q, t) as in §2. The
algebra of Laurent polynomials k[z±1

1 , . . . , z±l ] is the group algebra of the weight lattice of

GLl, with monomials zλ = zλ11 · · · z
λl
l corresponding to weights λ ∈ Zl. As in §2, we denote

the roots by αij = εi − εj. For simple roots we abbreviate this to αi = αi,i+1.
The Weyl group Sl acts by permuting the variables, with Coxeter generators (simple

reflections) given by the transpositions si = (i ↔ i + 1). Given w ∈ Sl, we let `(w) denote
the length of a reduced factorization w = si1 · · · si` ; this is also the number of inversions in
w. The longest element of Sl or any finite Coxeter group is denoted w0. Usually it will be
clear from the context what group w0 belongs to; otherwise we indicate it with a superscript
such as wl0.

The Demazure-Lusztig operators

(77) Ti = q si + (1− q) 1

1− z−αi
(si − 1)

generate an action of the Hecke algebra H(Sl) on k[z±1
1 , . . . , z±l ]. We have normalized them

so that (Ti−q)(Ti+1) = 0. As usual, for w ∈ Sl, we set Tw = Ti1 · · ·Ti` , where w = si1 · · · si`
is a reduced factorization.
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We use an overbar · to signify inverting the variables q, t, zi; thus

(78) Ti = q−1 si + (1− q−1)
1

1− zαi
(si − 1).

One can then check that

(79) Ti = T−1
i ; hence Tw = T−1

w−1 .

Given a composition r = (r1, . . . , rk) of l, we denote the corresponding Levi subgroup of
GLl and its Weyl group (which is a Young subgroup of Sl) by

GLr = GLr1 × · · · ×GLrk ⊆ GLl,(80)

Sr = Sr1 × · · · × Srk ⊆ Sl.(81)

Note that R+(GLr) is the set of positive roots αij ∈ R+(GLl) such that i, j are in the same
block of the partition of [l] into intervals of lengths r1, . . . , rk.

Here we have implicitly taken r to be a strict composition with all entries ri > 0. If r is a
weak composition with entries ri = 0 allowed, we define GLr = GLs where s = (ri1 , . . . , rij)
is the subsequence of non-zero entries in r.

The Levi subgroup GLr has the same weight lattice Zl as GLl. A weight λ is dominant
(resp. dominant and regular) for GLr iff λi ≥ λi+1 (resp. λi > λi+1) for all i such that
αi ∈ R+(GLr), or equivalently such that si ∈ Sr. We denote the set of dominant weights by
X+(GLr) and the set of regular dominant weights by X++(GLr).

We write ρr (or just ρ if r = (l)) for a weight such that

(82) 〈α∨i , ρr〉
def
= (ρr)i − (ρr)i+1 = 1 for every simple root αi ∈ R+(GLr).

Such a weight is unique up to adding an Sr invariant weight. When we use this notation,
the choice of ρr will either be fixed or make no difference.

We define the semi-symmetrization operator for GLr by means of the following lemma.

Lemma 5.1.1. For any composition r of l, there is an operator δr on k[z±1
1 , . . . , z±1

l ] given
by either of two equivalent formulas

δr =
1∏

α∈R+(GLr)(1− z−α)

∑
w∈Sr

(−1)`(w)w(83)

=
q`(w

r
0)∏

α∈R+(GLr)(1− q z−α)

∑
w∈Sr

(−q)−`(w)Tw.(84)

Proof. Fixing a choice of ρr, formula (83) can also be written

(85) δr = zρr σr z−ρr ,

where σr is the Weyl symmetrization operator for GLr in (10). In particular, the operator
δr defined by (83) acts on k[z±1

1 , . . . , z±1
l ]. Let δqr denote the operator defined by (84). We

are to prove that δqr = δr.
Let V = k[z±1

1 , . . . , z±1
l ]. For each i such that si ∈ Sr, let Wi = V si = {f ∈ V |

sif = f} be the subspace of si invariant functions. Let Ar =
∑

w∈Sr
(−1)`(w)w denote

the antisymmetrization operator. It is a general property of Coxeter group representations
that

∑
iWi is an invariant subspace and that V/

∑
iWi carries the sign representation, thus
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every w ∈ Sr acts on V/
∑

iWi as (−1)`(w), and Ar acts as the scalar |Sr|. This implies, first,
that Ar is surjective on V/

∑
iWi, that is, the space of all antisymmetric functions spans

V/
∑

iWi, and, second, that if V ′ ⊆ V is any subspace such that ArV
′ is the space of all

antisymmetric functions, then V ′ spans V/
∑

iWi, that is, V = V ′ +
∑

iWi. In particular,
this holds with V ′ = zρrV Sr , since every antisymmetric f ∈ V has the form f = Ar zρrg,
where g ∈ V is Sr invariant.

Since Tif = q f for f ∈ Wi, both operators δr and δqr kill the subspaces Wi. Both operators
also commute with multiplication by any Sr invariant function g. Hence, to prove δqr = δr
it suffices to show that δqrz

ρr = δrz
ρr . By (85), we have δrz

ρr = zρr . Meanwhile, δqrz
ρr = zρr

is equivalent to the well-known identity [1]

�(86)
∑
w∈Sr

(−q)−`(w)Tw zρr = q−`(w
r
0) zρr

∏
α∈R+(GLr)

(1− q z−α).

Remark 5.1.2. For i such that si ∈ Sr, the Hecke algebra antisymmetrization operator
Aqr =

∑
w∈Sr

(−q)−`(w)Tw in (86) can be factored in the form B · (Ti − q) for an element
B of the Hecke algebra, and therefore satisfies Aqr Ti = −Aqr. More generally, this implies
Aqr T

±1
w = (−1)`(w)Aqr, for all w ∈ Sr, and consequently also δr T

±1
w = (−1)`(w)δr.

5.2. Semi-symmetric Hall-Littlewood polynomials. As in [6, (72)], we define non-
symmetric Hall-Littlewood polynomials for GLl by

(87) Eλ(z; q) = q−`(w)Tw zλ+ ,

where λ = w(λ+) with w ∈ Sl and λ+ dominant. If λ+ has non-trivial stabilizer, w is not
unique, but the formula does not depend on the choice. For σ ∈ Sl, we also define twisted
versions

Eσ
λ (z; q) = q|Inv(σ−1)∩Inv(λ+ερ)| Tσ Eσ−1(λ)(z; q)(88)

F σ
λ (z; q) = Eσw0

−λ (z; q),(89)

where Inv((a1, . . . , al)) = {(i < j) | ai > aj}, and ε is small, so Inv(σ−1) = {(i < j) |
σ−1(i) > σ−1(j)} and Inv(λ + ερ) = {(i < j) | λi ≥ λj}. Note that for σ = 1, Eσ

λ (z; q)
reduces to the untwisted Eλ(z; q).

From the definition, one can verify the recurrence [6, (76)]

(90) Eσ
λ =

{
q−χ(λi≤λi+1) TiE

siσ
siλ
, siσ > σ,

qχ(λi≥λi+1) T−1
i Esiσ

siλ
, siσ < σ.

The Eσ
λ are determined by this recurrence and the initial condition Eσ

λ = zλ for all σ if λ is
a dominant weight.

Definition 5.2.1. (i) Given a composition r = (r1, . . . , rk) and a permutation σ ∈ Sk, let
l = |r| = r1 + · · ·+rk and define σ̂ ∈ Sl to be the permutation that carries intervals of lengths
σ−1(r) = (rσ(1), . . . , rσ(k)) to intervals of lengths r in the order given by σ. More precisely,

(91) σ̂(rσ(1) + · · ·+ rσ(i−1) + j) = r1 + · · ·+ rσ(i)−1 + j

for i = 1, . . . , k and j = 1, . . . , rσ(i).
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(ii) Given r and σ as in (i), and µ ∈ X++(GLr) a regular dominant weight for GLr, we
define semi-symmetric Hall-Littlewood polynomials

(92) Eσ
r,µ(z; q) = δrE

σ̂
µ(z; q), F σ

r,µ(z; q) = δr F
σ̂
µ (z; q).

Remark 5.2.2. (i) For simplicity, we have suppressed r from the notation for σ̂. Although

this should not usually cause confusion, one should note that σ̂ −1 is not given by σ̂−1 for

the same r, but rather by σ̂−1 defined relative to the composition σ−1(r).
For example, if σ = (2, 3, 1) in one-line notation, and r = (1, 4, 3), then σ−1 = (3, 1, 2) and

σ−1(r) = (4, 3, 1). Partitioning the set {1, . . . , 8} into intervals I1 = {1}, I2 = {2, 3, 4, 5},
I3 = {6, 7, 8} of lengths r and intervals J1 = {1, 2, 3, 4}, J2 = {5, 6, 7}, J3 = {8} of lengths
σ−1(r), the permutation σ̂ = (2, 3, 4, 5, 6, 7, 8, 1) carries J1, J2, J3 to I2 = Iσ(1), I3 = Iσ(2),

I1 = Iσ(3). The inverse permutation σ̂−1 that carries I1, I2, I3 back to J3, J1, J2 is σ̂−1

defined relative to the composition σ−1(r) = (4, 3, 1) that gives the intervals Ji, rather than
the original composition r = (1, 4, 3) that gave the intervals Ii.

(ii) If r is a weak composition, so GLr = GLs where s = (ri1 , . . . , rij) is the subsequence
of non-zero entries in r, then the definitions of Eσ

r,µ(z; q) and F σ
r,µ(z; q) reduce to Eσ

r,µ(z; q) =

Eτ
s,µ(z; q), F σ

r,µ(z; q) = F τ
s,µ(z; q) where τ ∈ Sj is the permutation such that τ−1(1), . . . , τ−1(j)

are in the same relative order as σ−1(i1), . . . , σ−1(ij).

Example 5.2.3. (i) At q = 1, we have Eσ
µ(z; 1) = zµ for any σ. Using (85), it follows that

(93) z−ρrEσ
r,λ+ρr(z; 1) = χλ(GLr)

if λ ∈ X+(GLr) is a dominant weight for GLr, where χλ(GLr) is the irreducible GLr character
with highest weight λ.

(ii) For r = (l), we must have σ = 1 ∈ S1. If λ is a dominant weight for GLl, then
Eλ+ρ(z; q) = zλ+ρ, which implies z−ρE1

(l),λ+ρ(z; q) = χλ, independent of q. Note that this is

quite different from the usual symmetric Hall-Littlewood polynomial Pλ(z; q).

We develop some initial properties of these polynomials for later use, beginning with
expressions for the semi-symmetric polynomials F σ

r (z; q) in terms of Eσ
r (z; q).

Lemma 5.2.4. Given r = (r1, . . . , rk), σ ∈ Sk and µ ∈ X++(GLr), we have

F σ
r,µ(z, q) = zρr−w

r
0(ρr)E

σwk0
r,−wr

0(µ)(z; q)(94)

= zρr−w
r
0(ρr)w0

(
E
wk0σ

wk0 (r),w0wr
0(µ)

(z; q−1)
)
.(95)

Note that ρr − wr
0(ρr) =

∑
α∈R+(GLr) α does not depend on the choice of ρr.

Proof. From (83) we find δr = (−1)`(w
r
0)zw

r
0(ρr)−ρrδr. Applying δr on both sides of the

definition F σ̂
µ = Eσ̂w0

−µ therefore gives

(96) F σ
r,µ = (−1)`(w

r
0)zρr−w

r
0(ρr)δrE

σ̂w0
−µ .

Since σ̂w0 is maximal in its coset Srσ̂w0, and −µ is regular and anti-dominant for GLr, it

follows by repeated use of the recurrence (90) that Eσ̂w0
−µ = Twr

0
E
wr

0σ̂w0

−wr
0(µ). Now σ̂wk0 = wr

0σ̂w0,
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and δrT
±1
i = −δr for si ∈ Sr by Remark 5.1.2, hence δrTwr

0
= (−1)`(w

r
0)δr. Combining these,

the right hand side of (96) becomes zρr−w
r
0(ρr)δrE

σ̂wk0
−wr

0(µ) = zρr−w
r
0(ρr)E

σwk0
r,−wr

0(µ), giving (94).

To prove (95), we use the identity

(97) Eτ
−λ(z; q) = w0

(
Ew0τw0

w0(λ) (z; q−1)
)
.

Like the equivalent identity [5, (109)], one can prove (97) by verifying that after applying w0,
both sides are characterized by the recurrence (90) with the variables reversed and inverted.
We also observe that (83) implies δrw0 = w0δr′ , where r′ = wk0(r) = (rk, . . . , r1), and that

w0(σ̂wk0)w0 = ŵk0σ, where ŵk0σ is defined with respect to r′ rather than r. Then (95) follows
from (94) and

(98) E
σwk0
r,−wr

0(µ)(z; q) = δrE
σ̂wk0
−wr

0(µ)(z; q) = w0

(
δr′E

ŵk0σ

w0wr
0(µ)(z; q−1)

)
= w0

(
E
wk0σ

r′,w0wr
0(µ)(z; q−1)

)
.

�

By [6, Corollary 4.3.1], Eσ
λ has the monic and triangular form

(99) Eσ
λ (z; q) = zλ +

∑
µ<λ

cλ,µ(q) zµ

with respect to a suitable partial ordering < on the weight lattice Zl. If µ is a regular weight
for GLr, then z−ρrδr(z

µ) = ±χν(GLr), where ν + ρr is the unique dominant (and regular)
weight in the orbit Sr · µ. The ordering < has the property that the dominant weight for
GLr in any Sr orbit is the unique minimal element in that orbit; hence ν + ρr ≤ µ in this
case. If µ is not regular for GLr, then δr(z

µ) = 0.
For every λ ∈ X+(GLr) it now follows from (99) that z−ρrEσ

r,λ+ρr
has the form

(100) z−ρrEσ
r,λ+ρr(z; q) = χλ(GLr) +

∑
ν∈X+(GLr)
ν+ρr<λ+ρr

aλ,ν(q)χν(GLr).

More precisely, given the choice of ρr, (100) holds for all λ ∈ X+(GLr), although the coeffi-
cients aλ,ν(q) and the set of weights ν that occur depend on ρr. In particular, for any fixed
choice of ρr, it follows that

(101) {z−ρrEσ
r,µ | µ ∈ X++(GLr)}

is a basis of k[z±1
1 , . . . , z±l ]Sr . Then (94) implies that

(102) {z−ρrF σ
r,µ | µ ∈ X++(GLr)}

is also a basis. Note that k[z±1
1 , . . . , z±1

l ]Sr is the algebra of virtual GLr characters with
coefficients in k.

Remark 5.2.5. The coefficients cλ,µ(q) in (99), and therefore also aλ,ν(q) in (100), are in
Z[q−1]. Hence, Eσ

r,µ(z; q) and F σ
r,µ(z; q) have coefficients in Z[q−1] and Z[q], respectively, and

(101–102) are free module bases over these coefficient rings in place of k.
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Lemma 5.2.6. Given r, σ and σ̂ as in Definition 5.2.1, µ ∈ X++(GLr), and w ∈ Sr, we
have

Eσ̂
w(µ) = q−`(w)TwE

σ̂
µ ,(103)

F σ̂
w(µ) = TwF

σ̂
µ .(104)

Proof. The case σ = 1 of (103) follows from the definition (87) of Eµ, because µ ∈ X++(GLr)
implies that if v ∈ Sl is such that µ = v(µ+), and w ∈ Sr, then w ·v is a reduced factorization
of wv. For general σ, let v = σ̂−1wσ̂, and note that v ∈ Sσ−1(r). Since σ̂−1 is minimal in both
of its cosets Sσ−1(r) σ̂

−1 and σ̂−1 Sr, each side of σ̂−1 · w = v · σ̂−1 is a reduced factorization,

giving Tσ̂−1Tw = TvTσ̂−1 , or equivalently TwTσ̂ = Tσ̂Tv. We also have `(v) = `(w). Then

(105) q−`(w) Tw E
σ̂
µ = qe−`(w) TwTσ̂ Eσ̂−1(µ) = qe Tσ̂ q

−`(v) Tv Eσ̂−1(µ)

= qe Tσ̂ Evσ̂−1(µ) = qe Tσ̂ Eσ̂−1w(µ),

where e = |Inv(σ̂−1) ∩ Inv(µ+ ερ)|. For the third equality, we used σ̂−1(µ) ∈ X++(GLσ−1(r))
and the σ = 1 case. Since σ̂−1 is increasing on intervals of lengths r1, . . . , rk, we have
e = |Inv(σ̂−1) ∩ Inv(w(µ) + ερ)| for any w ∈ Sr. The last formula in (105) therefore reduces
to Eσ̂

w(µ).

For (104), let u = w0σ̂
−1wσ̂w0 (here w0 = wl0 ∈ Sl), and note that u ∈ Swk0σ−1(r).

Since w0σ̂
−1 is maximal in both of its cosets w0σ̂

−1Sr and Swk0σ−1(r)w0σ̂
−1, the factorizations

(w0σ̂
−1w−1) ·w and u · (u−1w0σ̂

−1) are reduced, giving TwT
−1
w0σ̂−1 = T−1

w0σ̂−1w−1 = T−1
u−1w0σ̂−1 =

T−1
w0σ̂−1Tu, or equivalently TwTσ̂w0 = Tσ̂w0Tu. Then

(106) Tw E
σ̂w0
−µ = qd Tw Tσ̂w0 E−w0σ̂−1(µ) = qd Tσ̂w0 TuE−w0σ̂−1(µ)

= qd+`(u) Tσ̂w0 E−uw0σ̂−1(µ) = qd+`(u) Tσ̂w0 E−w0σ̂−1w(µ),

where d = |Inv(w0σ̂
−1) ∩ Inv(−µ+ ερ)|. For the third equality, we used the σ = 1 case of

(103) with −w0σ̂
−1(µ) ∈ X++(GLwk0σ−1(r)). Since w0σ̂

−1 is decreasing on intervals of lengths

r1, . . . , rk, changing −µ to −w(µ) in the formula for d creates `(w) = `(u) new inversions,
giving d+ `(u) = |Inv(w0σ̂

−1) ∩ Inv(−w(µ) + ερ)|. The last formula in (106) now reduces to

Eσ̂w0

−w(µ), showing that Eσ̂w0

−w(µ) = Tw E
σ̂w0
−µ . Taking · on both sides gives (104). �

Finally, since δr and Ti commute with multiplication by z1 · · · zl, we have the identities

(107) (z1 · · · zl)mEσ
r,µ(z; q) = Eσ

r,(ml)+µ(z; q), (z1 · · · zl)m F σ
r,µ(z; q) = F σ

r,(ml)+µ(z; q).

5.3. Orthogonality. For f ∈ k[z±1
1 , . . . , z±1

l ]Sr , let 〈1GLr〉 f denote the coefficient of the
trivial character when f is expanded in terms of irreducible GLr characters. The formula

(108) 〈1GLr〉σr(f) = 〈z0〉 f ·
∏

α∈R+(GLr)
(1− zα)

holds for any f ∈ k[z±1
1 , . . . , z±1

l ], as can be verified by reducing to the case f = zλ, for
which both sides become (−1)`(w) if λ+ ρr = w(ρr) for w ∈ Sr, or zero otherwise. If f is Sr
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invariant, then σr(f) = fσr(1) = f , and we obtain

(109) 〈1GLr〉 f = 〈z0〉 f ·
∏

α∈R+(GLr)
(1− zα).

We define a symmetric inner product on k[z±1
1 , . . . , z±1

l ]Sr by

(110) 〈f, g〉rq
def
= 〈1GLr〉 f g

∏
α∈R+\R+(GLr)

1− zα

1− q−1zα
.

For r = (1l) this reduces to the inner product

(111) 〈f, g〉q = 〈z0〉 f g
∏

α∈R+

1− zα

1− q−1zα

in [6, Proposition 4.3.2]. For general r, (109) implies that 〈f, g〉rq and 〈f, g〉q are related by

(112) 〈f, g〉rq = 〈 f, g ·
∏

α∈R+(GLr)
(1− q−1zα) 〉q.

We remark that (110) and (111) are to be interpreted by expanding the factors
(1 − q−1zα)−1 = 1 + q−1zα + · · · as geometric series, yielding a power series in q−1 over
Z[z±1 , . . . , z

±1
l ], which is Sr invariant in the case of (110). Upon taking the coefficient 〈1GLr〉

or 〈z0〉, only finitely many terms in the series survive. In the case of (111), this is clear, and
for (110) it then follows from (112).

Proposition 5.3.1. Given r and σ as in Definition 5.2.1, and any choice of ρr as in (82),
we have dual bases of k[z±1

1 , . . . , z±1
l ]Sr

(113)
〈

z−ρrEσ
r,λ, z−ρrF σ

r,µ

〉r
q

= δλ,µ (λ, µ ∈ X++(GLr)).

Proof. We have already seen that the two sets {z−ρrEσ
r,λ | λ ∈ X++(GLr)} and {z−ρrF σ

r,µ |
µ ∈ X++(GLr)} are bases of k[z±1

1 , . . . , z±1
l ]Sr . We also note that 〈z−ρrEσ

r,λ, z−ρrF σ
r,µ〉rq is

independent of the choice of ρr, since 〈f, g〉rq is a function of fg. The case r = (1l) is [6,
Proposition 4.3.2]. We will use this result to prove the general case.

For µ ∈ X++(GLr), define

Eσ,−
r,µ =

(
q−`(w

r
0)
∏

α∈R+(GLr)
(1− qz−α)

)
Eσ

r,µ =
∑
w∈Sr

(−q)−`(w)TwE
σ̂
µ ,(114)

F σ,−
r,µ =

(
q−`(w

r
0)
∏

α∈R+(GLr)
(1− qz−α)

)
F σ
r,µ =

∑
w∈Sr

(−q)−`(w)TwF
σ̂
µ .(115)

Using Lemma 5.2.6, we can also write

(116) Eσ,−
r,µ =

∑
w∈Sr

(−1)`(w)Eσ̂
w(µ).

Defining Aqr =
∑

w∈Sr
(−q)−`(w)Tw as in Remark 5.1.2, we have

(117)
∑
w∈Sr

(−q)−`(w)Tw = Aqr = Aqr · (−1)`(w
r
0)T−1

wr
0

= q−`(w
r
0)
∑
w∈Sr

(−q)`(w)Tw,
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and Lemma 5.2.6 then implies

(118) F σ,−
r,µ = q−`(w

r
0)
∑
w∈Sr

(−q)`(w)F σ̂
w(µ).

Macdonald’s identity [16, Theorem (2.8)] for GLr gives

(119) Wr(q)
def
=
∑
w∈Sr

q`(w) =
∑
w∈Sr

w

(∏
α∈R+(GLr)

1− q z−α

1− z−α

)
= σr

(∏
α∈R+(GLr)

(1−q z−α)
)
.

Combining this with (108), if f is Sr invariant, we find

(120) Wr(q) 〈1GLr〉 f = 〈1GLr〉σr

(
f
∏

α∈R+(GLr)
(1− q z−α)

)
= 〈z0〉 f ·

∏
α∈R+(GLr)

(
(1− zα)(1− q z−α)

)
.

Now we calculate

(121)

Wr(q)
〈

z−ρrEσ
r,λ, z−ρrF σ

r,µ

〉r
q

= Wr(q) 〈1GLr〉Eσ
r,λ F

σ
r,µ

∏
α∈R+\R+(GLr)

1− zα

1− q−1zα

= 〈z0〉Eσ
r,λ F

σ
r,µ

∏
α∈R+(GLr)

(
(1− q−1zα)(1− q z−α)

)∏
α∈R+

1− zα

1− q−1 zα

=
〈
Eσ

r,λ

∏
α∈R+(GLr)

(1− q z−α), F σ
r,µ

∏
α∈R+(GLr)

(1− q z−α)
〉
q

= 〈 q`(wr
0)Eσ,−

r,λ , q
`(wr

0)F σ,−
r,µ 〉q

=
〈 ∑
w∈Sr

(−1)`(w)Eσ̂
w(λ), q

`(wr
0)
∑
w∈Sr

(−q)−`(w)F σ̂
w(µ)

〉
q
,

where we canceled q±`(w
r
0) in the penultimate line and used (116) and (118) to get the last

line. By [6, Proposition 4.3.2], the functions Eσ̂
ν and F σ̂

ν are dual bases for 〈−,−〉q. Hence,
the last line in (121) simplifies to Wr(q) δλ,µ, and the result follows. �

5.4. LLT series. Generalizing [6, Definition 4.4.1], we now define LLT series associated to
GLl and any Levi subgroup GLr.

Definition 5.4.1. Given a composition r = (r1, . . . , rk) of l, a permutation σ ∈ Sk, and
weights α, β ∈ X++(GLr), the LLT series Lσr,β/α(z; q) is the infinite formal linear combination
of irreducible GLl characters with coefficients defined by

(122) 〈χλ〉 Lσ
−1

r,β/α(z; q−1) = 〈Eσ
r,β(z; q)〉χλ · Eσ

r,α(z; q)

in terms of the basis {Eσ
r,µ | µ ∈ X++(GLr)} of the space zρrk[z±1

1 , . . . , z±1
l ]Sr (note that this

space is independent of the choice of ρr and closed under multiplication by GLl characters).

Remark 5.4.2. (i) The elements Eσ,−
r,µ (z; q) in (114) form a basis of the space of Laurent

polynomials antisymmetric with respect to the action of the Hecke algebra H(Sr). In terms
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of this basis, an alternative formulation equivalent to (122) is

(123) 〈χλ〉 Lσ
−1

r,β/α(z; q−1) = 〈Eσ,−
r,β (z; q)〉χλ · Eσ,−

r,α (z; q).

(ii) By Remark 5.2.5, the right hand side of (122) belongs to Z[q−1]. The q−1 on the left
hand side of (122) serves to give Lσr,β/α(z; q) coefficients in Z[q], while the indexing with σ−1

instead of σ allows us to formulate the connection between LLT series and LLT polynomials
more naturally in §5.5.

The next proposition gives a formula for Lσr,β/α(z; q), generalizing [6, Proposition 4.4.2].
To state it we need the q-symmetrization operator

(124) Hr
q(f) = σ

( f(z)∏
α∈R+\R+(GLr)(1− q zα)

)
.

Here f(z1, . . . , zl) is a Laurent polynomial, and (124) is to be interpreted as a formal infinite
linear combination of irreducible GLl characters by expanding each factor (1 − q zα) =
1 + q zα + · · · as a geometric series before applying the Weyl symmetrization operator σ.

Although we won’t use it, we mention that when f is Sr invariant, Hr
q is a q-analog of

induction from GLr characters to GLl characters. When f is a product of Schur functions∏
i sλ(i)(Zi) in blocks of variables Z1 = z1, . . . , zr1 , Z2 = zr1+1, . . . , zr1+r2 , etc., Hr

q(f) is a

q-analog of
∏

i sλ(i)(z), whose Schur expansion yields the generalized Kostka polynomials

studied by Shimozono, Weyman and Zabrocki in [21, 22].

Proposition 5.4.3. For r, σ, α, β as in Definition 5.4.1, we have

(125) Lσr,β/α(z; q) = Hwk0 (r)
q

(
w0(F σ−1

r,β Eσ−1

r,α )
)
.

Proof. By Proposition 5.3.1,

(126)

〈χλ〉 Lσr,β/α(z; q) = 〈 zρrF σ−1

r,β (z; q), z−ρrχλ · Eσ−1

r,α (z; q−1) 〉rq−1

= 〈z0〉χλ F σ−1

r,β (z; q)Eσ−1

r,α (z; q−1)

∏
α∈R+

(1− zα)∏
α∈R+\R+(GLr)(1− q zα)

.

We can invert the variables zi and apply w0 without changing the constant term, so the
above is equal to

(127) 〈z0〉χλw0

(
F σ−1

r,β (z; q)Eσ−1

r,α (z; q)
) ∏

α∈R+
(1− zα)∏

α∈R+\R+(GL
wk0 (r)

)(1− q zα)
.

Using (108) for GLl, this is the same as

�(128) 〈1GLl〉χλ σ
(

w0(F σ−1

r,β Eσ−1

r,α )∏
α∈R+\R+(GL

wk0 (r)
)(1− q zα)

)
= 〈χλ〉Hwk0 (r)

q

(
w0(F σ−1

r,β Eσ−1

r,α )
)
.
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ν(i)

ν(j)

a1

b1

c1

a2

b2

c2

a3

b3

c3

a4

b4

c4

Figure 6. Examples of σ-triples. The dashed lines show boxes of equal con-
tent in ν(i) and ν(j), with i < j. If σ(i) < σ(j), then (a1, b1, c1) and (a3, b3, c3)
are σ-triples. If σ(i) > σ(j), then (a2, b2, c2) and (a4, b4, c4) are σ-triples.
Triples (a3, b3, c3) and (a4, b4, c4) illustrate the point that a and/or c may be
just outside a (possibly empty) row of ν(j).

5.5. Relation between LLT series and LLT polynomials. Here we derive an identity
relating the polynomial part Lσr,β/α(z; q)pol of an LLT series to an LLT polynomial Gν(X; q),

extending the treatment of the case r = (1l) in [6, §4.5].

Definition 5.5.1. Let ν = β/α = (β(1)/α(1), . . . , β(k)/α(k)) be a tuple of skew diagrams,
and let σ ∈ Sk be a permutation. A σ-triple in β/α is an ordered triple of boxes (a, b, c)
such that

(i) b is a box of ν(i) = β(i)/α(i) for some i;
(ii) a is either in or immediately left of a row of ν(j) and c is either in or immediately

right of the same row, for some j > i;
(iii) a and c are adjacent with a left of c; and
(iv) b has the same content as c if σ(i) < σ(j), or the same content as a if σ(i) > σ(j).

More precisely, (ii) and (iii) mean that if α(j) = (α1, . . . , αm) and β(j) = (β1, . . . , βm), then
we have a = (x, y) and c = (x+ 1, y) for some 1 ≤ y ≤ m and αy ≤ x ≤ βy. In particular, a
and c can be the boxes left and right of an empty row with βy = αy. The set of triples thus
depends on the presentation of ν as β/α and not just on the set of boxes in ν.

Strictly speaking, the indices i and j are part of the data of a triple, in keeping with our
understanding that the set of boxes of ν is the disjoint union of the sets of boxes of the ν(i).
Figure 6 illustrates the definition.

Definition 5.5.2. (i) Given a tuple of skew diagrams β/α = (β(1)/α(1), . . . , β(k)/α(k)) and
σ ∈ Sk, an increasing σ-triple in a negative tableau T ∈ SSYT−(β/α) is a σ-triple (a, b, c)
such that T (a) < T (b) < T (c), with the convention T (a) = −∞, T (c) =∞ if a or c is not a
box of β/α.

(ii) We define the generating function

(129) Nσ
β/α(X; q) =

∑
T∈SSYT−(β/α)

qhσ(T )xT ,
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where hσ(T ) is the number of increasing σ-triples in T .

Although it is not obvious a priori, the next proposition implies that Nσ
β/α(X; q) is sym-

metric.

Proposition 5.5.3. We have the identity

(130) Nσ
β/α(X; q) = qhσ(β/α)ω Gσ(β/α)(X; q−1),

where hσ(β/α) is the number of σ-triples in β/α.

Proof. Let ν be the tuple of skew diagrams given by β/α and note that σ(ν) is the re-
arrangement of ν with σ(ν)(σ(i)) = ν(i). For a ∈ ν(i), let σ(a) denote the corresponding box
of σ(ν)(σ(i)). We also use this notation for boxes adjacent to ν(i), which may occur in a
σ-triple.

For a tableau T ∈ SSYT−(ν) let σ(T ) denote its image in SSYT−(σ(ν)), defined by
σ(T )(σ(a)) = T (a).

By Proposition 2.2.2, the right hand side of (130) can be written

(131)
∑

T∈SSYT−(β/α)

qhσ(β/α)−inv(σ(T ))xσ(T ).

Since xσ(T ) = xT , (130) will follow if we show that

(132) hσ(T ) = hσ(β/α)− inv(σ(T )).

Consider the image (a′, b′, c′) = (σ(a), σ(b), σ(c)) of a σ-triple (a, b, c) in β/α. The defini-
tion of σ-triple implies that (a′, b′) is an attacking pair in σ(ν) if both boxes a and b are in
ν, and similarly for (b′, c′). One also sees that every attacking pair in σ(ν) belongs in this
way to the image of a unique triple. Since a, c are in the same row, we have T (a) < T (c)
for every negative tableau T . This holds even if a or c is not in ν, by the convention that
T (a) = −∞, T (c) = ∞ in these cases. Hence, at most one of the pairs (a′, b′), (b′, c′) is
an attacking inversion in σ(T ), since we would have T (a) ≥ T (b) ≥ T (c) if they both were.
Moreover, (a, b, c) is an increasing σ-triple if and only if neither (a′, b′) nor (b′, c′) is an at-
tacking inversion. Hence, the number of increasing σ-triples is the total number of σ-triples
minus the number of attacking pairs in σ(T ). �

Let r = (r1, . . . , rk) be a composition of l, and let α, β ∈ X++(GLr) be dominant regular
weights for GLr such that αi ≤ βi for all 1 ≤ i ≤ l. To these data we associate a tuple of
skew diagrams β/α = (β(1)/α(1), . . . , β(k)/α(k)) by defining

(133)
(α(i))j = αr1+···+ri−1+j + j,

(β(i))j = βr1+···+ri−1+j + j

for 1 ≤ i ≤ k and 1 ≤ j ≤ ri. In other words, (α(1)| · · · |α(k)) = α − ρr and (β(1)| · · · |β(k)) =
β − ρr, where (·| · · · |·) denotes concatenation and ρr = −((1, . . . , r1)| · · · |(1, . . . , rk)).

This construction has the combinatorially natural feature that the contents of the boxes
in the j-th row of β(i)/α(i) are αm + 1, . . . , βm, where m = r1 + · · · + ri−1 + j is the index
corresponding to the j-th position in the i-th block of the partition of [l] into intervals of
lengths ri.
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Theorem 5.5.4. Given a composition r = (r1, . . . , rk) of l, σ ∈ Sk, and weights α, β ∈
X++(GLr), we have

(134) Lσr,β/α(z; q)pol =

{
qhσ(β/α)Gσ(β/α)(z1, . . . , zl; q

−1) if αi ≤ βi for all 1 ≤ i ≤ l,

0 otherwise,

where β/α is the tuple associated to r, α, β by the construction above.

The proof will be based on Proposition 5.5.3 and the following lemma.

Lemma 5.5.5. For α, β ∈ X++(GLr) and σ ∈ Sk, we have

〈Eσ,−
r,β (z; q)〉 em(z)Eσ,−

r,α (z; q) =

{
q−|Inv(β+ε τ)\Inv(α+ε τ)| if β − α = εI for I ⊆ [l], |I| = m,

0 otherwise,

where em is an elementary symmetric function, τ = σ̂ −1, and εI is the 0-1 vector with 1’s
in positions i ∈ I.

Proof. Using (116), the coefficient 〈Eσ,−
r,β 〉f of Eσ,−

r,β in any Sr-antisymmetric function f is

equal to 〈Eσ̂
β 〉f . Applying this with f = emE

σ,−
r,α ,

(135) 〈Eσ,−
r,β 〉 emE

σ,−
r,α = 〈Eσ̂

β 〉 emEσ,−
r,α =

∑
w∈Sr

(−1)`(w)〈Eσ̂
β 〉 emEσ̂

w(α).

By [6, Lemma 4.5.1] the coefficient 〈Eσ̂
β 〉 emEσ̂

w(α) vanishes unless β = w(α) + εI for some I.

Since w ∈ Sr and α ∈ X++(GLr), w(α) is not dominant for GLr if w 6= 1. In that case there
is an index i such that si ∈ Sr and w(α)i < w(α)i+1. Since β ∈ X++(GLr) we then have
βi−w(α)i− (βi+1−w(α)i+1) ≥ 2, and therefore β −w(α) is not of the form εI . This shows
that the terms for w 6= 1 on the right hand side of (135) vanish, leaving

(136) 〈Eσ,−
r,β 〉 emE

σ,−
r,α = 〈Eσ̂

β 〉 emEσ̂
α.

The lemma now follows from [6, Lemma 4.5.1]. �

Proof of Theorem 5.5.4. Let Lσr,β/α(X; q) be the unique linear combination of Schur functions

sλ(X) with `(λ) ≤ l that specializes in l variables z1, . . . , zl to Lσr,β/α(z; q) = Lσr,β/α(z; q)pol.
We will prove that

(137) Lσr,β/α(X; q) =

{
qhσ(β/α)Gσ(β/α)(X; q−1) if αi ≤ βi for all 1 ≤ i ≤ l,

0 otherwise.

Clearly this implies (134) (actually, (134) and (137) are equivalent, by Corollary 2.2.3).
By (123), we have

(138) 〈 sλ, Lσr,β/α(X; q−1) 〉 = 〈Eσ−1,−
r,β 〉 sλ(z)Eσ−1,−

r,α ,

where 〈−,−〉 is the Hall inner product on symmetric functions. Note that (138) holds even
if `(λ) > l, since both sides are zero in that case. By linearity, (138) therefore holds with
any symmetric function f in place of sλ. In particular, taking f = eµ = eµ1 · · · eµn , we have

(139) 〈 eµ, Lσr,β/α(X; q−1) 〉 = 〈Eσ−1,−
r,β 〉 eµ(z)Eσ−1,−

r,α .
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Evaluating this last expression by using Lemma 5.5.5 to multiply by eµ1 through eµn in
succession gives a sum over chains of weights

(140) α = α(0), α(1), . . . , α(n) = β (α(i) ∈ X++(GLr))

such that for each i = 1, . . . , n we have α(i) = α(i−1) + εIi for some index set Ii ⊆ [l] of size
|Ii| = µi. In particular, this shows that Lσr,β/α(X; q) = 0 if the condition αi ≤ βi for all i
does not hold, so we assume from now on that it does.

To the weights in (140) we can now associate a chain of tuples of skew diagrams

(141) ∅ = α(0)/α ⊆ α(1)/α ⊆ · · · ⊆ α(n)/α = β/α

by the construction in (133). The condition on the α(i) means that each α(i)/α(i−1) is a tuple
of vertical strips of size |α(i)/α(i−1)| = µi. In other words, α(i)/α(i−1) is the set of boxes a
with T (a) = i in a negative tableau T ∈ SSYT−(β/α) of weight xT = xµ.

From Lemma 5.5.5, the term in (139) corresponding to T , or to the weight sequence (140),
is q−h(T ), where

(142) h(T ) =
n∑
i=1

|Inv(α(i) + ε τ) \ Inv(α(i−1) + ε τ)|,

with τ = (σ̂−1)−1. We claim that h(T ) = hσ(T ) is the number of increasing σ-triples in T .
Granting the claim, we then have

(143) 〈eµ, Lσr,β/α(X; q)〉 =
∑

T∈SSYT−(β/α)

xT=xµ

qhσ(T ).

By definition, the sum on the right is the coefficient 〈xµ〉Nσ
β/α = 〈eµ, ω Nσ

β/α〉. Using
Proposition 5.5.3, this implies

(144) Lσr,β/α(X; q) = ωNσ
β/α(X; q) = qhσ(β/α)Gσ(β/α)(X; q−1).

It remains only to verify that h(T ) = hσ(T ). Let [l] = J1

∐
· · ·
∐
Jk be the partition of [l]

into intervals of lengths |Jj| = rj. The weights α(i) are strictly decreasing on each block Jj,
so |Inv(α(i) + ε τ) \ Inv(α(i−1) + ε τ)| only counts inversions between distinct blocks.

Now, τ = (σ̂−1)−1 carries the blocks Jj to intervals of lengths σ(r) in the order given
by σ; in other words, for s ∈ Jj, s′ ∈ Jj′ with j < j′, we have τ(s) < τ(s′) if and only if

σ(j) < σ(j′). Thus, if α
(i)
s = α

(i)
s′ , we have (s, s′) ∈ Inv(α(i) + ε τ) if and only if σ(j) > σ(j′).

By construction, α
(i)
s is the content of the last box in the row of α(i)/α corresponding to

the index s, or of the box immediately left of an empty row. For s ∈ Jj, s′ ∈ Jj′ with j < j′,
it follows that (s, s′) ∈ Inv(α(i) + ε τ) \ Inv(α(i−1) + ε τ) if and only if α(i)/α(i−1) has a box
b in the row corresponding to s, and one of the following two conditions holds, where a is
the last box in the row of α(i−1)/α corresponding to s′, or the box immediately to the left
if this row is empty:

(i) σ(j) < σ(j′) and c(b) = c(a) + 1 and the box c with content c(a) + 1 = c(b) in the
same row as a is not in α(i)/α; or
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(ii) σ(j) > σ(j′) and c(b) = c(a) and the box c with content c(a) + 1 = c(b) + 1 in the
same row as a is not in α(i)/α.

These conditions are equivalent to (a, b, c) forming an increasing σ-triple in T with T (b) = i.
Since a triple is determined by the box b and the index of the row containing a and c, we see
that |Inv(α(i) + ε τ) \ Inv(α(i−1) + ε τ)| counts σ-triples in T such that T (b) = i. Summing
over i yields h(T ) = hσ(T ), as claimed. �

6. Cauchy identity and winding permutations

As in [6], the infinite series form of our main theorem will follow by combining a Cauchy
identity for Hall-Littlewood polynomials—semi-symmetric Hall-Littlewood polynomials Eσ

r,µ,
F σ
s,µ, in this case—with an identity that allows us to change the ‘twist’ σ when the latter has

a special form. In this section we establish the two identities that we need.

6.1. Cauchy identity. Our next theorem generalizes the Cauchy identity for non-symmetric
Hall-Littlewood polynomials [6, Theorem 5.1.1]. A new feature that appears in the semi-
symmetric case is that different compositions r, s may govern the blocks of variables in the
functions Eσ

r,µ(x, q) and F σ
s,µ(y, q) that play a role in the identity, subject to some conditions

which we now define.

Definition 6.1.1. Given σ ∈ Sk, a sequence (m1, . . . ,mk) ∈ Zk is σ-almost decreasing if

(145) mi ≥ mj − χ(σ−1(i) > σ−1(j)) for all i < j,

and σ-almost increasing if

(146) mi ≤ mj + χ(σ−1(i) < σ−1(j)) for all i < j.

If r = (r1, . . . , rk) is a strict composition, then any choice of ρr satisfying (82) determines
two sequences (M1, . . . ,Mk) and (m1, . . . ,mk) such that ρr is the concatenation of blocks
(Mi,Mi − 1, . . . ,mi) of length ri. We extend this to weak compositions as follows.

Convention 6.1.2. Let r = (r1, . . . , rk) be a weak composition. Whenever we choose ρr
satisfying (82), we also choose sequences of integers (M1, . . . ,Mk) and (m1, . . . ,mk) such
that for ri > 0, the corresponding block of ρr is (Mi,Mi− 1, . . . ,mi), and for ri = 0 we have
Mi < mi. We refer to Mi and mi as the block maxima and minima of ρr, including any
artificial maxima and minima Mi < mi that we may have ascribed to empty blocks.

Theorem 6.1.3. Suppose we are given weak compositions r = (r1, . . . , rk), s = (s1, . . . , sk),
a permutation σ ∈ Sk, and a choice of ρr, ρs with associated block maxima and minima, in
keeping with Convention 6.1.2. Assume that ρr and ρs have the same block maxima Mi, and
let mi and ni be their respective block minima. Assume further that (m1, . . . ,mk) is σ-almost
decreasing and (n1, . . . , nk) is σ-almost increasing.

Then, using notation explained below, we have the identity

(147)

∏
i<j Ω[−q tXiYj]∏
i≤j Ω[−tXiYj]

=
∑
λ

t|λ| x−ρrEσ
r,λ+ρr(x; q−1) y−ρsF σ

s,λ+ρs(y; q).

The variables on the right hand side are x = x1, . . . , xr, y = y1, . . . , ys, where r = |r| =
∑

i ri
and s = |s| =

∑
i si. The index λ ranges over tuples of partitions (λ(1), . . . , λ(k)) such that



42 J. BLASIAK, M. HAIMAN, J. MORSE, A. PUN, AND G. H. SEELINGER

`(λ(i)) ≤ min(ri, si), with |λ| =
∑

i |λ(i)| denoting the sum of all the parts. In the expression
λ + ρr, we interpret λ as a weight in X+(GLr) by padding λ(i) with zeroes to length ri and
concatenating; λ+ ρs is interpreted in a similar way.

The expressions involving Ω on the left hand side are as defined in §2.1, with plethystic
alphabets X1, . . . , Xk constructed from blocks of length ri among the variables x, by the rule

(148) Xi = xi,1 + · · ·+ xi,ri , where xi,j = xr1+···+ri−1+j.

The alphabets Y1, . . . , Yk are similarly constructed from blocks of length si among the y vari-
ables.

Remark 6.1.4. (i) The left hand side of (147) expands to

(149)

∏
i<j Ω[−q tXiYj]∏
i≤j Ω[−tXiYj]

=

∏
i<j

∏ri
a=1

∏sj
b=1(1− q t xi,ayj,b)∏

i≤j
∏ri

a=1

∏sj
b=1(1− t xi,ayj,b)

.

(ii) If r = s = (1l) and ρr = ρs is constant, the theorem reduces to [6, Theorem 5.1.1]. A
little more generally, if r = s = (1l), the hypotheses on the block maxima and minima are
satisfied when ρr = ρs has the form σ(1, 1, . . . , 1, 0, 0, . . . , 0) + (constant).

(iii) If k = 1, so r = (r), s = (s) and σ = 1 ∈ S1, we have x−ρrEσ
r,λ+ρr

(x; q−1) =
sλ(x1, . . . , xr) and y−ρsF σ

s,λ+ρs
(y; q) = sλ(y1, . . . , ys) by Example 5.2.3 (ii) and (94). In this

case the theorem reduces to the classical Cauchy identity for Schur functions.
(iv) Adding a constant vector to ρr or ρs does not change the conclusion, so the hypothesis

that ρr and ρs have the same block maxima can be weakened to having block maxima that
differ by a constant. The hypotheses with this weakening seem to be essentially as general
as possible.

(v) The artificial maxima and minima ascribed to any zero-length blocks in ρr or ρs have
no effect on the identity (147). Nevertheless, to conclude that the identity holds, we require
that such maxima and minima can be chosen satisfying the hypotheses of the theorem.

Before proving Theorem 6.1.3, we develop a series of lemmas.

Lemma 6.1.5. Given σ ∈ Sl, let m,n ∈ Zl be σ-almost decreasing sequences such that
m ≤ n coordinate-wise, and m 6= n. Then there is an index k ∈ [l] such that mk < nk, and
m+ εk is σ-almost decreasing, where εk is the k-th unit coordinate vector.

Proof. In fact, let k be the smallest index such that mk < nk. In positions i < j, condition
(145) for m + εk is the same as the condition on m if k 6∈ {i, j}, and is weaker than the
condition on m if i = k. If j = k, then since mi = ni for i < k by assumption, the condition
on m+ εk in positions i < j is weaker than the condition on n. �

Lemma 6.1.6. Given σ ∈ Sl and 1 ≤ k < l, if m = (m1, . . . ,ml) is σ-almost decreasing,
then the sequence

(150) m′ = (m1, . . . ,mk−1,m
′
k,m

′
k+1,mk+2, . . . ,ml)

is (skσ)-almost decreasing, where

(151)
m′k = max

(
mk − χ(σ−1(k + 1) > σ−1(k)), mk+1

)
m′k+1 = mk.
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Proof. We have m′i = msk(i) for i 6= k, so if i < j and k 6∈ {i, j}, then sk(i) < sk(j)
and the condition m′i ≥ m′j − χ((skσ)−1(i) > (skσ)−1(j)) becomes msk(i) ≥ msk(j) −
χ(σ−1sk(i) > σ−1sk(j)), which holds by hypothesis.

For i = k and j > k+ 1, the condition becomes m′k ≥ mj−χ(σ−1(k + 1) > σ−1(j)), which
follows from mk+1 ≥ mj−χ(σ−1(k + 1) > σ−1(j)) and m′k ≥ mk+1. For (i, j) = (k, k+1) the
condition becomes m′k ≥ m′k+1 − χ(σ−1(k + 1) > σ−1(k)), which follows from the definition
of m′k and m′k+1.

For i < k = j, the condition becomes mi ≥ m′k−χ(σ−1(i) > σ−1(k + 1)). By the definition
of m′k, this is the conjunction of mi ≥ mk+1 − χ(σ−1(i) > σ−1(k + 1)) and mi ≥ mk −
χ(σ−1(k + 1) > σ−1(k)) − χ(σ−1(i) > σ−1(k + 1)). The first of these holds by hypothesis.
The second follows from the hypothesis mi ≥ mk − χ(σ−1(i) > σ−1(k)) and the inequality

(152) χ(σ−1(i) > σ−1(k)) ≤ χ(σ−1(i) > σ−1(k + 1)) + χ(σ−1(k + 1) > σ−1(k)),

which is logically equivalent to the transitive law (σ−1(i) < σ−1(k + 1)) ∧ (σ−1(k + 1) <
σ−1(k))⇒ (σ−1(i) < σ−1(k)). �

Lemma 6.1.7. The Demazure-Lusztig operators Tk in (77) have the following properties,
where (r, s) ≥ (a, b) means r ≥ a and s ≥ b.
(i) If (r, s) ≥ (c, c+ 1), then every term zukz

v
k+1 in Tk(z

r
kz

s
k+1) has (u, v) ≥ (c+ 1, c).

(ii) If (r, s) ≥ (c+ 1, c), then every term zukz
v
k+1 in T−1

k (zrkz
s
k+1) has (u, v) ≥ (c, c+ 1).

(iii) If (r, s) ≥ (c, c), then every term zukz
v
k+1 in Tk(z

r
kz

s
k+1) or T−1

k (zrkz
s
k+1) has (u, v) ≥ (c, c).

(iv) If r ≥ s, then q−1Tk(z
r
kz

s
k+1) = zskz

r
k+1 +O(zs+1

k ).

(v) If r > s, then T−1
k (zrkz

s
k+1) = zskz

r
k+1 +O(zs+1

k ).

Proof. All the properties follow from the explicit formulas

(153)

Tk(z
r
kz

s
k+1) =


q zskz

r
k+1 + (q − 1)(zrkz

s
k+1 + zr−1

k zs+1
k+1 + . . .+ zs+1

k zr−1
k+1) r > s,

q zskz
r
k+1 r = s,

zskz
r
k+1 + (1− q)(zs−1

k zr+1
k+1 + zs−2

k zr+2
k+1 + . . .+ zr+1

k zs−1
k+1) r < s,

T−1
k (zrkz

s
k+1) =


q−1 zskz

r
k+1 + (q−1 − 1)(zrkz

s
k+1 + zr+1

k zs−1
k+1 + . . .+ zs−1

k zr+1
k+1) r < s,

q−1 zskz
r
k+1 r = s,

zskz
r
k+1 + (1− q−1)(zs+1

k zr−1
k+1 + zs+2

k zr+2
k+1 + . . .+ zr−1

k zs+1
k+1) r > s.

�

Lemma 6.1.8. Let σ ∈ Sl, 1 ≤ k < l, and m,m′ ∈ Zl be as in Lemma 6.1.6, and suppose
ν ∈ Zl is such that ν ≥ m′ coordinate-wise. Let Vm = Z[q±1]{zµ | µ ≥ m}. Then the
operator Tk satisfies
(i) Tk(z

ν) ∈ Vm if σ−1(k) < σ−1(k + 1);
(ii) T−1

k (zν) ∈ Vm if σ−1(k) > σ−1(k + 1).

Proof. Since Tk acts only on the variables zk, zk+1, we need only consider the exponents µk,
µk+1 of terms zµ occurring in T±1

k (zν).
In case (i), we have (νk, νk+1) ≥ (max(mk − 1,mk+1),mk) with mk+1 ≤ mk and want to

show that (µk, µk+1) ≥ (mk,mk+1) for every term zµ in Tk(z
ν). If mk+1 < mk, this follows

from Lemma 6.1.7 (i) with c = mk − 1. If mk = mk+1, it follows from Lemma 6.1.7 (iii).
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In case (ii), we have (νk, νk+1) ≥ (max(mk,mk+1),mk) with mk+1 ≤ mk + 1 and want to
show that (µk, µk+1) ≥ (mk,mk+1) for every term zµ in T−1

k (zν). If mk+1 = mk + 1, this
follows from Lemma 6.1.7 (ii) with c = mk. If mk+1 ≤ mk, it follows from Lemma 6.1.7
(iii). �

Lemma 6.1.9. Given σ ∈ Sl and m,λ ∈ Zl, if m is σ-almost decreasing and λ ≥ m
coordinate-wise, then for every term zµ with non-zero coefficient in Eσ

λ (z; q), we have µ ≥ m
coordinate-wise.

Proof. If λ is dominant, then zλ is the only term and the result is a tautology. Otherwise,
pick an index k such that λk < λk+1. Then the recurrence (90) gives

(154) Eσ
λ =

{
q−1 Tk E

skσ
sk(λ), σ−1(k) < σ−1(k + 1),

T−1
k Eskσ

sk(λ), σ−1(k) > σ−1(k + 1).

Let m′ be the (skσ)-almost decreasing sequence given by Lemma 6.1.6 for this σ, m and k.
Then m′k ≤ max(mk,mk+1) ≤ max(λk, λk+1) = λk+1. Since m′ and sk(m) agree in all but
the k-th position, this shows that sk(λ) ≥ m′. By induction on |Inv(−λ)|, we can assume
that all terms zν in Eskσ

sk(λ) satisfy ν ≥ m′. The result now follows from Lemma 6.1.8. �

Remark 6.1.10. Suppose λ itself is σ-almost decreasing. Then Lemma 6.1.9 with m = λ
implies that µ ≥ λ coordinate-wise for every term zµ in Eσ

λ . Since Eσ
λ is homogeneous of

degree |λ|, µ ≥ λ implies µ = λ. Hence, Eσ
λ = zλ. In fact, it can be shown that Eσ

λ = zλ if
and only if λ is σ-almost decreasing.

Lemma 6.1.11. Given σ, m and λ as in Lemma 6.1.9, suppose that m+εj is also σ-almost
decreasing, where εj is the j-th unit coordinate vector. Then the coefficient of z

mj
j in Eσ

λ is
given by

(155) 〈zmjj 〉Eσ
λ (z; q) =

{
Eτ
λ̂
(z1, . . . , zj−1, zj+1, . . . , zl; q) λj = mj,

0 λj > mj,

where λ̂ = (λ1, . . . , λj−1, λj+1, . . . , λl) and τ ∈ Sl−1 is the permutation such that τ−1(1), . . . ,
τ−1(l − 1) are in the same relative order as σ−1(1), . . . , σ−1(j − 1), σ−1(j + 1), . . . , σ−1(l).

Proof. If λj > mj, we have λ ≥ m+ εj. Since m+ εj is assumed to be σ-almost decreasing,
the result follows from Lemma 6.1.9 in this case. Now assume that λj = mj.

If λ is dominant, so is λ̂. Then both sides of (155) reduce to zλ11 · · · z
λj−1

j−1 z
λj+1

j+1 · · · zλ
l

l . If λ
is not dominant, we proceed by induction on |Inv(−λ)|, again using the recurrence (154) for
some index k such that λk < λk+1.

If k 6∈ {j − 1, j}, then using Lemma 6.1.6 for this σ, m and k, and using it again with
m+ εj in place of m, we get a sequence m′ such that both m′ and m′ + εj are (skσ)-almost
decreasing. We also have sk(λ) ≥ m′, as in the proof of Lemma 6.1.9. Then we have

(156) 〈zmjj 〉E
skσ
sk(λ)(z; q) = E

sk′τ

sk′ (λ̂)
(z1, . . . , zj−1, zj+1, . . . , zl; q)

by induction, where k′ = k if k < j − 1 and k′ = k − 1 if k > j. Note that sk′τ and sk′(λ̂)

are to skσ and sk(λ) as τ and λ̂ are to σ and λ.
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Letting ẑ denote the variables with zj omitted, the recurrence for Eτ
λ̂

takes the form

(157) Eτ
λ̂
(ẑ; q) =

{
q−1 Tk E

sk′τ

sk′ (λ̂)
(ẑ; q), σ−1(k) < σ−1(k + 1),

T−1
k E

sk′τ

sk′ (λ̂)
(ẑ; q), σ−1(k) > σ−1(k + 1).

To see this, observe that the variables zk, zk+1 on which Tk acts are in positions k′, k′+1 in ẑ,
and that τ−1(k′) < τ−1(k′+ 1) if and only if σ−1(k) < σ−1(k+ 1). For k 6∈ {j − 1, j}, taking
the coefficient of z

mj
j commutes with Tk, so (154), (156), and (157) imply 〈zmjj 〉Eσ

λ (z; q) =
Eτ
λ̂
(ẑ; q), as desired.
Since m + εj is σ-almost decreasing, we have λj−1 ≥ mj−1 ≥ mj = λj, so we never have

k = j − 1. This leaves the case k = j. In this case, let

(158) m′ = (m1, . . . ,mj−1,m
′
j,m

′
j+1,mj+2, . . . ,ml),

where

(159)
m′j = mj + χ(σ−1(j) > σ−1(j + 1)),

m′j+1 = mj.

Then sj(λ) ≥ m′, since λj+1 > λj implies λj+1 ≥ mj + 1 ≥ m′j. Provided that m′ and
m′ + εj+1 are (sjσ)-almost decreasing, the inductive hypothesis implies

(160) 〈zm
′
j+1

j+1 〉E
sjσ

sj(λ)(z; q) = Eτ
λ̂
(z1, . . . , zj, zj+2, . . . , zl; q),

since deleting position j + 1 from sjσ and sj(λ) gives the same τ and λ̂ as deleting position
j from σ and λ. We now verify that m′ and m′ + εj+1 are indeed (sjσ)-almost decreasing.
We then complete the proof by showing that 〈zmjj 〉Eσ

λ (z; q) = sj
(
〈zmjj+1〉E

sjσ

sj(λ)(z; q)
)
, which is

equal to Eτ
λ̂
(ẑ; q) by (160) and the fact that mj = m′j+1.

For j 6∈ {r, s}, the conditions on entries in positions r < s for m′ and m′ + εj+1 to be
(sjσ)-almost decreasing reduce to the conditions in positions sj(r) < sj(s) for m and m+ εj
to be σ-almost decreasing.

In positions r < j, the required condition for both m′ and m′ + εj+1 is mr ≥ m′j −
χ(σ−1(r) > σ−1(j + 1)). This follows frommr ≥ mj+1−χ(σ−1(r) > σ−1(j)), which holds be-
cause m+εj is σ-almost decreasing, and 1−χ(σ−1(r) > σ−1(j)) ≥ χ(σ−1(j) > σ−1(j + 1))−
χ(σ−1(r) > σ−1(j + 1)), which is logically equivalent to (σ−1(r) < σ−1(j + 1)) ∧ (σ−1(j) >
σ−1(j + 1))⇒ (σ−1(r) < σ−1(j)).

In positions j and s > j + 1 the required condition is m′j ≥ ms − χ(σ−1(j + 1) > σ−1(s)).

This follows from mj ≥ ms − χ(σ−1(j) > σ−1(s)), which holds because m is σ-almost de-
creasing, and χ(σ−1(j) > σ−1(s)) ≤ χ(σ−1(j) > σ−1(j+ 1)) +χ(σ−1(j + 1) > σ−1(s)), which
is logically equivalent to (σ−1(j) < σ−1(j+ 1))∧ (σ−1(j+ 1) < σ−1(s))⇒ (σ−1(j) < σ−1(s)).

Finally, in positions j, j+ 1, the condition on m′+ εj+1, which is stronger than the one on
m′, is m′j ≥ m′j+1 + 1 − χ(σ−1(j + 1) > σ−1(j)). This holds with equality by the definition
of m′j, m

′
j+1.

We have left to prove that 〈zmjj 〉Eσ
λ (z; q) = sj

(
〈zmjj+1〉E

sjσ

sj(λ)(z; q)
)
. We do this by using the

expression for Eσ
λ in terms of E

sjσ

sj(λ) given by the recurrence (154) with k = j.

By Lemma 6.1.9, every term zν of E
sjσ

sj(λ) satisfies ν ≥ m′.
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In the case σ−1(j) < σ−1(j + 1), this gives (νj, νj+1) ≥ (mj,mj). If νj+1 = mj, then we
have 〈zmjj 〉 q−1Tjz

ν = sj(〈z
mj
j+1〉 zν) by Lemma 6.1.7 (iv). If νj+1 > mj, then 〈zmjj 〉Tjzν = 0 =

〈zmjj+1〉zν by Lemma 6.1.7 (i), and we again have 〈zmjj 〉 q−1Tjz
ν = sj(〈z

mj
j+1〉 zν).

In the case σ−1(j) > σ−1(j + 1), we have (νj, νj+1) ≥ (mj + 1,mj). If νj+1 = mj, then
〈zmjj 〉T−1

j zν = sj(〈z
mj
j+1〉 zν) by Lemma 6.1.7 (v). If νj+1 > mj, then 〈zmjj 〉Tjzν = 0 = 〈zmjj+1〉zν

by Lemma 6.1.7 (iii), again giving 〈zmjj 〉T−1
j zν = sj(〈z

mj
j+1〉 zν).

In either case, (154) yields 〈zmjj 〉Eσ
λ = sj

(
〈zmjj+1〉E

sjσ

sj(λ)

)
, as desired. �

The next two lemmas will be stated and proved for a composition r that we implicitly
assume is strict. However, both lemmas generalize immediately to weak compositions by
Remark 5.2.2 (ii).

Lemma 6.1.12. Given a composition r = (r1, . . . , rk), a permutation σ ∈ Sk, and a choice
of ρr, let r′ = wk0(r) and ρr′ = w0w

r
0(ρr); i.e., the blocks of ρr′ are those of ρr in reverse

order. Then for any tuple of partitions λ = (λ(1), . . . , λ(k)) such that `(λ(i)) ≤ ri, we have

(161) z−ρrF σ
r,λ+ρr(z; q) = w0

(
z−ρr′E

wk0σ

r′,λ′+ρr′
(z; q−1)

)
,

with notation λ+ ρr and λ′ + ρr′ as in Theorem 6.1.3, and λ′ = (λ(k), . . . , λ(1)).

Proof. Follows from (95). �

Lemma 6.1.13. Given a composition r = (r1, . . . , rk) and a permutation σ ∈ Sk, fix a choice
of ρr with σ-almost decreasing block minima. Then the Laurent polynomials z−ρrEσ

r,λ+ρr
(z; q)

for weights λ ∈ N|r| ∩X+(GLr) are polynomials in z, and form a basis of the ring k[z]Sr of
Sr invariant polynomials.

Remark 6.1.14. The condition λ ∈ N|r| ∩ X+(GLr) means that λ is a concatenation of
partitions λ(1), . . . , λ(k) of lengths `(λ(i)) ≤ ri, where λ(i) is padded with zeroes to length ri.

Proof of Lemma 6.1.13. Let m̂ = (mr1
1 , . . . ,m

rk
k ) be the concatenation of constant blocks

(mri
i ), where m1, . . . ,mk are the block minima of ρr. Then m̂ is σ̂-almost decreasing and

λ + ρr ≥ m̂ for every λ ∈ N|r| ∩X+(GLr), so Lemma 6.1.9 implies that z−m̂Eσ̂
λ+ρr

(z; q) is a
polynomial in z. Note that ρ′r = ρr − m̂ is the weight satisfying (82) whose block minima
are equal to zero. Since δr commutes with multiplication by the Sr invariant monomial zm̂,
we have z−ρrEσ

r,λ+ρr
= z−ρ

′
rδr z−m̂Eσ̂

λ+ρr
.

We now check that the Sr invariant Laurent polynomial z−ρ
′
rδr z−m̂Eσ̂

λ+ρr
is in fact a

polynomial in z. Consider a monomial zν appearing in z−m̂Eσ̂
λ+ρr

(z; q), which must satisfy

ν ∈ N|r| by the previous paragraph. From (85) we obtain

(162) z−ρ
′
rδr(z

ν) =

{
±χν+−ρ′r(GLr) if ν is GLr regular,

0 otherwise,

where ν+ is the GLr dominant weight in the Sr orbit of ν. If ν ∈ N|r| is GLr regular, then
ν+ ∈ N|r|∩X++(GLr) satisfies ν+ ≥ ρ′r coordinate-wise, so χν+−ρ′r is a polynomial character.

Since the polynomial characters χλ(GLr) for λ ∈ N|r| ∩X+(GLr) are a basis of k[z]Sr , it
follows from (100) that the polynomials z−ρrEσ

r,λ+ρr
are also a basis. �
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Corollary 6.1.15. If, instead, the block minima of ρr are σ-almost increasing, Lemma 6.1.13
holds with z−ρrF σ

r,λ+ρr
(z; q) in place of z−ρrEσ

r,λ+ρr
(z; q)

Proof. The reverse of a σ-almost increasing sequence is (w0σ)-almost decreasing. In particu-
lar, if the block minima of ρr are σ-almost increasing, then those of ρr′ in Lemma 6.1.12 are
(wk0σ)-almost decreasing. The corollary now follows from Lemmas 6.1.12 and 6.1.13. �

Lemma 6.1.16. Suppose we are given weak compositions r = (r1, . . . , rk), r′ = (r′1, . . . , r
′
k)

such that ri ≤ r′i for all i, a permutation σ ∈ Sk, and a choice of ρr, ρr′ with associated
block maxima and minima, in keeping with Convention 6.1.2. Assume that ρr and ρr′ have
the same block maxima Mi, and that the block minima mi of ρr′ and ni of ρr are σ-almost
decreasing and satisfy mi ≤ ni for all i (note that ri ≤ r′i already implies mi ≤ ni for r′i > 0).

Let z (resp. z′) be a list of |r| (resp. |r′|) variables, subdivided into blocks Z1, . . . , Zk
(resp. Z ′1, . . . , Z

′
k) of lengths r1, . . . , rk (resp. r′1, . . . , r

′
k). Let λ(1), . . . , λ(k) be partitions

with `(λ(i)) ≤ r′i, and define λ + ρr′ as in Theorem 6.1.3, so that by Lemma 6.1.13,
(z′)−ρr′Eσ

r′,λ+ρr′
(z′; q) is a symmetric polynomial in each block of variables Z ′i, and if `(λ(i)) ≤

ri for all i, then z−ρrEσ
r,λ+ρr

(z; q) is a symmetric polynomial in each block of variables Zi.
Upon specializing ri of the variables in each block Z ′i to Zi and setting the other variables

to zero, we then have

(163) (z′)−ρr′Eσ
r′,λ+ρr′

(z′; q)
∣∣
Z′i 7→Zi

=

{
z−ρrEσ

r,λ+ρr
(z; q) if `(λ(i)) ≤ ri for all i,

0 otherwise.

Proof. Observe that the specialization property (163) is ‘transitive’—that is, given r ≤ r′ ≤
r′′ coordinate-wise, if (163) holds for specialization from z′′ to z′ and from z′ to z, then it
holds for specialization from z′′ to z. This is true even if r, r′, r′′ are weak compositions,
with some blocks of variables empty. Using this and Lemma 6.1.5, we can reduce to the case
that the block minima of ρr and ρr′ differ by a unit coordinate vector εj.

If r′j = 0, then r = r′ and the specialization property is trivial, so we assume that r′j > 0.
Then rj = r′j − 1, and ri = r′i for all i 6= j. Thus, we are specializing one variable in Z ′j to
zero and leaving the other blocks Z ′i unchanged, apart from renaming the variables. We can
also assume for simplicity that ri > 0 for i 6= j, since deleting any parts ri = r′i = 0 preserves
the hypotheses and does not change the conclusion.

Let m = (m1, . . . ,mk) be the sequence of block minima of ρr′ . That of ρr is then m+ εj.
Let m̂ be the concatenation of constant blocks (mri

i ), except for the j-th block, which we
take to be ((mj + 1)rj ,mj), so its length is r′j = rj + 1. The assumption that m and
m + εj are σ-almost decreasing implies that m̂ and m̂ + ε̂ are σ̂-almost decreasing, where
̂ = r1 + · · ·+ rj + 1 is the last index in the j-th block.

Now consider the right hand side of (163). By Lemma 6.1.11, since λ + ρr′ ≥ m̂, the
coefficient 〈(z′̂)mj〉Eσ̂

λ+ρr′
(z′; q) becomes Eσ̂

λ+ρr
(z; q) after renaming the variables if `(λ(j)) ≤

rj, or zero if `(λ(j)) = r′j. Note that σ̂ in Eσ̂
λ+ρr

is defined with respect to r, and that this is
the τ in Lemma 6.1.11 when we take σ there to be σ̂ defined with respect to r′, and j to be
̂. Hence, the right hand side of (163) is given by

(164) z−ρrδr

((
〈(z′̂)mj〉Eσ̂

λ+ρr′
(z′; q)

)∣∣
ẑ′→z

)
,
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where ẑ′ stands for z′ with z′̂ omitted.
To complete the proof we need to show that (164) is equal to the left hand side of (163),

which by definition is

(165) (z′)−ρr′δr′ E
σ̂
λ+ρr′

(z′; q)
∣∣
Z′i 7→Zi

.

For this it suffices to show that

(166) (z′)−ρr′δr′ (z
′)ν
∣∣
Z′i 7→Zi

= z−ρrδr

((
〈(z′̂)mj〉 (z′)ν

)∣∣
ẑ′→z

)
for all terms (z′)ν occurring in Eσ̂

λ+ρr′
(z′; q). Thus, by Lemma 6.1.9, we can assume ν ≥ m̂.

If ν is not GLr′ regular, then (z′)−ρr′δr′ (z
′)ν = 0. If ν is GLr′ regular, then

(z′)−ρr′δr′ (z
′)ν = ±χµ(GLr′), where ν+ = µ+ρr′ is the dominant GLr′ weight in the Sr′ orbit

of ν, that is, ν+ is the weight obtained by sorting each block of ν into decreasing order. As
in the proof of Lemma 6.1.13, only polynomial characters χµ(GLr′) arise, so we can regard
the index µ as a tuple of partitions (µ(1), . . . , µ(k)) with `(µ(i)) ≤ r′i.

If ν̂ > mj, the right hand side of (166) vanishes. Since ν ≥ m̂, all entries of ν in the
j-th block (of length r′j = rj + 1) are greater than mj, and the same holds for ν+. If ν
is not GLr′ regular, the left side of (166) vanishes immediately. If ν is GLr′ regular, then
the corresponding character χµ(GLr′) has `(µ(j)) = r′j. In that case χµ(GLr′) vanishes upon
specializing one of the variables Z ′j to zero. Hence the left hand side of (166) vanishes in
either case.

If ν̂ = mj, then
(
〈(z′̂)mj〉 (z′)ν

)∣∣
ẑ′→z

= zκ, where κ is just ν with the entry in position
̂ deleted. In this case ν̂ is strictly less than all other entries in the j-th block. Hence,
ν is GLr′ regular if and only if κ is GLr regular, and when these hold, the permutation
v ∈ Srj ⊆ Sr such that κ = v(κ+) has the same length as the permutation w ∈ Sr′j ⊆ Sr′

such that ν = w(ν+). Indeed, the two permutations agree on the interval [̂− rj, ̂− 1], and
w fixes ̂.

Hence, we have (z′)−ρr′δr′ (z
′)ν = ±χµ(GLr′) and z−ρrδr zκ = ±χµ(GLr) for the same

tuple of partitions µ such that `(µ(i)) ≤ ri, and with the same sign. Now (166) follows
because χµ(GLr′) specializes to χµ(GLr) upon setting one variable in the j-th block Z ′j to
zero. �

Corollary 6.1.17. If the block minima of ρr and ρr′ are σ-almost increasing instead of σ-
almost decreasing, then Lemma 6.1.16 holds with (z′)−ρr′F σ

r′,λ+ρr′
(z′; q) and z−ρrF σ

r,λ+ρr
(z; q)

in place of (z′)−ρr′Eσ
r′,λ+ρr′

(z′; q) and z−ρrEσ
r,λ+ρr

(z; q).

Proof. Follows from Lemma 6.1.16 using Lemma 6.1.12 in the same way that Corollary 6.1.15
follows from Lemma 6.1.13. �

Proof of Theorem 6.1.3. First we consider the case when r = s. Inverting the variables yi
and q, we are to prove

(167)

∏
i<j Ω[−q−1 tXiYj]∏
i≤j Ω[−tXiYj]

=
∑
λ

t|λ| x−ρrEσ
r,λ+ρr(x; q) y−ρrF σ

r,λ+ρr
(y; q),

where the index λ ranges over all k-tuples of partitions with `(λ(i)) ≤ ri. By Corollary 6.1.15,

the functions y−ρrF σ
r,λ+ρr

(y; q) appearing in the sum form a basis of k[y−1
1 , . . . , y−1

r ]Sr . We
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need to show that the coefficient of each such basis element in the product on the left hand
side is t|λ| x−ρrEσ

r,λ+ρr
(x; q). By Proposition 5.3.1, the coefficient in question is given by

(168)
〈

y−ρrEσ
r,λ+ρr(y; q),

∏
i<j Ω[−q−1 tXiYj]∏
i≤j Ω[−tXiYj]

〉r
q
,

where the inner product is in the y variables. Note that it is permissible to perform such
operations term by term in the power series in t on each side of (167).

By Lemma 6.1.13, y−ρrEσ
r,λ+ρr

(y; q) is in fact a polynomial in y and not just a Laurent
polynomial. Moreover, it is homogeneous of degree |λ|. Hence, the result follows if we show
that

(169) f(tx) =
〈
f(y),

∏
i<j Ω[−q−1 tXiYj]∏
i≤j Ω[−tXiYj]

〉r
q

for every Sr invariant polynomial f ∈ k[y]Sr . Let Xi and Yi outside the plethystic brackets
stand for the list of variables in each block, so that f(y) = f(Y1, . . . , Yk), for instance. Using
the definition (110) of the inner product, the right hand side of (169) can then be written

(170) 〈1GLr〉 f(Y1, . . . , Yk)

∏
i<j Ω[−q−1 tXiYj]∏
i≤j Ω[−tXiYj]

∏
i<j

Ω[−YiYj]
Ω[−q−1YiYj]

,

where the coefficient 〈1GLr〉 is taken in the y variables. Note that this is the same as taking
the coefficient of 1GLri

(Yi) in each block of variables separately.

The only part of (170) that involves Y1 is the factor Ω[−tX1Y1]−1 = Ω[tX1Y1]; everything
else involves only symmetric polynomials in Y1. The classical Cauchy identity implies

(171) 〈1GLr1
〉g(Y1) Ω[tX1Y1] = g(tX1)

for every symmetric polynomial g(Y1), by reducing to the case that g is a Schur function.
Taking the coefficient 〈1GLr〉 by starting with GLr1 and using (171) reduces (170) to

(172) 〈1GL(r2,...,rk)
〉 f(tX1, Y2, . . . , Yk)

∏
1<i<j Ω[−q−1 tXiYj]∏

1<i≤j Ω[−tXiYj]

∏
1<i<j

Ω[−YiYj]
Ω[−q−1YiYj]

,

once we observe that after removing the factor Ω[tX1Y1] and setting Y1 = tX1 in the rest,
all factors with index i = 1 cancel. We can assume by induction on k that (172) reduces to
f(tx).

For the general case, choose an integerN less than or equal to allMi, mi and ni. Define r′ =
(r′1, . . . , r

′
k) by r′i = Mi−N+1 and choose ρr′ to have block maxima Mi and (hence) constant

block minima m′i = N . The constant sequence (N, . . . , N) is both σ-almost decreasing and
σ-almost increasing, so the case of the theorem with equal compositions holds for r′ and ρr′ ,
by what was shown above (note that since we chose N ≤ Mi for all i, ρr′ has no artificial
zero-length blocks). Denote the blocks of variables in this case by X ′i, Y

′
i . By the choice of

N , we have ri, si ≤ r′i, so there are at least as many variables in each block X ′i, Y
′
i as in Xi,

Yi.
Specializing ri of the variables in each X ′i to Xi and si of the variables in Y ′i to Yi,

and setting the other variables to zero, the left hand side of (147) with both compositions
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equal to r′ reduces to the left hand side for compositions r and s. By Lemma 6.1.16 and
Corollary 6.1.17, the same thing happens on the right hand side. Thus, the general case
follows from the case already proven. �

6.2. Winding permutations. We use the following notions from [6, Definition 5.2.1].

Definition 6.2.1. A permutation σ ∈ Sk is a winding permutation if σ(1), . . . , σ(k) are in
the same relative order as c1, . . . , ck, where ci = {y + x i} are the fractional parts of an
arithmetic progression, for any real x, y with x assumed irrational, so the ci are distinct.

The descent indicator of σ is the {0, 1}-valued vector (η1, . . . , ηk−1) defined by

(173) ηi = χ(σ(i) > σ(i+ 1)).

The head and tail of σ are the permutations τ, θ ∈ Sk−1 such that τ(1), . . . , τ(k− 1) are in
the same relative order as σ(1), . . . , σ(k − 1) and θ(1), . . . , θ(k − 1) are in the same relative
order as σ(2), . . . , σ(k).

Proposition 6.2.4, below, is the counterpart of [6, Proposition 5.2.2] for semi-symmetric
Hall-Littlewood polynomials. We start with a more general identity.

Lemma 6.2.2. Let τ, θ ∈ Sk and η ∈ Zk be such that |ηi − ηj| ≤ 1 for all i, j, and

(a) ηi = ηj implies τ(i) < τ(j)⇔ θ(i) < θ(j), i.e., τ and θ are in the same relative order
in positions i, j;

(b) ηi − ηj = 1 implies τ(i) > τ(j) and θ(i) < θ(j), i.e., θ(η) is dominant and τ(η) is
antidominant.

Given a composition r = (r1, . . . , rk), let η̂ = (ηr11 , . . . , η
rk
k ) be the concatenation of constant

blocks (ηrii ). Then for every µ ∈ X++(GLr) we have the identities

Eθ−1

r,µ (z; q) = zη̂ Eτ−1

r,µ−η̂(z; q),(174)

F θ−1

r,µ (z; q) = zη̂ F τ−1

r,µ−η̂(z; q).(175)

Proof. First we show that (174) implies (175). Note that w0τ , w0θ and −η satisfy the same
hypothesis as τ , θ and η. Hence, assuming the validity of (174), we have

(176) F θ−1

r,µ (z; q) = zρr−w
r
0(ρr)E

(w0θ)−1

r,−wr
0(µ)(z; q)

= zρr−w
r
0(ρr)z−η̂E

(w0τ)−1

r,−wr
0(µ)+η̂(z; q) = zη̂ F τ−1

r,µ−η̂(z; q),

using (94) and (107). It remains to prove (174).
Let ∼ denote equality up to a non-zero scalar factor. Since η̂ is Sr invariant, (100) implies

that both sides of (174) have leading term zρrχµ−ρr with coefficient 1. Hence, if (174) holds
up to ∼ equivalence, then it holds with equality.

Let l = |r|, and let λ+ denote the dominant weight in the Sl orbit of any GLl weight
λ ∈ Zl. The entries of η and η̂ take at most two values c and c + 1. As in the proof
of [6, Proposition 5.2.2], this implies that there is a w ∈ Sl such that µ = w(µ+) and
µ− η̂ = w((µ− η̂)+). Note that (µ− η̂)+ = µ+−w−1(η̂). Hence, up to ∼ equivalence, (174)
can be written

(177) δr T
−1

θ̃
Tθ̃w(zµ+) ∼ zη̂ δr T

−1
τ̃ Tτ̃w(z−w

−1(η̂) zµ+),
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where θ̃ = (θ̂−1)−1, τ̃ = (τ̂−1)−1. Since multiplication by the Sr invariant monomial zη̂ com-

mutes with δr, (177) follows if we prove the operator identity T−1

θ̃
Tθ̃w ∼ zη̂ T−1

τ̃ Tτ̃w z−w
−1(η̂),

or equivalently

(178) T−1

θ̃w
Tθ̃ zη̂ T−1

τ̃ Tτ̃w ∼ zw
−1(η̂).

We now prove (178) for all w ∈ Sl by induction on `(w). For this we use the well-known
operator identities (the same as [6, (115)])

Ti z
µ T−1

i = T−1
i zµ Ti = zµ = zsiµ if 〈α∨i , µ〉

def
= µi − µi+1 = 0,(179)

Ti z
µ Ti = q zsiµ if 〈α∨i , µ〉 = −1,(180)

T−1
i zµ T−1

i = q−1 zsiµ if 〈α∨i , µ〉 = 1,(181)

which follow directly from the definition of Ti.
The base case w = 1 of the induction is trivial. Otherwise, let w = vsi > v, and assume

by induction that

(182) T−1

θ̃v
Tθ̃ zη̂ T−1

τ̃ Tτ̃ v ∼ zv
−1(η̂).

We have T−1

θ̃w
= T e1i T

−1

θ̃v
and Tτ̃w = Tτ̃ vT

e2
i , where

(183) e1 =

{
−1 θ̃vsi > θ̃v

1 θ̃vsi < θ̃v
, e2 =

{
1 τ̃ vsi > τ̃v

−1 τ̃ vsi < τ̃v
.

Then (182) implies (178), provided we show that

(184) T e1i zv
−1(η̂)T e2i ∼ zsiv

−1(η̂) = zw
−1(η̂).

Set a = v(i), b = v(i + 1), and let a′, b′ ∈ [k] be the indices of the blocks containing a and
b in the partition of [l] into intervals of lengths r1, . . . , rk. Note that vsi > v implies a < b,

and that, in the same way, we have τ̂ vsi > τ̂v ⇔ τ̂(a) < τ̂(b) and θ̂vsi > θ̂v ⇔ θ̂(a) < θ̂(b).
Case I: η̂a = η̂b. One way this can happen is if a′ = b′, so a and b are in the same

block. Since τ̃ and θ̃ are increasing on each block, we then have θ̃vsi > θ̃v, τ̃ vsi > τ̃v,
e1 = −1, e2 = 1. Otherwise, if a′ 6= b′, we have ηa′ = ηb′ . By hypothesis, we then have

τ(a′) < τ(b′) ⇔ θ(a′) < θ(b′). By construction, this implies τ̃(a) < τ̃(b) ⇔ θ̃(a) < θ̃(b), or

equivalently τ̃ vsi > τ̃v ⇔ θ̃vsi > θ̃v, hence e2 = −e1. Thus, we have e2 = −e1 either way,
and since 〈α∨i , v−1(η̂)〉 = η̂a − η̂b = 0, (184) reduces to (179).

Case II: η̂a − η̂b = ηa′ − ηb′ = 1. Then τ(a′) > τ(b′) and θ(a′) < θ(b′) by hypothesis,

which implies τ̃(a) > τ̃(b) and θ̃(a) < θ̃(b) by construction. In other words, τ̃ vsi > τ̃v and

θ̃vsi < θ̃v, so e1 = e2 = −1. In this case, 〈α∨i , v−1(η̂)〉 = 1, so (184) reduces to (181).
Case III: η̂a− η̂b = ηa′ − ηb′ = −1. The reasoning in Case II with a and b exchanged gives

e1 = e2 = 1. Since 〈α∨i , v−1(η̂)〉 = −1, (184) reduces to (180). �

Remark 6.2.3. In the proof of Lemma 6.2.2, we implicitly assumed that r was a strict com-
position. However, with the conventions in Remark 5.2.2 (ii), the weak composition case
follows from the strict composition case.
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Proposition 6.2.4. If σ ∈ Sk+1 is a winding permutation, then its descent indicator η =
(η1, . . . , ηk) and head and tail τ, θ ∈ Sk satisfy the hypotheses of Lemma 6.2.2. Hence,
given a (strict or weak) composition r = (r1, . . . , rk), identities (174–175) hold for every
µ ∈ X++(GLr).

Proof. By definition, η is {0, 1}-valued, so |ηi − ηj| < 1 for all i, j. Let c = (c1, . . . , ck+1) be
the sequence ci = {y + xi} in the definition of the winding permutation σ. Since adding an
integer to x does not change c, we can assume 0 < x < 1. Then, since σ and c are in the
same relative order, we have

(185)
ηi = 1 ⇔ σ(i) > σ(i+ 1) ⇔ ci > ci+1 ⇔ ci+1 = ci + x− 1,

ηi = 0 ⇔ σ(i) < σ(i+ 1) ⇔ ci < ci+1 ⇔ ci+1 = ci + x.

If ηi = ηj, then ci+1 − ci = cj+1 − cj, so ci+1 − cj+1 = ci − cj and ci < cj ⇔ ci+1 < cj+1.
Then σ(i) < σ(j) ⇔ σ(i + 1) < σ(j + 1), or equivalently, τ(i) < τ(j) ⇔ θ(i) < θ(j). This
shows that hypothesis (a) in Lemma 6.2.2 is satisfied.

If ηi − ηj = 1, that is, if ηi = 1 and ηj = 0, then ci+1 = ci + x− 1 and cj+1 = cj + x imply
ci+1 − cj+1 = ci − cj − 1. Since |ci − cj| < 1 and |ci+1 − cj+1| < 1, we must have ci − cj > 0
and ci+1 − cj+1 < 0. Then σ(i) > σ(j) and σ(i + 1) < σ(j + 1), or equivalently, τ(i) > τ(j)
and θ(i) < θ(j). This shows that hypothesis (b) in Lemma 6.2.2 is satisfied.

By Remark 6.2.3, we can conclude that (174–175) hold even if r is a weak composition. �

7. Proof of the main results

7.1. Stable form of the main theorem. In §7.2, we prove the combinatorial Theo-
rem 3.5.1 by restricting to the polynomial part of a stronger infinite series identity, given by
the following theorem, which expresses the full Catalanimal in (39) in terms of LLT series.

Theorem 7.1.1. Given a positive integer h and real numbers s, p with p irrational, let

(186) bi = bs− p (i− 1)c − bs− p ic, ci = {s− p (i− 1)}
for i = 1, . . . , h + 1, where {a} = a − bac denotes the fractional part of a. Let σ ∈ Sh+1 be
the permutation such that σ(1), . . . , σ(h + 1) are in the same relative order as c1, . . . , ch+1,
and let τ, θ ∈ Sh be its head and tail. Let (u1, . . . , uh), (v1, . . . , vh) be integer sequences which
are respectively θ−1-almost decreasing and τ−1-almost increasing, that is,

(187) ui ≥ uj − χ(θ(i) > θ(j)), vi ≤ vj + χ(τ(i) < τ(j)) for all i < j,

and let γ = (γ1, . . . , γh) ∈ Zh+ be a sequence of positive integers with first differences

(188) γi+1 − γi = ui − vi+1.

Fix ρw0(γ), ρ
′
w0(γ) satisfying (82) for GLw0(γ), with block minima uh+1−i for ρw0(γ) and vh+1−i

for ρ′w0(γ). Then

(189) H(Rq, Rt, Rqt, ((u1 − v1 + b1)γ1 , . . . , (uh − vh + bh)
γh))

=
∑
λ

t|λ|Lτw0

w0(γ), ((0;λ)+(b
γh
h ,...,b

γ1
1 )+ρw0(γ))/((λ;0)+ρ′

w0(γ)
)
(z; q),
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where λ ranges over tuples of partitions (λ(h−1), . . . , λ(1)) such that `(λ(i)) ≤ min(γi, γi+1),
we form (0;λ) and (λ; 0) by prepending or appending an empty partition to λ, and we in-
terpret these as weights in X+(GLw0(γ)) by padding the i-th component to length γh+1−i and
concatenating, as in Theorem 6.1.3.

The root sets are defined by αij ∈ Rq = Rt if i < j are in distinct blocks of the partition
of {1, . . . , |γ|} into intervals of length γi, and αij ∈ Rqt if i < j are in distinct, non-adjacent
blocks; in other words, Rq = Rt = R+ \R+(GLγ) and Rqt = [Rq, Rt].

Example 7.1.2. Before turning to the proof, we give an example to clarify the notation in
Theorem 7.1.1. Let h = 4, p ≈ .67, and s = 6.5. Then (b1, . . . , b5) = (1, 0, 1, 1, 0) and
(c1, . . . , c5) ≈ (.5, .83, .16, .49, .82). The permutation σ with the same relative order as the
numbers ci is σ = (3, 5, 1, 2, 4) in one-line notation. Its head and tail are τ = (3, 4, 1, 2) and
θ = (4, 1, 2, 3).

The sequences (u1, . . . , u4) = (1, 2, 0, 0) and (v1, . . . , v4) = (1, 0, 3, 2) satisfy the required
almost-decreasing/increasing conditions. The sequence γ = (3, 4, 3, 1) has first differences
(u1, u2, u3)− (v2, v3, v4) = (1,−1,−2).

On the left hand side of (189) we have the Catalanimal

H(Rq, Rt, Rqt, (1, 1, 1, 2, 2, 2, 2,−2,−2,−2,−1))

in |γ| = 11 variables z = z1, . . . , z11. A root αij (i < j) belongs to Rq = Rt if i and j are
in distinct blocks of the partition {{1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10}, {11}}, and to Rqt if i and
j are in non-adjacent blocks.

The terms on the right hand side of (189) are indexed by triples of partitions λ(3) = (λ3,1),
λ(2) = (λ2,1, λ2,2, λ2,3), λ(1) = (λ1,1, λ1,2, λ1,3) of lengths at most 1, 3 and 3, respectively. More
explicitly, the term indexed by a given triple is

L(2,1,4,3)
(1,3,4,3),β/α(z; q), where

β = ( 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1 )
+ ( 0, 2, 1, 0, 5, 4, 3, 2, 3, 2, 1 )
+ ( 0, λ3,1, 0, 0, λ2,1, λ2,2, λ2,3, 0, λ1,1, λ1,2, λ1,3 )

α = ( 2, 5, 4, 3, 3, 2, 1, 0, 3, 2, 1 )
+ ( λ3,1, λ2,1, λ2,2, λ2,3, λ1,1, λ1,2, λ1,3, 0, 0, 0, 0 ).

Note that for λ = ∅, β − α reduces to the reverse of the weight vector in the Catalanimal.

Proof of Theorem 7.1.1. We will prove a stronger identity

(190) z((u1−v1+b1)γ1 ,...,(uh−vh+bh)γh )

∏
α∈Rqt(1− q t z

α)∏
α∈Rt(1− t zα)

=
∑
λ

t|λ|w0

(
F

(τw0)−1

w0(γ), ((0;λ)+(b
γh
h ,...,b

γ1
1 )+ρw0(γ))

(z; q)E
(τw0)−1

w0(γ),((λ;0)+ρ′
w0(γ)

)(z; q)
)
.

Then (189) follows from Proposition 5.4.3 after applying the operator Hγ
q in (124) to both

sides of (190).
By construction, we have γi + ui = γi+1 + vi+1. Define

(191) M1 = γ1 + v1 − 1, M2 = γ2 + v2 − 1 = γ1 + u1 − 1, . . . , Mh+1 = γh + uh − 1.
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We now apply our Cauchy identity, Theorem 6.1.3, with k = h+ 1, taking the σ there to be
(σw0)−1, setting

(192) r = (0, γh, . . . , γ1), s = (γh, . . . , γ1, 0),

and taking ρr and ρs to have block maxima Mh+1, . . . ,M1. We ascribe arbitrarily large
artificial minima denoted by∞ to the empty first block of ρr and last block of ρs. The block
minima are then

(193) ρr : (∞, vh, . . . , v1), ρs : (uh, . . . , u1,∞).

By (187), these sequences are (σw0)−1-almost decreasing and (σw0)−1-almost increasing,
respectively, so the hypotheses of Theorem 6.1.3 are satisfied. Note that (193) also implies
that ρr = ρ′w0(γ) and ρs = ρw0(γ).

We set the variables x and y in (147) to x = w0(z), y = w0(z), that is, xi = z−1
l+1−i,

yi = zl+1−i, where l = |γ|. Grouping the variables x into blocks Xi of size ri, the variables
y into blocks Yi of size si, and the variables z into blocks Zi of size γi, we then have
(X1, . . . , Xh+1) = (0, Zh, . . . , Z1) and (Y1, . . . , Yh+1) = (Zh, . . . , Z1, 0). Theorem 6.1.3 now
yields

(194)

∏
α∈Rqt(1− q t z

α)∏
α∈Rt(1− t zα)

=

∏
i+1<j Ω[−q t ZiZj]∏
i<j Ω[−t ZiZj]

= z((v1−u1)γ1 ,...,(vh−uh)γh )
∑
λ

t|λ|w0

(
F

(σw0)−1

s,(0;λ)+ρw0(γ)
(z; q)E

(σw0)−1

r,(λ;0)+ρ′
w0(γ)

(z; q)
)
,

where we used ρr = ρ′w0(γ), ρs = ρw0(γ), and

(195) y−ρsx−ρr = w0(z
ρ′
w0(γ)

−ρw0(γ)) = z((v1−u1)γ1 ,...,(vh−uh)γh ).

Because of the zero-length first block in r and last block in s, the sum in (147) is over tuples
of partitions of the form (0, λ(h−1), . . . , λ(1), 0), where `(λ(i)) ≤ min(γi, γi+1). These become
(λ; 0) and (0;λ) when interpreted as weights for GLr and GLs, respectively.

Dropping zero-length blocks as in Remark 5.2.2 (ii) gives

E
(σw0)−1

r,(λ;0)+ρ′
w0(γ)

(z; q) = E
(τw0)−1

w0(γ),(λ;0)+ρ′
w0(γ)

(z; q),(196)

F
(σw0)−1

s,(0;λ)+ρw0(γ)
(z; q) = F

(θw0)−1

w0(γ),(0;λ)+ρw0(γ)
(z; q).(197)

To complete the proof, we observe that

(198) bi = p+ ci+1 − ci =

{
bpc, ci > ci+1,

dpe, ci < ci+1.

Hence (bh, . . . , b1) = η + bpc(1h), where η is the descent indicator of the permutation σw0 ∈
Sh+1. Since σw0 is a winding permutation with head θwh0 and tail τwh0 , (107) and (175)
imply

(199) F
(θw0)−1

w0(γ),(0;λ)+ρw0(γ)
(z; q) = z−(b

γh
h ,...,b

γ1
1 )F

(τw0)−1

w0(γ),(0;λ)+(b
γh
h ,...,b

γ1
1 )+ρw0(γ)

(z; q).

Combining (194), (196–197), and (199) gives (190). �
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7.2. Proof of the main combinatorial theorem. We now prove Theorem 3.5.1, using
Theorem 7.1.1. Before giving the full proof, we outline the argument. Theorem 7.1.1 gives
an expansion

H =
∑
λ

t|λ|Lτw0

w0(γ), β/α(z; q)

for the Catalanimal H in Theorem 3.5.1, in which β and α depend on λ. Applying
Theorem 5.5.4, we find that the surviving terms in Hpol belong to those λ for which we
have β ≥ α coordinate-wise, and these correspond one-to-one with nests in the given
den by Lemma 3.2.1. Theorem 5.5.4 also gives us an expression t|λ|Lτw0

w0(γ), β/α(z; q)pol =∑
t|λ|qhτw0 (β/α)Gτw0(β/α)(z; q−1) for these terms. We then complete the proof by using

the results of §§3.3–3.4 to verify that for the corresponding nest π, we have a(π) = |λ|,
dinvp(π) = hτw0(β/α), and τw0(β/α) = ν(π).

Proof of Theorem 3.5.1. Let (h, p,d, e) be the given den, with g as in (24). We fix s such
that the line y+ p x = s passes above the heads and feet, as in §3.4, and define fi = bs− p ic
to be the y-coordinate of the highest lattice point below the line y + p x = s at x = i. For
i = 1, . . . , h, we set

(200) ui = fi − ei, vi = fi−1 − di−1.

We will apply Theorem 7.1.1 with these values of s, p, ui and vi. The numbers in (186) are
then given by bi = fi−1 − fi and ci+1 = s− p i− fi.

We start by verifying that the hypotheses in (187) are satisfied. The hypothesis on the ui
can be restated as ui ≥ uj − χ(ci+1 > cj+1) for i < j. Since the ci are distinct and ci ∈ [0, 1)
for all i, this is equivalent to ui + ci+1 > uj + cj+1 − 1, or to ui − p i− fi > uj − p j − fj − 1.
The latter reduces to condition (22) in the definition of a den. Similarly, the hypothesis on
the vi is equivalent to vi + ci < vj + cj + 1 for i < j, which reduces to (21).

In (188), we have ui − vi+1 = di − ei, so we can take γi = gi. We also have ui − vi + bi =
di−1 − ei. Hence, the Catalanimal in (189) coincides with the Catalanimal H in (39).

Turning to the right hand side of (189), we use Theorem 5.5.4 to evaluate the polynomial
part of Lτw0

w0(γ), ((0;λ)+(b
γh
h ,...,b

γ1
1 )+ρw0(γ))/((λ;0)+ρ′

w0(γ)
)
(z; q) = Lτw0

w0(γ), β/α(z; q), where

β = (0;λ) + (bγhh , . . . , b
γ1
1 ) + ρw0(γ)(201)

α = (λ; 0) + ρ′w0(γ).(202)

The weight β is the concatenation of blocks

(203) λ(k) + ((fk−1 − ek)gk) + (gk − 1, gk − 2, · · · , 0)

in the order k = h, h−1, . . . , 1, if we set λ(h) = ∅. Similarly, α is the concatenation of blocks

(204) λ(k−1) + ((fk−1 − dk−1)gk) + (gk − 1, gk − 2, · · · , 0)

in the same order, with λ(0) = ∅. The λ(k) for 1 ≤ k ≤ h− 1 vary over partitions of length
`(λ(k)) ≤ min(gk, gk+1). By Theorem 5.5.4, Lτw0

w0(γ), β/α(z; q)pol = 0 unless α ≤ β coordinate-

wise. From (203) and (204), we see that α ≤ β if and only if (λ(k−1))i − dk−1 ≤ (λ(k))i − ek
for k = 1, . . . , h and i ≤ gk. Since dk−1 = ek−1 + gk− gk−1, this is equivalent to the condition



56 J. BLASIAK, M. HAIMAN, J. MORSE, A. PUN, AND G. H. SEELINGER

ek − gk − (λ(k))i ≤ ek−1 − gk−1 − (λ(k−1))i in Lemma 3.2.1. By that lemma, the indices λ for
which Lτw0

w0(γ), β/α(z; q)pol 6= 0 correspond to nests π in the given den.

For these indices, Theorem 5.5.4 gives

(205) Lτw0

w0(γ), β/α(z; q)pol = qhτw0 (β/α)Gτw0(β/α)(z1, . . . , zl; q
−1),

where l = |g|, and β/α is related to α and β by the recipe in (133) for blocks of lengths
gh, . . . , g1. Writing β/α = (β(h)/α(h), . . . , β(1)/α(1)) with decreasing indices and using (203)
and (204), this recipe gives β(k) = ((fk−1−ek+gk)

gk)+λ(k) and α(k) = ((fk−1−dk−1 +gk)
gk)+

λ(k−1) = ((fk−1−ek−1 +gk−1)gk)+λ(k−1). The permutation σ in Definition 3.4.1 for the given
den and choice of s is the same as τ in (205). Hence, by Remark 3.4.3, β(k)/α(k) = ν(π)τ(k),
so τw0(β/α) = τ(β(1)/α(1), . . . , β(h)/α(h)) = ν(π).

As noted in Definition 3.3.1, we have a(π) = |λ| for the nest π corresponding to λ.
We now show that dinvp(π) = hτw0(β/α). Because the components β(i)/α(i) of β/α are

indexed in decreasing order, a (τw0)-triple (a, b, c) in β/α has a, c in β(j)/α(j) and b in
β(i)/α(i) for i > j, with content c(b) equal to c(a) if τ(i) > τ(j), or to c(a) + 1 if τ(i) < τ(j).
As in §3.4, the box b ∈ β(i)/α(i) corresponds to an element (S, k) ∈ S(π) with S on the line
x = i− 1, with c(b) + ci equal to the vertical distance between the line y + p x = s and the
south endpoint of S. Similarly, even though boxes a and c need not actually be in β(j)/α(j),
the boundary between them corresponds to a non-sink lattice point P at x = j − 1 on some
path πk′ in π, with c(a) + cj equal to the vertical distance between y + p x = s and P .

The tuple (P, k′, S, k) is counted by dinvp(π) if and only if 0 < c(b) − c(a) + ci − cj < 1.
Since ci, cj ∈ [0, 1), we have |ci − cj| < 1, and by the definition of τ , we have τ(i) < τ(j)
if and only if ci < cj. If τ(i) > τ(j), it follows that 0 < c(b) − c(a) + ci − cj < 1 if and
only if c(b) = c(a), while if τ(i) < τ(j), it follows that 0 < c(b) − c(a) + ci − cj < 1 if
and only if c(b) = c(a) + 1. Hence, tuples (P, k′, S, k) counted by dinvp(π) are in bijective
correspondence with (τw0)-triples in β/α, giving dinvp(π) = hτw0(β/α).

From (205) and the expressions for a(π) and dinvp(π) we see that the polynomial part of
the series on the right hand side of (189) is equal to

(206)
∑
π

ta(π)qdinvp(π)Gν(π)(z1, . . . , zl, q
−1),

where the sum is over nests π in the given den. Since the Catalanimal on the left hand side
of (189) is equal to H, this proves Theorem 3.5.1. �
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