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Identities and Positivity Conjectures
for some remarkable

Operators in the Theory of Symmetric Functions

F. Bergeron (×), A. M. Garsia (†), M. Haiman(†), and G. Tesler(†)

Abstract. Let Jµ[X; q, t] be the integral form of the Macdonald polynomial and set H̃µ[X; q, t] =
tn(µ)Jµ[X/(1− 1/t); q, 1/t ], where n(µ) =

∑
i(i− 1)µi. This paper focusses on the linear operator

∇ defined by setting ∇H̃µ = tn(µ)qn(µ′)H̃µ. This operator occurs naturally in the study of the
Garsia-Haiman modules Mµ. It was originally introduced by the first two authors to give elegant
expressions to Frobenius characteristics of intersections of these modules (see [3]). However, it was
soon discovered that it plays a powerful and ubiquitous role throughout the theory of Macdonald
polynomials. Our main result here is a proof that ∇ acts integrally on symmetric functions. An
important corollary of this result is the Schur integrality of the conjectured Frobenius characteristic
of the Diagonal Harmonic polynomials [11]. Another curious aspect of ∇ is that it appears to encode
a q, t-analogue of Lagrange inversion. In particular, its specialization at t = 1 (or q = 1) reduces
to the q-analogue of Lagrange inversion studied by Andrews [1], Garsia [7] and Gessel [17]. We
present here a number of positivity conjectures that have emerged in the few years since ∇ has been
discovered. We also prove a number of identities in support of these conjectures and state some of
the results that illustrate the power of ∇ within the Theory of Macdonald polynomials.

Introduction

The study of∇ and some closely related variants relies on a number of important discoveries,
including the introduction of a family of plethystic operators with remarkable properties. This
amounts to an extension of Classical Symmetric Function Theory which should have a variety of
applications even outside of the Theory of Macdonald polynomials. These developments have been
emerging from several published and unpublished works. However, most of what is needed here is
given a detailed presentation in the paper “Explicit Plethystic Formulas for Macdonald q, t-Kostka
coefficients”[13]. The reader is urged to get a copy of that paper as an aid to reading the present one.
To avoid unnecessary duplications we shall limit ourselves to giving the most important definitions,
stating the basic results and refer the reader to the appropriate sources for the omitted details.

We shall work with the algebra Λ of symmetric functions in a formal infinite alphabet
X = x1, x2, . . . , with coefficients in the field of rational functions Q(q, t). We also denote by ΛZ[q,t ]

the algebra of symmetric functions in X with coefficients in Z[q, t ]. The space ΛZ[q,t ,1/q,q/t] is
analogously defined. We write Λ=d for the space of symmetric functions homogeneous of degree d.
Similarly we define Λ≤d and Λ>d. We shall make extensive use here of “plethystic ” notation and we
need to recall its definition. Briefly, if E = E(t1, t2, t3, . . .) is a given formal series in the variables
t1, t2, t3, . . . (which may include the parameters q, t) and f ∈ Λ has been expressed in terms of the
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power basis in the form
f = Q(p1, p2, p3, . . . )

then the “plethystic substitution” of E in f , denoted f [E], is simply defined by setting

F [E] = Q(p1, p2, p3, . . .)
∣∣∣
pk→E(tk1 ,t

k
2 ,t

k
3 ,...)

. I.1

This operation is easily programmed in any symbolic manipulation software which includes a sym-
metric function package. It is also very convenient to express, in a compact form, many of the basic
identities of Symmetric Function Theory.

We shall adopt the convention that inside the plethystic brackets “[ ]”, X and Xn respec-
tively stand for x1 + x2 + x3 + · · · and x1 + x2 + · · · + xn. We also need to introduce a plethystic
notation for the customary operation of replacing variables by their negatives. This is to be distin-
guished from the operation resulting from the “plethystic” minus sign. We will represent the former
operation in two ways. We may prepend the variable in question by a superscripted minus sign or
we may multiply it by a symbolic “ −1” which for convenience will also be denoted by “ε”. For
example, the definition in I.1 requires that

pk[−Xn] = −(xk1 + xk2 + · · ·+ xkn)

while this additional notation yields

pk[ −Xn] = pk[ −1×Xn] = pk[εXn] = pk[Xn]
∣∣
xi→−xi = (−1)k(xk1 + xk2 + · · ·+ xkn) .

From this we easily deduce that the fundamental involution “ω” acting on a symmetric polynomial
P of degree ≤ n may be expressed in the form

ωP [Xn] = P [−−Xn] . I.2

Partitions will be represented and identified with their “french” Ferrers diagrams. Given
a partition µ = (µ1 ≥ µ2 ≥ · · · ≥ µk > 0), we let the corresponding Ferrers diagram have µi

lattice cells in the ith row (from the bottom up). It will be convenient to let |µ| and l(µ) denote
respectively the sum of the parts and the number of parts of µ. In this case |µ| = µ1 +µ2 + · · ·+µk

and l(µ) = k. As customary the symbol “µ ` n” will be used to indicate that |µ| = n . We shall also
adopt the Macdonald convention of calling the arm, leg, coarm and coleg of a lattice square s the
parameters aµ(s), lµ(s), a′µ(s) and l′µ(s) giving the number of cells of µ that are respectively strictly
EAST, NORTH, WEST and SOUTH of s in µ.

We set

n(µ) =
n∑
i=1

(i− 1)µi =
∑
s∈µ

l′µ(s) =
∑
s∈µ

lµ(s) .

If s is a cell of µ we shall refer to the monomial w(s) = qa
′
µ(s)tl

′
µ(s) as the weight of s. We also set

Bµ(q, t) =
∑
s∈µ

qa
′
µ(s)tl

′
µ(s) and Πµ(q, t) =

∏
s∈µ/(0,0)

(
1− qa′µ(s)tl

′
µ(s)
)
. I.3
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It will be also convenient to set

Tµ = tn(µ)qn(µ′) =
∏
s∈µ

qa
′
µ(s)tl

′
µ(s) and Dµ = (1− t)(1− q)Bµ(q, t)− 1 . I.4

This given, our operator ∇ is defined by setting

∇ H̃µ = Tµ H̃µ , I.5

with
H̃µ[X; q, t] = tn(µ)Jµ[ X

1−1/t ; q, 1/t ] , I.6

where Jµ[X; q, t ] is the “integral form ” introduced by Macdonald in [22. ch. IV (8.3)]. Note that
from I.6 we derive the Schur function expansion

H̃µ[X; q, t] =
∑
λ

Sλ[X] K̃λµ(q, t) I.7

where K̃λµ(q, t) = tn(µ)Kλµ(q, 1/t) with Kλµ(q, t) the Macdonald q, t-Kostka coefficient. We should
point out that in this paper Sλ[X] denotes the the ordinary Schur Function indexed by λ. By
contrast, in Macdonald’s book [22], the symbol Sλ[X] represents what we would denote here by
“Sλ[X(1− t)]”

The operator ∇ played a crucial role in developments relating Macdonald polynomials to
Representation Theory [6], [8], [12] and to Geometry [5],[19]. Computer experimentation with ∇
revealed that it has some truly remarkable properties. In this paper we present a collection of
results and conjectures about ∇ that have emerged in the few years since its discovery. As a matter
of example it is worthwhile having a look at the following beautiful matrices which express the action
of ∇ on Schur functions indexed by partitions of 4:

S4 S31 S22 S211 S1111

∇S4→ 0 −t3 q3 −t3 q3
[

1 0
0 1

]
−t3 q3

[
1 0 0
1 1 0
0 1 1

]
−t3 q3

[
1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

]

∇S31→ 0 t2 q2
[

1 0
0 1

]
t2 q2

[
1 0 0
0 1 0
0 0 1

]
t2 q2

[
1 0 0 0
1 1 0 0
0 2 1 0
0 0 1 1

]
t2 q2

 1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 0 1


∇S22→ 0 −t2 q2 0 −t2 q2

[
1 0
0 1

]
−t3 q3

∇S211→ 0 −t q
[

1 0 0
0 1 0
0 0 1

]
−t q

[
1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

]
−t q

 1 0 0 0 0
1 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 1 1

 −t q


1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1



∇S1111→ 1

[
1 0 0 0
1 1 0 0
1 1 1 0
0 1 1 1

]  1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 0 1




1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
0 2 2 1 0 0
0 1 2 2 1 0
0 0 0 1 1 1




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 0 0 1


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Here at the intersection of the row indexed by ∇Sµ with column indexed by Sλ we have placed
the coefficient of Sλ in ∇Sµ. These coefficients are depicted by the convention that represents the
polynomial

t2q3( a + b q + c q2 + d t + e tq + f t2 )

by means of the symbol

t2 q3

 f 0 0
d e 0
a b c


A close inspection of these matrices suggests a number of remarkable properties of the image of a
Schur function by ∇. To begin with we might infer that ∇ of a Schur function is always totally
Schur-positive or totally Schur negative. We also might recognize that the coefficient of S14 in ∇S14

is the q, t-Catalan C4(q, t) studied in [11]. Similarly, we discover that, up to a factor, the coefficient of
S14 in ∇S4 is C3(q, t). Now the first observation leads to a conjecture and the second is a particular
case of a general theorem that will be proved here. More precisely, we have the following:

Conjecture I
For any pair of partitions λ, µ and for a every positive integer m we have

(−1)ι(λ
′)
〈
∇m Sλ , Sµ

〉
∈ N[q, t ] I.8

with
〈
,
〉

the Hall inner product and

ι(λ) =
( l(λ)

2

)
+

∑
λi<(i−1)

(i− 1− λi) .

We should mention that the sign in I.8 was identified by M. Bousquet-Melou [4] who gave
a combinatorial interpretation to the left hand side of I.8 in the special case µ = 1n. We should add
that in the case µ = 1n there is a more explicit conjecture. More precisely, it was conjectured in
[11] that the bigraded Frobenius characteristic DHn[X; q, t ] of the Diagonal Harmonics (rewritten
in terms of ∇), is given by the formula

DHn[X; q, t ] = ∇en , I.9

in fact, the simplicity of this expression for DHn[X; q, t ] was one of the original motivations of the
first two authors for introducing this operator. We should also mention that the Schur-positivity of
all the successive powers of ∇ on en was conjectured in [19] to have also a representation theoretical
explanation.

A variety of other beautiful identities and positivities have been discovered through computer
experimentation. Some of them can actually be proved but others appear out of reach to this date.
All of these results have remained unpublished for a number of years since no tools have been
available, until recently, to allow a direct study of ∇, other than the Macdonald polynomials, which
themselves are fraught with unsolved difficult conjectures.
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The specialization of ∇ at t = 1, denoted “∇t=1”, can be shown to be a multiplicative
operator closely related to the q-Lagrange inversion problem studied in [7]. This connection, which
has already been pointed out in [11], shows in particular that a very recent result of C. Lenart [20]
is none other but a proof of the special case m = 1 and t, q = 1 of Conjecture I.

Our main result here is a proof that ∇ acts integrally on Schur functions. In particular, by
way of the identity in I.9, we obtain a proof that DHn[X; q, t] is in fact a Schur integral polynomial
and, a fortiori, we now have an elementary proof that the elusive q, t-Catalan cn(q, t) of [11] is a
polynomial with integer coefficients.

Our experience is that almost every expression or identity that arises in the connection
between Macdonald polynomials and Representation Theory may be simply formulated in terms of
∇.

Our proof of the polynomiality of ∇ hinges on the development of a theory of plethystic
operators which promises to play a central role in the theory of symmetric functions. The basic
ingredients of this theory are the operators Dk and D∗k defined for any integer −∞ < k < +∞ and
acting on a symmetric function F in the alphabet X = x1 +x2 +x3 + . . . according to the plethystic
formulas

Dk F [X] =
(
F
[
X + M

z

] ∑
m≥0

(−z)mem[X]
)∣∣∣
zk
, D∗k F [X] =

(
F
[
X − M̃

z

] ∑
m≥0

zmhm[X]
)∣∣∣
zk
. I.10

Here “
∣∣
zk

” denotes the operation of taking the coefficient of zk in the preceding expression, em and
hm denote the elementary and homogeneous symmetric functions indexed by m, and for convenience
we have set

M = (1− t)(1− q) , M̃ = (1− 1/t)(1− 1/q) . I.11

These operators are connected up to∇ and the polynomials H̃µ through the following basic identities:

(i) D0 H̃µ = −Dµ(q, t) H̃µ , (i)∗ D∗0 H̃µ = −Dµ(1/q, 1/t) H̃µ

(ii) Dk e1 − e1Dk = M Dk+1 (ii)∗ D∗k e1 − e1D
∗
k = −M̃ D∗k+1

(iii) ∇ e1∇−1 = −D1 (iii)∗ ∇D∗1∇−1 = e1

(iv) ∇−1 ∂1∇ = 1
MD−1 (iv)∗ ∇−1D∗−1∇ = −M̃ ∂1

I.12

where e1 is simply the operator “multiplication by e1” and ∂1 is its “Hall” scalar product adjoint.

A close study of the operators Dk, D∗k led to the discovery of a number of remarkable
symmetric function bases. The typical result here can be stated as follows.

Theorem I.1
For λ = (λ1, λ2, . . . , λs, 1a) with λ1 ≥ λ2 ≥ · · ·λs ≥ 2 and a ≥ 0 set

Wλ[X; q, t ] = ea1D
∗
1e
λ1−1
1 D∗1e

λ2−1
1 · · ·D∗1eλs−1

1 I.13

This given, the collection {
Wλ[X; q, t]

}
λ`k I.14
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is a basis for the homogeneous symmetric polynomials of degree k. More precisely we have the
expansion

PW (λ)[X; q, t] = M̃r hλ + < · · · (for some r ≤ k − 1 ) I.15

where the symbol “< · · ·” is to express that the remaining terms involve homogeneous basis elements
which follow hλ in a suitable total order.

Of course the same identities hold true with D∗1 replaced by D1 in I.13.

At this point it is convenient to introduce, for a given quantity Q, the “translation” operator
TQ which acts on a symmetric function P [X] according to the plethystic formula

TQP [X] = P [X +Q ] .

This given, perhaps the most remarkable property of ∇ is expressed by the following result, proved
in [13].

Theorem I.2
Let

Π = ∇−1T −1
ε I.16

and for a given symmetric function F set

ΠF = ΠF = ∇−1F [X −− 1] .

Then we have
ΠF

[
Dµ(q, t)

]
=
〈
F , H̃µ[X + 1; q, t ]

〉
∗ , I.17

where
〈
,
〉
∗ is the scalar product defined by setting

〈
H̃λ , H̃µ

〉
∗ =

 h̃µh̃
′
µ if λ = µ ,

0 otherwise ,
I.18

with
h̃µ(q, t) =

∏
s∈µ

(qaµ(s) − tlµ(s)+1) and h̃′µ(q, t) =
∏
s∈µ

(tlµ(s) − qaµ(s)+1) . I.19

We should point out that, in particular, this implies that certain images of ∇ have rather
surprising vanishing properties. More precisely, it follows immediately from I.17 (†) that

Corollary I.1
For any given symmetric function F of degree k we have

ΠF

[
Dµ(q, t)

]
=
{

0 if |µ| < k〈
e∗n−k F , H̃µ

〉
∗ if |µ| = n ≥ k I.20

(†) See [13] Theorem I.2
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where for convenience for any symmetric function F [X] we set

F ∗[X] = F
[

X
(1−t)(1−q)

]
. I.21

This paper is divided into five sections. In the first section we state the basic identities we
need in our developments, prove Theorem I.1 and derive from it the integrality of ∇. We also derive
there a number of other consequences of the identity in I.17. In the second section we work with the
special case t = 1 and relate the action of ∇t=1 to q-Lagrange inversion. In the third section we state
a few positivity conjectures and establish a number of results in their support. In the fourth section,
as a by-product of the symmetric function identities developed here and in [13] we derive a new
formula for the q, t-Catalan introduced in [11] which makes it quite evident that it is a polynomial
in q and t. In the final section we prove a number of identities and derive a plethystic form of the
higher indexed Macdonald operators.

1. Basic properties of ∇.

Let us recall that the Hall scalar product “
〈
,
〉
” on Λ is defined by setting for the power

basis {pρ}ρ 〈
pρ(1) , pρ(2)

〉
=

{
zρ if ρ(1) = ρ(2) = ρ

0 otherwise

where for a partition ρ = (1α1 , 2α2 , 3α3 , · · ·) we set as customary

zρ = 1α12α23α3 · · ·α1!α2!α3! · · · .

We shall systematically use the symbol Ω[X] here as in [13] to represent the symmetric
function

Ω[X] =
∏
i

1
1− xi

= exp
(∑
k≥1

pk
k

)
.

In the same vein we shall also set

Ω̃[X] = ωΩ[X] =
∏
i

(1 + xi) = exp
(∑
k≥1

(−1)k−1pk
k

)
. 1.1

This given, we have the following basic expansions ([13] Theorem 1.3):

a) Ω̃
[

X Y
(1−q)(1−t)

]
=
∑
ρ

pρ[X] pρ[Y ]
(−1)|ρ|−l(ρ) zρ pρ[(1− t)(1− q)]

,

b) Ω̃
[

X Y
(1−q)(1−t)

]
=
∑
λ

Sλ
[

X
(1−q)(1−t)

]
Sλ′ [Y ] =

∑
λ

S∗λ[X]Sλ′ [Y ] ,

c) Ω̃
[

X Y
(1−q)(1−t)

]
=
∑
µ

H̃µ[X; q, t ] H̃µ[Y ; q, t ]
h̃µ(q, t) h̃′µ(q, t)

.

1.2
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In particular we see from 1.2 c) that Ω̃
[

X Y
(1−q)(1−t)

]
is the reproducing kernel of the ∗-scalar product

defined by I.18. We also see from 1.2 a) that the ∗-scalar product may also be defined by setting

〈
pρ(1) , pρ(2)

〉
∗ =

{
(−1)|ρ|−l(ρ) zρ pρ[(1− t)(1− q)] if ρ(1) = ρ(2) = ρ ,

0 otherwise.
1.3

From this we derive that the Hall and the ∗-scalar products are simply related by the identity〈
P , Q

〉
∗ =

〈
P, ωφQ

〉
, 1.4

where for convenience we set, for every F [X] ∈ Λ ,

φF [X] = F
[
X(1− t)(1− q)] = F [XM ] . 1.5

Here and after we shall denote by “Sµ” the operator “multiplication” by the Schur function Sµ.
Note that since the skew schur function Sλ/µ is defined from the expansion

Sλ/µ =
∑
ν

Sν
〈
SµSν , Sλ

〉
, 1.6

we see that the Hall scalar product adjoint of Sµ is the operator “∂Sµ” defined by setting for the
Schur function basis

∂SµSλ = Sλ/µ . 1.7

We should point out that we have also set

∂S1 = δ1

We shall also need some more general “translation” and “multiplication” operators defined
by setting set for every Q ∈ Λ and any alphabet Y

a) TY Q[X] = Q[X + Y ]

b) PY Q[X] = Ω[XY ]Q[X] .
1.8

It is easy to show (see [13]) that these operators have the following useful “Schur function” expan-
sions:

a) TY =
∑
µ

Sµ[Y ] ∂Sµ ,

b) PY =
∑
µ

Sµ[Y ]Sµ ,
1.9

which show that PY is the Hall adjoint of TY . Note that if X consists of a single variable u we have

Tu =
∑
m≥0

um∂Sm . 1.10
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It is also important to note that we have the commutativity relation (see [13])

TY PZ = Ω[Y Z]PZ TY . 1.11

Another useful ingredient which occurs in our developments is the involution “↓” defined by setting
for any F ∈ ΛZ[q,t ,1/q,1/t ]

↓ F [X; q, t ] = ωF [X; 1/q, 1/t ] 1.12

It can be shown (see [12]) that we have

↓ H̃µ[X; q, t] =
1
Tµ

H̃µ[X; q, t] . 1.13

We also have
a) ↓ T1 ↓ = T −1

ε

b) ↓ ∇ ↓ = ∇−1

c) ↓ Dk ↓ = (−1)kD∗k .

1.14

Finally, we should point out that by combining I.5, I.12 (i) and (i)∗ with 1.2c) we deduce that the
operators ∇, D0 and D∗0 are all self-adjoint with respect to the ∗-scalar product.

This completes the collection of basic facts we shall need in our further developments.

Proof of Theorem I.1
To show that the polynomials

Wλ[X; q, t ] = ea1D
∗
1e
λ1−1
1 D∗1e

λ2−1
1 · · ·D∗1eλs−1

1 1 λ1 ≥ λ2 ≥ · · · ≥ λs > 1

form a basis of Λ , it is sufficient to establish that those for which a = 0 and λ1 +λ2 + · · ·+λs = k,
span Λ=k modulo e1Λ=k−1. To this end note that for any m > 1 and F ∈ Λ we have

D∗1e
m−1
1 F =

(
e1 − M̃/z

)m−1
F
[
X − M̃/z

]
Ω
[
zX
] ∣∣
z

≡
(
− M̃/z

)m−1
F
[
X − M̃/z

]
Ω
[
zX
] ∣∣
z

( mod e1Λ )

=
(
− M̃

)m−1∑
k≥0

F
[
X − M̃/z

]∣∣
1/zk

Ω
[
zX
] ∣∣
zm+k

=
(
− M̃

)m−1
hm[X]F [X] +

(
terms in hm+1, hm+2, . . .

)
.

Thus it follows that, when all λi > 1 ,

Wλ[X; q, t] = D∗1e
λ1−1
1 D∗1e

λ2−1
1 · · ·D∗1eλs−1

1 =
(
− M̃

)|λ|−l(λ)
hλ1hλ2 · · ·hλs + · · · 1.15

where the omitted terms involve complete homogeneous basis elements hµ with µ > λ in lexico-
graphic order. This shows that the collection

B=k =
{
Wλ[X; q, t] : λ ` k & allλi > 1

}
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is an independent set in Λ=k/e1Λ=k−1 . To complete our proof we need only verify that the cardi-
nality of B=k is equal to the dimension of Λ=k/e1Λ=k−1 . In other words we must show that

#
{
λ : λ ` k &λi > 1

}
= #

{
λ : λ ` k

}
− #

{
λ : λ ` k − 1

}
.

However, this follows immediately by equating coefficients of qk in the power series identity∏
m≥2

1
1− qm = (1− q)

∏
m≥1

1
1− qm .

Remark 1.1
Note that, since the definition in 1.12 gives that ↓ 1 = 1 and ↓ e1 ↓= e1, from 1.14 c) we

derive that
↓Wλ[X; q, t ] = (−1)s ea1D1e

λ1−1
1 D1e

λ2−1
1 · · ·D1e

λs−1
1 1 . 1.16

Thus, the invertibility of “↓” yields that also these polynomials form a basis of Λ. In fact, more
than that is true. For a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λs > 1a) set

Uλ[X; q, t ] = Da
1e1D

λ1−1
1 e1D

λ2−1
1 · · · e1D

λs−1
1 1 . 1.17

This given we have

Theorem 1.1
The operator ∇ may be computed from the identity

∇Wλ[X; q, t ] = (−1)a+
∑s

i=1
(λi−1) Uλ[X; q, t ] . 1.18

In particular, the collection {
Uλ[X; q, t ]

}
λ

1.19

is also a basis, and necessarily ∇ is a polynomial operator, that is

∇ΛZ[q,t ] ⊆ ΛZ[q,t ] . 1.20

Proof
Note that from I.12 (iii) and (iii)∗ written in the form

a) ∇e1 = −D1∇ , b) ∇De∗1 = e1∇

it follows that

∇Wλ[X; q, t ] = (−D1)ae1(−D1)λ1−1e1(−D1)λ2−1 · · · e1(−D1)λs−1 1 ,

and this is 1.18. The fact that the collection in 1.19 is a basis then follows from Theorem I.1 and
the invertibility of ∇. Note next that the triangularity expressed by 1.15, together with a closer
look at the later terms, yields that, at the very worst, the complete homogeneous basis

{
hλ[X]

}
λ
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admits an expansion in terms of the basis
{
Wλ[X; q, t ]

}
λ

with coefficients in Z[q, t, 1/q , 1/t ,M−1].
Combining this with 1.18 and the definition of D1 yields that

∇ΛZ ⊆ Z[q, t, 1/q , 1/t ,M−1] ΛZ .

In other words, at worst, ∇ introduces powers of t, q, (1− t) and (1− q), in the denominators. To
eliminate these denominators we must show that for F ∈ ΛZ , ∇F has no pole at q = 0, t = 0, q = 1
and t = 1. By symmetry, it is sufficient to deal with the cases q = 0, 1, and for these we can take F
to be an element of any basis we choose of Z(t) ΛZ .

For q = 0 we may take F = H̃µ[X; 0, t ]. In fact, it follows from I.7 [22, ch VI (8.4) (ii)] that

H̃µ[X; 0, t ] =
∑
λ

Sλ[X]K̃λµ(t) 1.21

with K̃λµ(t) the Kostka-Foulkes polynomials. We may write 1.21, for a particular degree d, in matrix
form as 〈

H̃[X; 0, t ]
〉
d

=
〈
S[X]

〉
d
K̃d(t) . 1.22

In the same vein we may write 1.7 in the form

〈
H̃[X; q, t ]

〉
d

=
〈
S[X]

〉
d
K̃d(q, t) . 1.23

Now 1.22 and 1.23 may be combined into

〈
H̃[X; q, t ]

〉
d

=
〈
H̃[X; 0, t ]

〉
d
K̃(t)−1

d K̃d(q, t) .

Thus the polynomiality of the K̃λµ(q, t) ([14], [15]) yields that the entries of the matrix

‖aλµ(q, t)‖λ,µ`d = K̃(t)−1
d K̃d(q, t)

are necessarily polynomials in q with coefficients rational functions of t; in particular they have no
poles at q = 0. Since ‖aλµ(q, t)‖λ,µ`d tends to the identity matrix as q→0, its determinant does not
vanish at q = 0. This implies that, by inverting ‖aλµ(q, t)‖λ,µ`d, we will obtain an expansion

H̃λ[X; 0, t ] =
∑
µ

bλµ(q, t)H̃µ[X; q, t ] , 1.24

with the bλµ(q, t) rational functions in q and t with no poles at q = 0. Now I.5 gives

∇H̃λ[X; 0, t ] =
∑
µ

bλµ(q, t) tn(µ)qn(µ′)H̃µ[X; q, t ] .

Since nothing on the right hand side has a pole at q = 0, this completes our argument for the case
q = 0.
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We can treat the case q = 1 in an entirely analogous manner using the basis
{
H̃µ[X; 1, t ]

}
µ
.

In fact, it follows from [22 ch VI 8.4 (iii)] that

H̃µ[X; 1, t] =
l(µ′)∏
i=1

(t; t)µ′
i
hµ′

i

[
X

1−t
]
. 1.25

Now it is well known that for any integer m ≥ 1 we have the Schur function expansion

(t; t)mhm
[
X

1−t
]

=
∑
λ

Sλ[X]
∑

T∈ST (λ)

tco(T ) . 1.26

where the inner sum is over all standard tableaux of shape λ and “co(T )” denotes cocharge. Thus
using 1.26 in 1.25 we obtain the Schur function expansion

H̃µ[X; 1, t] =
∑
λ

Sλ[X] θλµ(t) 1.27

with coefficients θλµ(t) polynomials with positive integer coefficients. Writing this in matrix form
as we did before gives 〈

H̃[X; 1, t]
〉
d

=
〈
S[X]

〉
d
θd(t) .

So we may combine it with 1.23 and obtain〈
H̃[X; q, t]

〉
d

=
〈
H̃[X; 1, t]

〉
d
θd(t)−1K̃d(q, t) ,

and the argument proceeds precisely in the same manner as before since the matrix θd(t)−1K̃d(q, t)
again approaches the identity as q→1. This completes our proof.

Corollary 1.1
The operator ∇−1 is a Laurent polynomial operator, i.e. ∇−1ΛZ ⊆ Z[q, t, 1/q, 1/t]ΛZ .

Proof
Theorem I.1 guarantees that the matrix of ∇ with respect to any basis of Λ=d

Z has entries in
Z[q, t] . Since the eigenvalues of ∇ on Λ=d

Z are tn(µ)qn(µ′) with |µ| = d, the determinant of all these
∇ matrices consists of a monomial in q and t. Thus all their inverses have entries in Z[q, t, 1/q, 1/t].
Corollary 1.2

The image of a Schur function under ∇ has a Schur function expansion with coefficients in
Z[q, t]. In particular formula (15) of [11], conjectured to give the Frobenius characteristic of diagonal
harmonics, is a polynomial in q and t.
Proof

The first assertion is a particular case of Theorem I.1. The second assertion follows from
(15) of [11] which essentially states that this Frobenius characteristic is ∇en[X].

There is an interesting family of operators which are closely related to ∇ and have similar
properties. More precisely, for any symmetric function F ∈ ΛZ[q,t] we let ∆F be the operator defined
by setting on the {H̃µ}µ basis

∆F H̃µ = F [Bµ] H̃µ 1.28
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It is easily seen, from the definition of plethystic substitutions, that when |µ| = n, ∇ itself may be
viewed as ∆en . Most interesting special cases of these operators are obtained by setting F = ek.
For instance we see from I.4 and I.12 (i) that D0 = −M∆e1 + I. Moreover, we have the following
basic extensions of the table in I.12.

Theorem 1.2

(v) ∆e1e1 = e1∆e1 −D1 , (v)∗ ∆e1D
∗
1 = D∗1∆e1 + e1

(vi) ∆eke1 = e1∆ek −D1∆ek−1 (vi)∗ ∆ekD
∗
1 = D∗1∆ek + e1∆ek−1

1.29

Proof
It will be convenient to set, for a variable u:

Ψ(u) H̃µ =
|µ|∑
k=0

uk ∆ekH̃µ =
(∏
s∈µ

(
1 + u tl

′
µ(s)qa

′
µ(s)
) )
H̃µ . 1.30

It follows from the Macdonald Pieri rules [22] that for any partition ν we have the expansion

e1 H̃ν =
∑
µ←ν

H̃µ dµν(q, t) 1.31

where the coefficients dλµ(q, t) are rational functions in q and t which may be explicitly computed
(see [9]). Their true nature is immaterial for us here. The important element is that the sum in 1.31
is carried out only over the partitions µ that immediately follow ν in the containment order. This
given, we immediately derive from 1.30 that we have

Ψ(u) e1 Ψ(u)−1 H̃ν =
∑
µ←ν

(1 + u wµν)H̃µ dµν(q, t) 1.32

where wµν is the weight of the cell we must add to ν to get µ. Now from the definition in I.4, we
see that we must have wµν = Tµ/Tν Thus 1.32 may be rewritten in following equivalent forms

Ψ(u) e1 Ψ(u)−1 H̃ν =
∑
µ←ν

(1 + u Tµ/Tν)H̃µ dµν(q, t)

=
∑
µ←ν

H̃µ dµν(q, t) + u∇
∑
µ←ν

H̃µ dµν(q, t) /Tν

= e1 H̃µ + u∇ e1 H̃ν/Tν

= e1 H̃µ + u∇ e1∇−1H̃ν = e1 H̃ν − u D1H̃ν

1.33

where the last equality is due to I.12 (iii). Since ν is arbitrary we must conclude that

Ψ(u) e1 Ψ(u)−1 = e1 − u D1 .

Better yet we must also have

Ψ(u) e1 = e1Ψ(u)− u D1Ψ(u) . 1.34
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In particular, equating coefficients of uk for k ≥ 1 gives

1) ∆e1 e1 = e1∆e1 −D1 , k) ∆ek e1 = e1∆ek −D1∇ek−1 .

This proves 1.29 (v) and 1.29 (vi). Now, using I.12 (iii)∗ we may eliminate e1 from these equations
and obtain

1) ∆e1 ∇D∗1∇−1 = ∇D∗1∇−1∆e1 −D1 , k) ∆ek ∇D∗1∇−1 = ∇D∗1∇−1∆ek −D1∇ek−1 .

Since∇ necessarily commutes with any of the operators ∆F , these two relations may also be rewritten
in the form

1) ∆e1D
∗
1 = D∗1∆e1 −∇−1D1∇ , k) ∆ekD

∗
1 = D∗1∆ek −∇−1D1∇∇ek−1 ,

and a use of I.12 (iii) finally simplifies them to 1.29 (v)∗ and 1.29 (vi)∗, completing our proof.

It develops that the argument that yielded the integrality of ∇ can be applied also to the
operators ∆F . In fact, the identities in 1.29 are precisely what is needed to compute the action of
any of the operators ∆F without resorting to expansions in terms of the basis {H̃µ}µ.

Theorem 1.3
For each F ∈ ΛZ[q,t] we have

∆F ΛZ ⊆ Z[q, t] ΛZ . 1.35

Proof
Note first that since the map F→∆F is linear and multiplicative in F it is sufficient to prove

1.35 for all the factors occurring in an integral multiplicative basis of ΛZ[q,t ]. In particular, we may
choose the “elementary” symmetric function basis. This reduces us to verify 1.35 when F = ek . We
have seen in the proof of Theorem 1.1, that the expansion of the complete homogeneous basis {hλ}λ
in terms of the basis {Wλ[X; q, t] }λ has coefficients whose denominators only contain powers of q,
t, 1 − q and 1 − t. To follow the same strategy we used in the proof of Theorem 1.1, the first part
of our proof will be to show that the action of any of the operators ∆ek on the basis {Wλ[X; q, t] }λ
introduces no other kinds of denominator factors. To this end, note first that for a ≥ 1 in I.13, using
1.29 (vi) we get

∆ekWλ[X; q, t ] = e1∆eke1
a−1D∗1e1

λ1−1D∗1e1
λ2−1 · · ·D∗1e1

λs−1

− D1∆ek−1e1
a−1D∗1e1

λ1−1D∗1e1
λ2−1 · · ·D∗1e1

λs−1 .

On the other hand, if a = 0 then 1.29 (vi)∗ gives

∆ekWλ[X; q, t ] = D∗1∆eke1
λ1−1D∗1e1

λ2−1 · · ·D∗1e1
λs−1

+ e1∆ek−1e1
λ1−1D∗1e1

λ2−1 · · ·D∗1e1
λs−1 .

From these two relations we immediately see that, by means of the relations in 1.29 and a double
induction argument based on k and the size of λ, we can establish that ∆ekWλ[X; q, t ] always results
in a Z-linear combination of polynomials of the form

O1O2 · · ·Om 1 with each Oi = e1 , D1 or D∗1 .
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This completes the first part of the proof since e1 and D1 are clearly integral (see I.10) and D∗1 at
worst introduces only denominator factors which are powers of qt.

We are now in the same position as before to show that the image by ∆ek of any hλ contains
no poles at q = 0, t = 0, q = 1 and t = 1. In fact, for the case q = 0, for instance, we may use 1.24
again and derive that

∆ek H̃λ[X; 0, t ] =
∑
µ

bλµ(q, t) ek[Bµ(q, t) ]H̃µ[X; q, t ] ,

which shows that the action of ∆ek on the basis {H̃λ[X; 0, t ]}λ produces no poles at q = 0. Similar
arguments eliminate poles at t = 0, q = 1 and t = 1, completing the proof of 1.36.

Our next and final task in this section is to derive some interesting applications of The-
orem I.2. We shall see that formula I.17 with Π given by I.16 encodes a remarkable amount of
combinatorial information. To this end we recall that the coefficients cµν(q, t) which occur in the
identity

δ1 H̃µ[X; q, t ] =
∑
ν→µ

cµν(q, t)H̃ν [X; q, t ] 1.36

have the following important property.

Proposition 1.1

∑
ν→µ

cµν(q, t) (Tµ/Tν)k =


tq
M hk+1

[
Dµ(q, t)/tq

]
if k ≥ 1 ,

Bµ(q, t) if k = 0 .
1.37

We should mention that it follows from the Macdonald Pieri rules [9] that for ν→µ we have

cµν(q, t) =
∏

s∈Rµν

tlµ(s) − qaµ(s)+1

tlν(s) − qaν(s)+1

∏
s∈Cµν

qaµ(s) − tlµ(s)+1

qaν(s) − tlν(s)+1
, 1.38

where Rµν and Cµν denote the collections of cells of ν that are respectively in the row and the
column of the cell µ/ν. Similarly, the coefficients dµν(q, t) occurring in 1.31 are given by the formula

dµν(q, t) =
∏

s∈Rµν

qaν(s) − tlν(s)+1

qaµ(s) − tlµ(s)+1

∏
s∈Cµν

tlν(s) − qaν(s)+1

tlµ(s) − qaµ(s)+1
. 1.39

The identity in 1.37 was proved in [15] by taking full account of the combinatorial informa-
tion contained in 1.38. An analogous argument may also be used to prove the following analogue of
1.37.

Proposition 1.2

∑
µ←ν

dµν(q, t) (Tµ/Tν)k =

{
(−1)k−1 ek−1

[
Dν(q, t)

]
if k ≥ 1 ,

1 if k = 0 .

1.40
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Now it develops that both 1.37 and 1.40 can be derived with considerably less effort directly from
I.17 without resorting to 1.38 or 1.39. To illustrate this type of argument we shall carry out the
derivation of 1.40.

To begin with we should point out that 1.37 and 1.40 follow from two master identities that
are interesting in themselves.
Theorem 1.4

For any P ∈ Λ we have∑
ν→µ

cµν(q, t)P
[
Dν(q, t)

]
= 1

M P
[
Dµ(q, t)

]
+ 1

M

(
D∗1P

)[
Dµ(q, t)

]
1.41

∑
µ←ν

dµν(q, t)P
[
Dµ(q, t)

]
= P

[
Dν(q, t)

]
+
(
D−1P

)[
Dν(q, t)

]
1.42

Proof
For convenience let

F = Π−1 P = τε∇P . 1.43

This given, we may write the left hand side of 1.41 in the following equivalent forms∑
ν→µ

cµν(q, t)P
[
Dν(q, t)

]
=

∑
ν→µ

cµν(q, t) ΠF

[
Dν(q, t)

]
( by I.17 ) =

∑
ν→µ

cµν(q, t)
〈
F , T1H̃ν

〉
∗

( by 1.36 ) =
〈
F , T1δ1 H̃µ

〉
∗ = ( by 1.10 ) =

〈
F , δ1 T1H̃µ

〉
∗

( by 1.4 ) =
〈
φωF , δ1 T1H̃µ

〉
=
〈
e1φωF , T1H̃µ

〉
= 1

M

〈
e1F , T1H̃µ

〉
∗ .

Thus one further application of I.17 yields us

∑
ν→µ

cµν(q, t)P
[
Dν(q, t)

]
= 1

MΠ e1F

[
Dµ(q, t)

]
. 1.44

However, using I.16 and 1.43 we get

Π e1F = ∇−1T −1
ε e1 Tε∇P = ∇−1(e1 + 1)∇P .

This enables us to rewrite 1.44 in the form

∑
ν→µ

cµν(q, t)P
[
Dν(q, t)

]
= 1

M P
[
Dµ(q, t)

]
+ 1

M

(
∇−1e1∇P

)[
Dµ(q, t)

]
,

which, in view of I.12 (iii)∗, is just another way of writing 1.41.
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To prove 1.42 we can again start with 1.43 and get∑
µ←ν

dµν(q, t)P
[
Dµ(q, t)

]
=

∑
µ←ν

dµν(q, t) ΠF

[
Dµ(q, t)

]
( by I.17 ) =

∑
µ←ν

dµν(q, t)
〈
F , T1H̃µ

〉
∗

( by 1.31 ) =
〈
F , T1 e1 H̃ν

〉
∗ =

〈
F , (e1 + 1) T1H̃ν

〉
∗

= M
〈
δ1F , T1H̃ν

〉
∗ +

〈
F , T1H̃ν

〉
∗ ,

and another application of I.17 gives∑
µ←ν

dµν(q, t)P
[
Dµ(q, t)

]
= P

[
Dν(q, t)

]
+ M Πδ1F

[
Dν(q, t)

]
. 1.45

Now, using 1.43 again we have

Πδ1F = ∇−1T −1
ε δ1Tε∇P = ∇−1δ1∇P

and I.12 (iv) transforms 1.45 into 1.42, completing the proof of the theorem.

Proof of Proposition 1.2

Note first that setting P = 1 in 1.42 gives∑
µ←ν

dµν(q, t) = 1 , 1.46

as desired. Next, for k ≥ 1, we choose P to be the power symmetric function pk in 1.42 and get∑
µ←ν

dµν(q, t)Dµ(qk, tk) = Dν(qk, tk) +
(
D−1pk

)[
Dν(q, t)

]
. 1.47

Since the definition in I.4 gives

Dµ(qk, tk) = Dν(qk, tk) + (1− tk)(1− qk)
(
Tµ/Tν

)k
, 1.48

using 1.48 and 1.46 in 1.47 we obtain

(1− tk)(1− qk)
∑
µ←ν

dµν(q, t)
(
Tµ/Tν

)k =
(
D−1pk

)[
Dν(q, t)

]
. 1.49

Now, the first of I.10 for k = −1 gives

D−1pk =
(
pk + (1−tk)(1−qk)

zk

) ∑
m≥0

(−z)mem[X]
∣∣∣
z−1

= (1− tk)(1− qk)(−1)k−1ek−1[X] .

Using this in 1.49 and carrying out the necessary cancellations completes the proof of 1.40.
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The remarkable fact that the identity in I.17 permits us to evaluate these sums without
explicit knowledge of the coefficients cµν(q, t) and dµν(q, t) suggests that this idea may be extended
to cases where such explicit knowledge is not available. To be precise, for a homogeneous symmetric
function f ∈ Λ=k let us denote by δ∗f the operator which is the ∗-adjoint of multiplication by f .
From the Macdonald Pieri rules we derive that there are certain rational functions cµν(q, t) giving,
for every µ ` n ≥ k

δ∗f H̃µ[X; q, t ] =
∑
ν⊆kµ

cfµν(q, t) H̃ν [X; q, t ] , 1.50

where the symbol “ν ⊆k µ” is to represent that the sum has to be carried out over partitions ν ⊆ µ
where the difference µ/ν consists of precisely k cells. Similarly, we have rational functions dfµν(q, t)
giving

f [X] H̃ν [X; q, t ] =
∑
µ⊇kν

dfµν(q, t) H̃µ[X; q, t ] . 1.51

Without explicit knowledge of these coefficients, the method illustrated above yields identities which
are entirely analogous to 1.41 and 1.42. The result for the cfµν(q, t) is the nicest in this case and it
can be stated as follows.

Theorem 1.5
For any P ∈ Λ we have∑

ν⊆kµ
cfµν(q, t)P

[
Dν(q, t)

]
=
(
∇−1f [X − ε]∇P

)[
Dµ(q, t)

]
1.52

Proof
Proceeding as before we use 1.43 and write∑

ν⊆kµ
cfµν(q, t)P

[
Dν(q, t)

]
=

∑
ν⊆kµ

cfµν(q, t) ΠF

[
Dν(q, t)

]
=

∑
ν⊆kµ

cfµν(q, t)
〈
F , T1H̃ν

〉
∗

=
〈
F , T1δ

∗
f H̃µ

〉
∗ =

〈
F , δ∗fT1 H̃µ

〉
∗

=
〈
fF , T1 H̃µ

〉
∗ = ΠfF

[
Dµ(q, t)

]
.

1.53

Now we have
ΠfF = ∇−1T −1

ε f Tε∇P = ∇−1f [X − ε ] ∇P .

Using this in 1.53 yields 1.52 and completes our argument.

2. Nabla at t = 1 and q-Lagrange inversion.
A natural integral basis for the space ΛZ[q] is given by the symmetric functions

{H̃µ[X; q, 1 ]}µ . 2.1

This given, we simply define ∇
∣∣
t=1

to be the operator ∇̃ obtained by setting

∇̃ H̃µ[X; q, 1 ] =
(
∇ H̃µ[X; q, t ]

)
t=1

= qn(µ′) H̃µ[X; q, 1 ] . 2.2
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Now we have the following basic fact.

Theorem 2.1
The operator ∇̃ is multiplicative on ΛZ[q] and may be computed by setting for all m ≥ 0

∇̃hm
[
X

1−q
]

= q(
m
2 ) hm

[
X

1−q
]
. 2.3

Proof
It follows from [22] (p. 364 ex. 7) that the symmetric functions in 2.1 are given by the

formula

H̃µ[X; q, 1 ] =
l(µ)∏
i=1

(q; q)µihµi
[
X

1−q
]
. 2.4

Since we may write

qn(µ′) =
l(µ)∏
i=1

q(
µi
2 ) , 2.5

we see that the combination of 2.2, 2,4 and 2.5 yields

∇̃
l(µ)∏
i=1

(q; q)µihµi
[
X

1−q
]

=
l(µ)∏
i=1

(q; q)µiq(
µi
2 )hµi

[
X

1−q
]
,

or better

∇̃
l(µ)∏
i=1

hµi
[
X

1−q
]

=
l(µ)∏
i=1

q(
µi
2 )hµi

[
X

1−q
]
.

This proves the multiplicativity as well as 2.3.

Theorem 1.2 has a number of truly remarkable consequences. To begin with let us recall
that, the reformulation in terms of ∇, of the conjectured Frobenius characteristic DHn[X; q, t ] of
the module of Sn diagonal harmonics reduces to the formula

DHn[X; q, t ] = ∇en . 2.6

In particular, since we have the expansion

en =
∑
µ`n

(∏
i

hµi [ X
(1−q) ]

)
fµ[1− q]

(with fµ the forgotten basis element indexed by µ), setting t = 1 in 2.6 and using Theorem 2.1 we
immediately obtain that

DHn[X; q, 1] = ∇̃ en =
∑
µ`n

(∏
i

q(
µi
2 )hµi [ X

(1−q) ]
)
fµ[1− q] . 2.7

This result leads to the following beautiful corollary of Theorem 2.1.
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Theorem 2.2
For any λ ` n we have

∇̃Sλ[X] = det
∥∥∥DHλ′

i
+j−i[X; q, 1]

∥∥∥l(λ′)
i=1

. 2.8

Moreover, equating coefficients of S1n in the Schur function expansion of both sides gives

∇̃Sλ[X]
∣∣∣
en

= det
∥∥∥Cλ′

i
+j−i(q)

∥∥∥l(λ′)
i=1

. 2.9

where {Cm(q)}m is the q-analogue of the Catalan sequence defined by the recurrence

Cm(q) =
m∑
k=1

qk−1Ck−1(q) Cm−k(q) ( with Co = 1 ) 2.10

Proof
Applying ∇̃ to both sides of the Jacobi-Trudi identity

Sλ[X] = det
∥∥∥eλ′

i
+j−i[X]

∥∥∥l(λ′)
i=1

immediately gives 2.8 because of 2.7 and the multiplicativity of ∇̃. Now 2.8 and the Pieri rules yield

∇̃Sλ[X]
∣∣∣
S1n

= det
∥∥∥DHλ′

i
+j−i[X; q, 1]

∣∣∣
S

1
λ′
i
+j−i

∥∥∥l(λ′)
i=1

2.11

and 2.9 follows from the fact (proved in [11]) that for each m

DHm[X; q, 1]
∣∣∣
S1m

= Cm(q).

Remark 2.1
We should point out that it was precisely the relation in 2.9 that permitted M. Bousquet-

Melou to identify the sign occurring in formula I.8 of Conjecture I. More recently, C. Lenart (see
[20]), using formula 2.8 was able to obtain a combinatorial proof of the Schur positivity of the
symmetric function (−1)ι(λ

′)∇̃Sλ thereby establishing the case t = 1 and m = 1 of Conjecture I.

Another curious consequence of Theorem 2.1 is the relation that ∇̃ has to Lagrange inversion.
But before we can proceed we need to recall some notation.

The q-Lagrange inversion problem studied in [1], [7] and [17] may be stated as follows. We
are given a formal power series

F (z) = F1z + F2 z
2 + F3 z

3 + · · · (with F1 6= 0)

and we are to construct the formal power series

f(z) = f1z + f2 z
2 + f3 z

3 + · · · (with f1 6= 0)
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which solves the equation

z = F1f(z) + F2 f(z)f(zq) + F3f(z)f(zq)f(zq2) + · · · . 2.12

We should note at the onset that equating coefficients of zn in this equation, the coefficients fn
may be uniquely recursively constructed. Thus existence and uniqueness of the solution is not in
question. The problem is to find a useful explicit closed form for the solution. The solution was
given a closed form in [7] in terms of two operations roofing and starring which may be defined as
follows. Given a formal power series Φ(z) =

∑
k≥0 Φnzn, the “roofing” and “unroofing” of Φ are

respectively defined by setting

∧Φ(z) =
∑
k≥0

Φn q−(n2) zn and ∨ Φ(z) =
∑
k≥0

Φn q(
n
2) zn . 2.13

In the same vein, when Φ0 = 1, “left” and “right stars” of Φ(z) are obtained by setting

∗Φ(z) = Φ(z)Φ(z/q)Φ(z/q2) · · · and Φ∗(z) = Φ(z)Φ(zq)Φ(zq2) · · · 2.14

This given, it was shown in [7] that when F (z) is of the form

F (z) =
z

R(z)
=

z

1 +R1z +R2z2 +R3z3 + · · · 2.15

then the solution f(z) of 2.12 is given the expression

f(z) = z
∨ ∗R(zq)
∨ ∗R(z)

. 2.16

This rather mysterious formula was difficult to use at the time in that there was no method to
derive from 2.16 an actual expression for the coefficients fn. These coefficients were given explicit
expressions in [11] by means of the theory of symmetric functions. The reader may also find there a
lattice path interpretation of 2.12 as well as its solution f(z). Our purpose here is to show that ∇̃
is intimately related to this q-Lagrange inversion problem. In fact, a number of the manipulations
carried out in [7] and [11] will be seen to acquire an entirely new light by means of ∇̃ and plethystic
notation.

To begin with we should note that the reason we can use the theory of symmetric functions in
this context is due to the fact that, given an infinite alphabet X = x1 +x2 +x3 + · · ·, the elementary
symmetric functions e1[X], e2[X], e3[X], . . . are algebraically independent. Thus any formulas we
may derive in the special case that Rn = en[X] in 2.4, will remain valid when, upon expressing
everything in terms of the elementary basis, we make the substitutions en[X]→Rn. This idea will
perhaps be better understood after we illustrate it by some examples.

An important ingredient in this development is that the roofing operator untangles certain
“tangled” products of q-series. More precisely, we have the following basic identity
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Proposition 2.1
For any two q-series A(z) =

∑
m≥0Am(q)zm and B(z) =

∑
m≥0Bm(q)zm we set

(A ∗B)(z) =
∑
n,m≥0

An(q)Bm(q) qnmzn+m =
∑
n≥0

An(q) znB(qnz) . 2.17

This given we have
∧
(
A ∗B

)
= (∧A)× (∧B) . 2.18

This identity follows routinely from 2.17 and the definition in 2.13. A proof may also be
found in [7].

Keeping this in mind, we can prove the following surprising result.

Theorem 2.2
When

F (z) =
z∑

m≥0 en[X]zn
=

z

Ω̃
[
zX
] 2.19

the solution of 2.12 is simply given by the formal series

f(z) = z ∇̃Ω̃
[
zqX

]
. 2.20

In particular the coefficients of f(z) may be computed from the formula

fn = qn−1∇̃en−1 = qn−1
∑
µ`n−1

(∏
i

q(
µi
2 )hµi [ X

(1−q) ]
)
fµ[1− q] . 2.21

Proof
Substituting 2.20 in the right hand side of 2.12 and using the multiplicativity of ∇̃ we obtain∑

n≥1

Fnf(z) · · · f(zqn−1z) =
∑
m≥1

Fn z
n q(

n
2) ∇̃Ω̃

[
zqX

]
Ω̃
[
zq2X

]
· · · Ω̃

[
zqnX

]
=

∑
n≥1

Fn z
n q(

n
2) ∇̃Ω̃

[
zq 1−qn

1−q X
]

=
∑
n≥1

Fn z
n q(

n
2) ∇̃Ω̃

[
zq 1

1−qX
]
/Ω̃
[
zq qn

1−qX
]

=
(
∇̃Ω̃
[
zq 1

1−qX
])∑

n≥1

Fn z
n q(

n
2) /∇̃Ω̃

[
zq qn

1−qX
]
.

Thus to show 2.12 we need only verify that

z

∇̃Ω̃
[
zq 1

1−qX
] =

∑
n≥1

Fn z
n q(

n
2)

∇̃Ω̃
[
zq qn

1−qX
] . 2.22

Now the multiplicativity of ∇̃ allows us to rewrite this relation in the form

z∇̃Ω̃
[
− zq 1

1−qX
]

=
∑
n≥1

Fn z
n q(

n
2) ∇̃Ω̃

[
− zq qn

1−qX
]
.
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Or better yet, since for any alphabet Y we have Ω̃[−Y ] = Ω[εY ] we are reduced to showing that

z∇̃Ω
[
εzq 1

1−qX
]

=
∑
n≥1

Fn z
n q(

n
2) ∇̃Ω

[
εzq qn

1−qX
]
.

We can now “roof ” both sides and obtain

z ∇̃ ∧
(
Ω
[
ε z 1

1−qX
])

=
(∑
n≥1

Fn z
n
)
∇̃ ∧ Ω

[
εzq 1

1−qX
]
.

Recalling the definition of ∇̃, this is simply

z
∑
m≥0

(εz)mhm
[
X

1−q
]

=
(∑
n≥1

Fn z
n
)( ∑

m≥0

(εz)mhm
[
qX

1−q
])

,

which may also be written as

F (εz)
εz

=
Ω
[
zX q

1−q
]

Ω
[
zX 1

1−q
] = Ω

[
− zX

]
and this is in complete agreement with the choice we made in 2.19.

Another curious result established in [7], whose nature is better understood by means of ∇̃,
can be stated as follows.
Theorem 2.3

If F (z) and f(z) are two formal power series related by 2.12, then for two sequences of
constants {Φn}n≥0, {Ψn}n≥0 we have∑

n≥0

Φn f(z)f(zq) · · · f(zqn−1) =
∑
m≥0

Ψm z
n 2.23

if and only if ∑
n≥0

Φn zn =
∑
m≥0

Ψm F (z)F (z/q) · · ·F (z/qn−1) . 2.24

∇̃-Proof
Using 2.20 we may write the left hand side of 2.23 in the forms∑

n≥0

Φn znq(
n
2)∇̃Ω̃

[
zqX

]
∇̃Ω̃
[
zq2X

]
· · · ∇̃Ω̃

[
zqnX

]
=

∑
n≥0

Φn znq(
n
2)∇̃Ω̃

[
1−qn
1−q zqX

]
=

∑
n≥0

Φn znq(
n
2)∇̃Ω̃

[−qn+1

1−q zX
]/
∇̃Ω̃
[ −q

1−q zX
]
.

Thus 2.23 is equivalent to∑
n≥0

Φn znq(
n
2)∇̃Ω̃

[−qn+1

1−q zX
]

=
(
∇̃Ω̃
[ −q

1−q zX
]) ∑
m≥0

Ψm z
m . 2.25
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Using again the fact that for any A we have Ω̃[−A] = Ω[εA], roofing both sides of 2.25 yields(∑
n≥0

Φn zn
)
∧ ∇̃Ω

[
q

1−q ε zX
]

= ∧
((
∇̃Ω
[
q

1−q ε zX
]) ∑
m≥0

Ψm z
m
)
. 2.26

Now we have

∧
((
∇̃Ω
[
q

1−q ε zX
]) ∑

m≥0

Ψm z
m
)

=
∑
n,m≥0

q(
n
2)hn

[
q X
1−q
]
εn Ψmz

n+mq−(n+m
2 )

=
∑
n,m≥0

hn
[ −X

1−1/q

]
(εz)n q−nm Ψmq

−(m2 )zm

=
∑
m≥0

Ψmq
−(m2 )zm Ω[−ε z q−mX

1−1/q

]
=

∑
m≥0

Ψmq
−(m2 )zm Ω̃[z q

−mX
1−1/q

]
2.27

and
∧∇̃Ω

[
q

1−q ε zX
]

=
∑
n≥0

q(
n
2)hn[ qX1−q

]
q−(n2) (εz)n

=
∑
n≥0

hn[ −X1−1/q

]
(εz)n ,

= Ω
[−εz X

1−1/q

]
= Ω̃

[
z X

1−1/q

]
.

2.28

Using 2.27 and 2.28 in 2.26 gives(∑
n≥0

Φn zn
)

Ω̃
[
z X

1−1/q

]
=

∑
m≥0

Ψmq
−(m2 )zm Ω̃[z q

−mX
1−1/q

]
and this can be rearranged to∑

n≥0

Φn zn =
∑
m≥0

Ψmq
−(m2 ) zm

Ω̃[z 1−q−mX
1−1/q

] =
∑
m≥0

Ψm
z

Ω̃[zX
] z/q

Ω̃[zX/q
] · · · z/qn−1

Ω̃[zX/qn−1
]

proving the equivalence of 2.23 and 2.24.

It will be good to illustrate how these symmetric function identities can be used in q-enumeration.
To this end let us recall that a “Lukaciewicz” path of length n is a lattice path which starts at the
origin and ends at (n, 0), always remaining weakly above the the x-axis. Its steps are also restricted
to be the vectors

vk = (1, k − 1) (for k ≥ 0) .

Calling L the collection of all such paths, we associate to each path π ∈ L the “weight”

w(π) = qA(π)zn(π) x
m1(π)
1 x

m2(π)
2 x

m3(π)
3 · · ·

where A(π) denotes the area between the path and the x-axis, n(π) is the number of steps of π and
mk(π) denotes the number of times π takes the step vk. Now it is well known and easy to show that
the formal power series

L(z) =
∑
π∈L

w(π)
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satisfies the following equation:

L(z) = 1 + zx1L(z) + z2q(
2
2)x2L(z)L(zq) + · · ·+ zkq(

k
2)xkL(z)L(zq) · · ·L(zqk−1) + · · · .

Setting g(z) = zL(z), we are led to the equation

g(z) = z
(
1 + x1g(z) + x2g(z)g(zq) + · · · + xkg(z)g(zq) · · · g(zqk−1) + · · ·

)
. 2.29

Note next that if we apply Theorem 2.3 to the equation 2.12, we derive that we must also have∑
n≥1

fn F (z)F (z/q) · · ·F (z/qn−1) = z .

Now in the case that F (z) is given by 2.15 we can rewrite this as∑
n≥1

fn F (z/q) · · ·F (z/qn−1) = R(z) = 1 +R1z +R2z
2 + · · ·+Rkz

k + · · · .

The replacement z→qz then gives∑
n≥1

fn F (z) · · ·F (z/qn−2) = R(z) = 1 +R1qz +R2q
2z2 + · · ·+Rk q

kzk + · · · ,

and a further use of Theorem 2.3 yields the equivalent equation∑
n≥1

fn z
n−1 =

∑
k≥0

Rk q
k f(z)f(zq) · · · f(zqk−1) .

This is

f(z) = z
(
1 +R1qf(z) +R2q

2f(z)f(zq) + · · · + Rkq
kf(z)f(zq) · · · f(zqk−1) + · · ·

)
.

Comparing with 2.29, we see that the q-enumerator L(z) of Lukaciewicz paths by area may be
obtained by solving 2.12 when F (z) is given by 2.15 with

Rk = xk/q
k (for k ≥ 1) .

To be precise we have
L(z) = f(z)/z .

Thus if we denote by Ln the collection of Lukaciewicz paths with n steps, formula 2.21 gives that∑
π∈Ln

qA(π)x
m1(π)
1 x

m2(π)
2 x

m3(π)
3 · · · = qn

∑
µ`n

(∏
i

q(
µi
2 )hµi [ X

(1−q) ]
)
fµ[1− q]

∣∣∣
ei→xi/qi

, 2.30

where it is to be understood that the replacements indicated by the symbol “
∣∣
ei→xi/qi” should be

carried out after the preceding symmetric function has been expanded in terms of the elementary
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basis. We should also mention that it can be shown (see [11]) that for µ = 1α12α23α3 · · · a k-part
partition of n we have

fµ[1− q] = (−1)n−k
(k − 1)!∏

i αi!

k∑
i=1

(1− qµi) . 2.31

The special cases where the paths are restricted to have only certain selected subsets of steps can be
obtained from 2.30 by setting to 0 the appropriate subset of xk. For instance, the polynomial below

x1
6 +

(
q4 + 2 q3 + 3 q2 + 4 q + 5

)
q x2 x1

4

+
(
q6 + q5 + 3 q4 + 3 q3 + 5 q2 + 3 q + 4

)
q3x3 x1

3

+
(
q6 + 2 q5 + 5 q4 + 4 q3 + 6 q2 + 6 q + 6

)
q2x2

2x1
2

+
(
q6 + q5 + 2 q4 + 3 q3 + 3 q2 + 2 q + 3

)
q6x4 x1

2

+
(
q7 + 3 q6 + 2 q5 + 6 q4 + 4 q3 + 4 q2 + 4 q + 6

)
q4x2 x3 x1

+
(
q6 + q4 + 2 q2 + 1

)
q3x2

3 +
(
q4 + 1

) (
q2 + 2

)
q7x2 x4 +

(
q6 + q3 + 1

)
q6x3

2

was obtained from 2.30 by setting n = 6, e1 = x1/q, e2 = x2/q
2, e3 = x3/q

3, e4 = x3/q
4 and

e5 = e6 = 0. Accordingly it q-enumerates by area the collection of Lukaciewicz paths of length 6
which only use steps v0, v1, v2, v3 and v4. Of course such polynomials may also be readily computed
via the recursions that they necessarily satisfy. What is interesting is that the theory of symmetric
functions provides the tools for constructing them quite explicitly.

Remark 2.2
It stands to reason that ∇ itself must yield some q, t version of Lagrange inversion. In fact,

starting again with F (z) = z/Ω̃[zX], we might call the q, t-inverse of F (z) a power series f(z) of the
form

f(z) = z
∑
n≥0

cn(q, t)∇en zn 2.32

for a suitable choice of the coefficients cn(q, t). Of course, since ∇ is symmetric in q, t, whatever
we showed for the specialization at t = 1 goes through verbatim (by interchanging q and t) for the
specialization at q = 1 . So in the former case we take cn(q, t) = qn and in the latter cn(q, t) = tn.
Curiously enough, we find that the specialization at t = 1/q of 2.32 can also be related to Lagrange
inversion if we take cn(q, t) = q(

n
2). In fact, it was shown in [11] that

q(
n
2)∇en

∣∣∣
t=1/q

=
en
[
X(1 + q + · · ·+ qn)

]
1 + q + · · ·+ qn

. 2.33

Thus the formal series in 2.32 with this specialization becomes

f(z) = z
∑
n≥0

en
[
X(1 + q + · · ·+ qn)

]
1 + q + · · ·+ qn

zn . 2.34

To recognize the nature of the connection with Lagrange inversion in this case, we need only point
out that we may write

en
[
X(1 + q + · · ·+ qn)

]
= Ω̃[zX]Ω̃[zqX] · · · Ω̃[zqnX]

∣∣∣
zn

.
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Thus 2.34 may be viewed as

f(z) = z
∑
n≥0

1
1 + q + · · ·+ qn

Ω̃[zX]Ω̃[zqX] · · · Ω̃[zqnX]
∣∣∣
zn

,

or better yet (equating 2.15 and 2.19) this is simply

f(z) = z
∑
n≥0

1
1 + q + · · ·+ qn

R(z)R(zq) · · ·R(zqn)
∣∣∣
zn

,

which is easily seen to reduce to the classical Lagrange inversion formula for q = 1. In summary ∇
offers a way of interpolating, by means of the interplay between q and t, between two quite different
yet natural q-analogues of Lagrange inversion, namely, between the one which affords a combinatorial
interpretation of the solution and one which simply exhibits a q-analogue of the solution formula.
Only time will tell if there is a “natural” explanation for this curious fact.

3. Positivity properties.
In this section we shall present a variety of conjectures which resulted from experimenting

with ∇ and related operators. To simplify the statement of our results we need to introduce some
terminology. Here and in the following when we say that a certain symmetric function F is “Schur
integral” we simply mean that it has a Schur function expansion with coefficients in Z[q, t]. If the
coefficients are in N[q, t] then we shall say that F is “Schur positive integral” or briefly “Schur
positive”. If F or −F is Schur positive, we shall say that F is “virtually positive”. If the elementary
basis expansion of F has coefficients in N[q, t] we shall say that F is “e-positive ”. Of course
e-positivity is stronger than Schur positivity. The results of last sections essentially state that
qn∇̃en is e-positive. In this particular case the result could be established by giving a combinatorial
interpretation to the coefficients. However, this is one of the very few positivity findings that can
be actually proved. In most cases the best we can do is offer a “proof” based on some stronger
and more general conjecture. For instance, there is relatively simple algorithm which constructs the
polynomials H̃µ[X; q, t ], based on the fact that for any µ we have the triangularity relations:

H̃µ[X; q, t ] = h̃µ(q, t)Sµ
[
X

1−t
]

+
∑
λ<µ

Sλ
[
X

1−t
]
aλµ(q, t)

H̃µ[X; q, t ] = h̃µ(q, t)Sµ
[
X

1−q
]

+
∑
λ>µ

Sλ
[
X

1−q
]
bλµ(q, t) .

3.1

If we program this on the computer we would quickly be led to the “discovery”, without explicit
knowledge of any the coefficients aλµ(q, t) or bλµ(q, t), that the H̃µ

′s are in fact Schur positive. This
is essentially what is now referred to as the “Macdonald q, t-Kostka conjecture”. However, after a
decade of efforts in proving this conjecture, considerably more refined information concerning the
polynomials H̃µ has emerged. To begin with, Garsia-Haiman have conjectured in [8] that these
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polynomials are the Frobenius characteristics of certain bigraded Sn modules. More precisely, for
µ ` n set

∆µ(x; y) = det
∥∥xlµ(s)

i y
aµ(s)
i

∥∥
i∈[1,n]

s∈µ
3.2

and let Mµ be linear span of the derivatives of ∆µ(x; y); in symbols

Mµ = Lδ
[
∂px∂

q
y ∆µ(x; y)

]
. 3.3

Moreover letHr,s[Mµ] denote the subspace of Mµ consisting of its bihomogeneous elements of degree
r in x and degree s in y. Since Hr,s[Mµ] is invariant under the diagonal action of Sn, we can set

Cµ[X; q, t] =
n(µ)∑
r=0

n(µ′)∑
s=0

trqs FchHr,s[Mµ] 3.4

where the symbol “Fch” denotes the operation of taking the Frobenius image of a character, that
is, the map that sends the character χλ onto the Schur function Sλ.

Now it was conjectured in [8] that for all µ we have

Cµ[X; q, t] = H̃µ[X; q, t] . 3.5

Of course the Macdonald q, t-Kostka conjecture would then follow, since under this equality the
coefficients K̃λµ(q, t) in I.21 would have to encode the manner in which the irreducible Sn-character
χλ is distributed among the components Hr,s[Mµ]. We shall refer to 3.5 as the “C = H̃” conjecture.
We should mention that 3.5 has been verified for all µ ` n ≤ 8 by computer, for µ a hook in [12],
for two row partitions and for any partition obtained by adding an inner corner to a hook [23]. It
can be shown by an elementary combinatorial argument that for any µ ` n we have (see [12])

dim Mµ ≤ n! 3.6

Since Macdonald in [21] showed that

K̃λµ(q, t)
∣∣
t,q=1

= fλ (the number of standard tableaux of shape λ) 3.7

it would immediately follows from 3.5 that we must have equality in 3.6. Surprisingly, even this
tantalizingly simple assertion, which has come to be referred to as the “n!-conjecture”, has also
escaped proof after more than ten years since its formulation in [21]. What is even more surprising
is the fact that Haiman in [19] proved that the validity of the n! conjecture for any given µ forces 3.5
to be true for that same µ. In [3] and [2] the reader may find a variety of conjectures that strengthen
and extend the n! conjecture. We shall recall here those that are most intimately related to our
operator ∇.

Let µ be a fixed partition of n+ 1 and let

Pred(µ) =
{
ν(1) , ν(2) , . . . , ν(d)

}
3.8
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be the collection of partitions obtained by removing one of the corners of µ. For a pair ν→µ, it will
be convenient to denote by µ/ν the corner cell we must remove from µ to get ν. To be specific,
we shall assume that the partitions in 3.8 are ordered so that the corner µ/ν(k) is northwest of the
corner µ/ν(k+1). For two subsets T ⊆ S ⊆ Pred(µ) set

MT
S =

( ⋂
α∈T

Mα

)
∩

( ∑
β∈S−T

Mβ

)
∩
( ⋂

α∈T
Mα

)⊥ 3.9

where the symbols “
⋂

” and “
∑

” denote intersection and sum (not usually direct) of vector spaces,
and “⊥” denotes the operation of taking orthogonal complements with respect to the natural scalar
product of polynomials in x1, . . . , xn; y1, . . . , yn that makes monomials into an orthogonal set. Since
this scalar product is invariant under the diagonal action of Sn , we see that MT

S is a well-defined
Sn-module. We shall denote its bivariate Frobenius characteristic by φTS . One of the assertions of
the SF-heuristics in [3] is that in the linear span

L[ H̃α : α ∈ S ]

we have m = |S| Schur positive symmetric polynomials

φ
(1)
S , φ

(2)
S , . . . , φ

(m)
S

such that for any T ⊆ S of cardinality k we have

φTS =
φ

(k)
S∏

α∈S−T Tα
.

It is also a consequence of the SF-heuristics that for k = 1, . . . ,m− 1 we can set

φ
(k)
S = (−∇)m−k φ(m)

S , 3.10

while φ(m)
S itself can be computed from the formula

φ
(m)
S =

∑
α∈S

( ∏
β∈S/{α}

1
1− Tα/Tβ

)
H̃α =

∑
α∈S

( ∏
β∈S/{α}

1
1−∇/Tβ

)
H̃α . 3.11

To be consistent with the notation we adopted in [3] we shall use the symbols φµ or φ(k)
µ to denote

φ
(m)
S or φ(k)

S when S = Pred(µ). In this vein, it will also be convenient to set, for any subset
S ⊆ Pred(µ),

cS = Pred(µ)− S .

Now it is shown in [3] that

φ
(m)
S =

( ∏
β∈ cS

(
1− ∇

Tβ

))
φµ . 3.12
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In particular, when S consists of a single partition ν(i) ∈ Pred(µ), this reduces to

H̃ν(i)(x; q, t) =
( d∏
j=1 ; j 6=i

(
1− ∇

Tν(j)

))
φµ , 3.13

which may also be rewritten in the form (see 3.19 of [3])

H̃ν(i)(x; q, t) =
d∑
k=1

φ(k)
µ ed−k

[ 1
Tν(1)

+
1

Tν(2)
+ · · ·+ 1

Tν(d)
− 1

Tν(i)

]
. 3.14

Finally note that if ν(i) = α ∈ S then by combining 3.12 and 3.13 we can also write

H̃α(x; q, t) =
∏

β∈S ; β 6=α

(
1− ∇

Tβ

) ∏
β∈ cS

(
1− ∇

Tβ

)
φµ =

∏
β∈S ; β 6=α

(
1− ∇

Tβ

)
φ

(m)
S

or equivalently, for S =
{
α(1), α(2), . . . , α(m)

}
and α = α(i)

H̃α(i)(x; q, t) =
m∑
k=1

φ
(k)
S em−k

[ 1
Tα(1)

+
1

Tα(2)
+ · · ·+ 1

Tα(m)
− 1

Tα(i)

]
. 3.15

To complete the picture we need to recall that in [3] the weights of the corners

µ/ν(1) , µ/ν(2) , . . . , µ/ν(d)

were respectively called
x1 , x2 , . . . , xd .

Moreover, if
xi = tl

′
iqa
′
i 3.16

then we also set
ui = tl

′
i+1qa

′
i ( for i = 1, 2, . . . , d− 1 ) 3.17

We shall refer to the ui as the weights of the “inner corners” of µ. Finally we set

u0 = tl
′
1/q , ud = qa

′
d/t and x0 = 1/tq . 3.18

It was shown in [15] that the products in 1.38 giving the coefficients cµν(q, t) undergo massive
cancellations which reduce them to relatively simpler expressions in terms of the corner weights. This
results in the formula

cµν(i) =
1
M̃

1
xi

∏d
j=0 (xi − uj)∏d

j=1 ; j 6=i(xi − xj)
3.19

Taking account of the fact that xi Tν(i) = Tµ , formula 3.13 can then also be written in the form

H̃ν(i)(x; q, t) =
d∏

j=1 ; j 6=i

(
1−∇ xi

Tµ

)
φµ . 3.20
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This given, from 3.19 and 3.20 we can derive the following beautiful identities: (†)

a) ∂p1H̃µ =
1
M

Tµ
∇

( d∏
s=0

(
1−∇ us

Tµ

))
φµ

b) ∂p1H̃µ =
d∑
k=1

φ
(k)
S

Tm−kµ

em+1−k[x0 + · · ·+ xd] − em+1−k[u0 + · · ·+ ud]
M

.

3.21

We should note that one of the consequences of 3.11 is that for any two predecessors α and β of a
partition µ ` n+ 1 the symmetric function

Φαβ [X; q, t] =
Tβ H̃α[X; q, t] − Tα H̃β [X; q, t]

Tβ − Tα
3.22

is the conjectured Frobenius characteristic of the intersection of the two Sn-modules Mα and Mβ

and therefore it should always be Schur positive. It is another consequence of the Science Fiction
heuristic that we should have

Φαβ [X; q, t]
∣∣
t=1
q=1

= S2 S
n−2
1 .

In particular for all such pairs we should have

dim Mα ∩Mβ =
n!
2

. 3.23

It may be shown that this identity implies the n!-conjecture.
In the same vein, by combining 3.10 with 3.11, we derive that the symmetric function

Ψαβ [X; q, t] = −∇Φαβ [X; q, t] = Tα Tβ
H̃β [X; q, t] − H̃α[X; q, t]

Tβ − Tα
3.24

must also be Schur positive since

Ψαβ [X; q, t]
Tβ

and
Ψαβ [X; q, t]

Tβ
3.25

should respectively give the Frobenius characteristics of the two Sn-modules

Mα ∩
(
Mα ∩Mβ

)⊥
and Mβ ∩

(
Mα ∩Mβ

)⊥
. 3.26

Further refinements of these Schur positivity conjectures may be obtained by means of the general
forms of 3.10 and 3.11. But even the latter are but very special cases of the general positivity
conjectures that are formulated in [2]. To keep our presentation to a reasonable size we shall only
mention one example that we find most interesting. Namely, that with µ ` n + 1, and Pred(µ) as
given in 3.8, and the corner weights as defined above, the symmetric function

Ξµ =
m∑
s=1

∏d−1
r=1(xs − ur)∏d

r=1 r 6=s(xs − xr)
H̃ν(s) . 3.27

(†) See Theorem 3.3 of [3]
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should always be the Frobenius characteristic of a bigraded left regular representation of Sn. The
reader is referred to [2] and [3] for further examples and the arguments justifying all these assertions.

Experimenting with our operators ∇, Dk and D∗k we quickly run into polynomials in q, t

with positive integer coefficients. Although we may usually find a representation theoretical “reason”
for this, the actual proof invariably eludes us. In most cases the best we can do is derive the result
from the positivity of the q, t-Kostka. The following result is a good instance in point.

Theorem 3.1
On the Macdonald positivity conjecture, for any integer k ≥ 1, we have:((

1 +D∗1
M

)k
1

)[
Dµ(q, t)

]
∈

N[q, t] if |µ| ≥ k ,

{0} otherwise .
3.28

Proof
From I.12 (iii)* we derive that

∇ (1 +D∗1)k∇−1 = (1 + e1)k

and since ∇−11 = 1 we may write

∇ (1 +D∗1)k 1 = (1 + e1)k . 3.29

Note further that from the definition of ε it follows that

T −1
ε e1 = e1[X − ε] = 1 + e1

and 3.29 can be converted to
∇ (1 +D∗1)k 1 = T −1

ε ek1

or, better yet
(1 +D∗1)k 1 = ∇−1 T −1

ε ek1 .

In view of I.16 we may rewrite this as

(1 +D∗1)k 1 = Π ek1

so we can use the identity in I.20 and obtain((
1 +D∗1
M

)k
1

)[
Dµ(q, t)

]
=


0 if |µ| < k ,〈
e∗n−k e

∗
1
k , H̃µ

〉
∗ if |µ| = n ≥ k .

This establishes the result for |µ| < k. Now for n ≥ k the identity in 1.4 yields that((
1 +D∗1
M

)k
1

)[
Dµ(q, t)

]
=
〈
hn−k h1

k , H̃µ

〉
= δk1 ∂Sn−k H̃µ . 3.30
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Recalling that we have the expansion

∂Sn−kSλ[X] =
∑

λ/ν ∈Hn−k

Sν [X] ,

where the symbol “λ/ν ∈ Hn−k” is to denote that λ/ν is a horizontal (n − k)-strip, we see that
substituting I.7 in 3.30 gives (for µ ` n ≥ k)((

1 +D∗1
M

)k
1

)[
Dµ(q, t)

]
= δk1

∑
λ

K̃λµ(q, t)
∑

λ/ν ∈Hn−k

Sν [X]

=
∑
λ

K̃λµ(q, t)
∑

λ/ν ∈Hn−k

fν

3.31

where fν denotes the number of standard tableaux of shape ν. This completes our proof.

Remark 3.1
We should point out that for q = t = 1 the polynomial on the left hand side of 3.28 reduces

to a very familiar number. In fact, since H̃µ[X; q, t]|t=q=1 = en1 , from 3.30 we derive that for n ≥ k((
1 +D∗1
M

)k
1

)[
Dµ(q, t)

] ∣∣∣
t=1
q=1

= ∂Sn−kδ
k
1 e

n
1 = n(n− 1) · · · (n− k + 1) . 3.32

We may thus view this polynomial as a q, t-analogue of the descending factorial. It would be
interesting to find a combinatorial interpretation for this. The identity in 3.31 reveals that this
should be a challenging task. Here, we can only suggest a very interesting representation theoretical
interpretation.

Recall that if M is a bigraded Sn-module and Hrs(M) is the subspace consisting of the
elements of M which are of bidegree (r, s) then the “bigraded” Hilbert series FM(q, t) of M is given
by the formal sum

FM(q, t) =
∑
r,s≥0

trqs dimHrs(M) . 3.33

It is well known and easy to show that if Φ[X; q, t] is the Frobenius characteristic of M then FM(q, t)
may be computed by means of the formula

FM(q, t) = ∂n1 Φ[X; q, t] . 3.34

Now for k ≥ 1 let
M(k)

µ = L
[
∂p1
x1
∂q1y1
· · · ∂pkxk∂

qk
yk

∆µ

]
3.35

be the linear span of all polynomials obtained by differentiating ∆µ(x; y) in all possible ways but
only with respect to the first k of the xi and yi. For convenience let F (k)

µ (q, t) denote the Hilbert
series of M(k)

µ and set
G(k)
µ (q, t) = Tµ F

(k)
µ (1/q, 1/t) . 3.36
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It develops that the polynomial in 3.28 should be none other than the Hilbert series of M(k)
µ . More

precisely

Theorem 3.2
On the n!-conjecture, for |µ| ≥ k we have((

1 +D∗1
M

)k
1

)[
Dµ(q, t)

]
= G(k)

µ (q, t) . 3.37

Proof
In view of 3.30 we need only show that

G(k)
µ (q, t) = δk1∂Sn−kH̃µ . 3.38

To this end, we start by noting that the space M(k)
µ may also be obtained by antisymmetrizing all the

elements of Mµ with respect to the symmetric group S[k+1,...,n]. More precisely, let B = [k+1, . . . , n]
and, using Young’s notation, let P [B] and N [B] respectively denote, the formal sums of all the
elements and all the “signed” elements of S[k+1,...,n]. Our claim is that

M(k)
µ = N [B] Mµ . 3.39

To see this note that since we can factorize any monomial m(x, y) = m(x1, y1, . . . , xn, yn) in the
form

m = m1(x1, y1, . . . , xk, yk)×m2(xk+1, yk+1, . . . , xk, yk)

we shall have

N [B]
(
m(∂x; ∂y) ∆µ(x; y)

)
= m1(∂x; ∂y)

(
P [B]m2

)
(∂x; ∂y) ∆µ(x; y) . 3.40

Since the polynomial P [B]m2(xk+1, yk+1, . . . , xk, yk) is invariant under the diagonal action of S[k+1,...,n],
it follows from a theorem of H. Weyl (see [24]) that we can express it as a polynomial in the polarized
power sums

n∑
i=k+1

xri y
s
i .

However, starting from the definition in 3.2 we can easily show that for r + s > 0 we have

n∑
i=1

∂rxi∂
s
yi ∆µ(x; y) = 0 .

In other words
n∑

i=k+1

∂rxi∂
s
yi ∆µ(x; y) = −

k∑
i=1

∂rxi∂
s
yi ∆µ(x; y) .

This given it follows that for some polynomial Qm2(x1, y1, . . . , xk, yk) we have

(P [B]m2)
(
∂xk+1 , ∂yk+1 , . . . , ∂xn , ∂yn

)
∆µ(x; y) = Qm2

(
∂x1 , ∂y1 , . . . , ∂xk , ∂yk

)
∆µ(x; y) . 3.41
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Substituting 3.41 in 3.40 gives

N [B]
(
m(∂x; ∂y) ∆µ(x; y)

)
= m1

(
∂x1 , ∂y1 , . . . , ∂xk , ∂yk

)
Qm2

(
∂x1 , ∂y1 , . . . , ∂xk , ∂yk

)
∆µ(x; y) .

This proves that
N [B]Mµ ⊆M(k)

µ . 3.42

On the other hand, for any monomial m1(x1, y1, . . . , xk, yk), we clearly have

m1

(
∂x1 , ∂y1 , . . . , ∂xk

)
∆µ(x; y) =

1
k!
N [B]

(
m1

(
∂x1 , ∂y1 , . . . , ∂xk

)
∆µ(x; y)

)
.

Thus the reverse inclusion
M(k)

µ ⊆ N [B]Mµ

is trivial, proving 3.39.
Now it may be shown, (see [10] Proposition 6.1) that if M is a bigraded Sn-module with

bivariate Frobenius characteristic ΦM(X; q, t), then the bivariate Frobenius characteristic of N [B]M,
as an S[1,...,k]-module is given by the simple expression

∂S1n−k
ΦM(X; q, t) .

In particular, the Hilbert series of N [B]M, may be computed from the formula

FN [B]M(q, t) = δk1 ∂S1n−k
ΦM(X; q, t) .

Applying this result to the case M = Mµ, we see that, on the n!-conjecture, we must have

F (k)
µ (q, t) = F

M
(k)
µ

(q, t) = FN [B]Mµ
(q, t) = δk1 ∂S1n−k

H̃µ(X; q, t) . 3.43

Finally, we observe that 1.13 gives

H̃µ[X; 1/q, 1/t ] =
1
Tµ

ωH̃µ[X; q, t ] .

Thus combining 3.36 and 3.43 we derive that

G(k)
µ (q, t) = Tµ δ

k
1 ∂S1n−k

H̃µ[X; 1/q, 1/t ]

= Tµ δ
k
1 ∂S1n−k

1
Tµ

ωH̃µ[X; q, t ]

= δk1 ∂Sn−k H̃µ[X; q, t ]

This proves 3.38, completing our argument.

We should note that both G(k)
µ (q, t) and F (k)

µ (q, t) satisfy the same recursion. More precisely,



(Preliminary Version) Some remarkable symmetric function operators August 31, 1999 36

Theorem 3.3
For |µ| ≥ k ≥ 1 we have

a) G(k)
µ (q, t) =

∑
ν→µ

cµ,ν(q, t)G(k−1)
ν (q, t) ,

b) F (k)
µ (q, t) =

∑
ν→µ

cµ,ν(q, t)F (k−1)
ν (q, t) .

3.44

with the initial conditions
a) G(1)

µ (q, t) = Bµ(q, t) ,

b) F (1)
µ (q, t) = TµBµ(1/q, 1/t) .

3.45

Proof
Note that from 3.43 and 1.36 we immediately get that for k ≥ 1

F (k)
µ (q, t) = δk−1

1 ∂S1n−k
δ1 H̃µ(X; q, t)

=
∑
ν→µ

cµν(q, t) δk−1
1 ∂S1n−k

H̃ν(X; q, t) .

This proves 3.44 b). The recursion in 3.44 a) is proved in exactly the same way by means of 3.38.
Note next that 3.37 gives

G(1)
µ (q, t) =

(
1 +D∗1
M

1
)[

Dµ(q, t)
]
.

Now from the definition in I.10 we immediately get D∗1 1 = e1. Thus, recalling I.4, we obtain

G(1)
µ (q, t) =

1 + e1

M

[
Dµ(q, t)

]
=

1 + e1

M

[
MBµ(q, t)− 1

]
= Bµ(q, t) ,

as desired. The identity in 3.45 b) follows from 3.36.

Remark 3.2
It would seem that we should be able to construct a proof of the positivity of the polynomial

G
(k)
µ (q, t) by an induction argument based on the recursion in 3.44. In fact, we shall see that can do

this for k = 2. The question remains whether a similar argument can be carried out in full generality.

Recalling the definitions of corners weights given in 3.16, 3.17 and 3.18 let us denote by
Bij(q, t) the portion of the polynomial

Bµ(q, t) =
∑
s∈µ

tl
′
µ(s)qa

′
µ(s)

that is contributed by the rectangle

Rij =
{

(l′, a′) : l′j+1 < l′ ≤ lj , a′i−1 < a′ ≤ a′i
}
.
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Note that we must have then

Bij(q, t) =
∑

(l′,a′)∈Rij

tl
′
qa
′

= tl
′
j+1qa

′
i−1
(
t+ · · ·+ tl

′
j−l′j+1

)(
q + · · ·+ qa

′
i−a′i−1

)
= tl

′
j+1qa

′
i−1

(
1− tl′j−l′j+1

)
1− 1/t

(
1− qa′i−a′i−1

)
1− 1/q

= tl
′
j+1qa

′
i−1

(1− xj/uj)(1− xi/ui−1)
M̃

3.46

Next call R∗ij the rectangle obtained by lifting Rij so that its top side lies on the boundary of the
Ferrers diagram of µ. We can easily see that we must have

B∗ij(q, t) =
∑
s∈R∗

ij

tl
′
qa
′

= tl
′
i−l′jBij(q, t) .

This given, combining with 3.46 and using the definitions in 3.16 and 3.17 we obtain that

B∗ij(q, t) =
tq

xjM
(uj − xj)(ui−1 − xi) 3.47

Now note that for a given 1 ≤ j ≤ d the rectangles R∗ij are disjoint as i varies from 1 to j. Thus

Bµ(q, t) −
j∑
i=1

B∗ij(q, t) >> 0

where the symbol “A >> B” is to mean that the difference A − B has non-negative integer coeffi-
cients. In particular we derive that

B2
µ −

d∑
j=1

xj

j∑
i=1

B∗ij(q, t) >> B2
µ − Bµ

d∑
j=1

xj >> 0 .

Taking this into account we see from 3.47 that the positivity of G(2)
µ (q, t) is an immediate consequence

of the following explicit formula .

Theorem 3.4

G(2)
µ (q, t) = B2

µ −
tq

M

d∑
j=1

j∑
i=1

(xi − ui−1)(xj − uj) 3.48

Proof
Combining the recursion in 3.44 a) with the initial condition in 3.45 a) we get that

G(2)
µ (q, t) =

∑
ν→µ

cµν(q, t)Bν(q, t)

Now since Bν = Bµ − Tµ/Tν we may rewrite this as

G(2)
µ (q, t) =

∑
ν→µ

cµν(q, t)Bµ(q, t) −
∑
ν→µ

cµν(q, t)Tµ/Tν .
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But then 1.37 gives

G(2)
µ (q, t) = B2

µ(q, t) − tq

M
h2[Dµ(q, t)/qt] .

Now it is shown in [15] (Proposition 2.3) that

Dµ(q, t)/qt = x1 + · · ·+ xd − u0 − · · · − ud

This given, 3.48 follows from the simple symmetric function identity

h2[x1 + · · ·+ xd − u0 − · · · − ud] =
d∑
i=1

d∑
j=i

(xi − ui−1)(xj − uj) .

We terminate this section with three remarkable ∇-positivity conjectures.

Conjecture II
For any partitions λ, µ we have

(−1)|µ|−l(µ)
〈
∇H̃µ(x; 0, t) , Sλ(x)

〉
∈ N[q, t] 3.49

Remark 3.3
The fact that ∇H̃µ(x; 0, t) appears to be virtually positive was discovered by computer

experimentation by A. Lascoux, after learning of the virtual positivity of ∇Sλ. However, the iden-
tification of the sign must be as stated in 3.49 to be consistent with Conjecture I. To see this note
that since we have

H̃µ(x; 0, t) =
∑
λ

Sλ(x)K̃λµ(t)

with K̃λµ(t) the Kostka-Foulkes polynomials, it follows that for µ = (µ1, µ2, . . . , µk)

H̃µ(x; 0, 1) =
∑
λ

Sλ(x)Kλµ = hµ1hµ2 · · ·hµk

with Kλµ denoting the ordinary Kostka number. This given, from the multiplicativity of ∇
∣∣
t=1

we
immediately derive (using the notation of section 2)

∇H̃µ(x; 0, t)
∣∣
t→1

= ∇̃hµ1∇̃hµ2 · · · ∇̃hµk . 3.50

However, setting t → 1, m → 1 and λ → (m) in I.8 we derive that, on the validity of Conjecture
I, the expression (−1)ι(1

m)∇̃hm must, for all m, evaluate to a Schur-positive symmetric function.
However, we see that

(−1)ι(1
m) =

(
m

2

)
+
∑

1<i−1

(i−1−1) = 1 + 2 + · · ·+m−1 + 0 + 1 + · · ·m−2 ≡ m−1 (mod 2) .

Using this in 3.50 yields that, according to Conjecture I, the symmetric function

(−1)µ1+···+µk−k ∇̃hµ1∇̃hµ2 · · · ∇̃hµk = (−1)|µ|−l(µ)∇H̃µ(x; 0, t)
∣∣
t→1
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must be Schur positive. This forces the choice of sign in 3.49.

Our next conjecture is truly surprising and fraught with tantalizing combinatorial implica-
tions.

Conjecture III

For every partition µ the symmetric function

∇ω H̃µ(x; 0, 1/t)

is integral in q and t and Schur positive. Moreover, for any pair of partitions ν and µ with µ > ν in
dominance, the difference

∇ω H̃µ(x; 0, 1/t) − ∇ω H̃ν(x; 0, 1/t)

is always Schur positive as well.

Remark 3.4

We should note that for µ = (µ1, µ2, . . . , µk) we have the specialization

∇ω H̃µ(x; 0, 1/t)
∣∣∣
t→1

= ∇̃eµ1∇̃eµ2 · · · ∇̃eµk = DHµ1(x; q, 1)DHµ2(x; q, 1) · · ·DHµk(x; q, 1) .

It develops that with this specialization, it is not difficult to show that the difference

∇ω H̃µ(x; 0, 1/t)
∣∣∣
t→1

− ∇ω H̃ν(x; 0, 1/t)
∣∣∣
t→1

is always Schur positive. Neveretheless, it should make quite an interesting and challenging research
problem to give a combinatorial proof of this positivity based on the Parking Function interpretation
of DHm(x; q, 1) described in [11].

Surprisingly even the monomial symmetric functions have virtually Schur positive∇-images.
More precisely
Conjecture IV

For any pair of partitions λ, µ ` n

(−1)n−l(µ)
〈
∇mµ , Sλ

〉
∈ N[q, t] .

Moreover these polynomials have coefficients that are doubly unimodal in q and t.

For the benefit of the reader we have displayed in the following page the Schur function
expansions of the polynomials ∇ω H̃µ(x; 0, 1/t) for all µ ` 4. We can clearly observe from this
display the monotonicity with respect to dominance as well as all sorts of triangularities.
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S4 S31 S22 S211 S1111

∇ωH̃(4)(x; 0, 1/t) −→ [1]

[
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 0

]  1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 0 1




1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
0 2 2 1 0 0
0 1 2 2 1 0
0 0 0 1 1 1




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 0 0 1 0



∇ωH̃(3,1)(x; 0, 1/t) −→ [1]

[
1 0 0
1 0 0
1 1 0
0 1 1

]  1 0 0
0 0 0
1 1 0
0 1 0
0 0 1




1 0 0 0
1 0 0 0
1 1 0 0
0 2 0 0
0 1 2 0
0 0 0 1




1 0 0 0
0 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



∇ωH̃(2,2)(x; 0, 1/t) −→ [1]

[
1 0
1 0
1 1
0 1

]  1 0 0
0 0 0
1 1 0
0 1 0
0 0 1




1 0 0
1 0 0
1 1 0
0 2 0
0 1 1
0 0 0




1 0 0
0 0 0
0 1 0
0 1 0
0 0 1
0 0 0
0 0 0



∇ωH̃(2,1,1)(x; 0, 1/t) −→ [1]

[
1 0
1 0
1 0
0 1

]  1 0
0 0
1 0
0 1
0 0




1 0
1 0
1 0
0 1
0 1
0 0




1 0
0 0
0 0
0 1
0 0
0 0
0 0



∇ωH̃(1,1,1,1)(x; 0, 1/t) −→ [1]

[
1
1
1
0

]  1
0
1
0
0




1
1
1
0
0
0




1
0
0
0
0
0
0


Remark 3.5

We should note that our positivity conjectures can be used to deduce further ones through
the use of 1.14 b) and the self-adjointness of ∇ with respect to the ∗-scalar product. This is easily
seen from the proof of the following simple identities.

Theorem 3.5
For λ ` n set

∇Sµ =
∑
λ`n

Sλ αλ,µ(q, t) , 3.51

then

∇Sµ
[
X

M

]
=
∑
λ`n

Sλ

[
X

M

]
αµ′,λ′(q, t) , 3.52

∇−1Sµ =
∑
λ`n

Sλ αλ′,µ′(
1
q
,

1
t
) , 3.53



(Preliminary Version) Some remarkable symmetric function operators August 31, 1999 41

∇−1Sµ

[
X

M

]
=
∑
λ`n

Sλ

[
X

M

]
αµ,λ(

1
q
,

1
t
) , 3.54

αλ,µ(q, t) = αλ,µ(t, q) . 3.55

Proof
It follows from 1.2 b) that

αλ,µ(q, t) = 〈∇Sµ , S∗λ′
〉
∗

and ∗-self-adjointness of ∇ gives

αλ,µ(q, t) = 〈Sµ , ∇S∗λ′
〉
∗ = 〈∇S∗λ′ , Sµ

〉
∗

and 3.52 follows immediately since, again from 1.2 b), we have

∇S∗µ =
∑
λ`n

S∗λ 〈∇S∗µ , Sλ′〉∗ .

Note further that applying the operator “↓” to both sides of 3.51 and using 1.14 b) gives

∇−1Sµ′ =
∑
ν`n

Sλ′ αλ,µ
(1
q
,

1
t

)
and 3.53 immediately follows by the replacements µ→ µ′ and λ→ λ′. The identity in 3.54 can then
be deduced from 3.53 in the same way we deduced 3.52 from 3.51.

Finally it is shown in [9] that we have

H̃µ[X; t, q ] = H̃µ′ [X; q, t ] .

Note further that from the definition of Tµ in I.4 we get that

Tµ
∣∣
t↔q = Tµ′

where the symbol “
∣∣
t↔q” is to represent the operation of interchanging t and q in the preceding

expression. This given, from I.5 we immediately derive that

(∇
∣∣
t↔q)H̃µ = (∇

∣∣
t↔q) (H̃µ′

∣∣
t↔q) = ∇H̃µ′

∣∣
t↔q = Tµ′H̃µ′

∣∣
t↔q = Tµ H̃µ .

In other words we have
∇
∣∣
t↔q = ∇

and this is equivalent to the validity of the identities in 3.55 for all λ and µ.

In the same vein we can easily see that Conjecture III may be restated in the following
equivalent form.
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Conjecture III’
For every pair of partitions µ, λ we have

∇−1 H̃µ(x; 0, t)
∣∣∣
Sλ
∈ N

[1
q
,

1
t

]
Moreover, for any pair of partitions ν and µ with µ > ν in dominance, we have

∇−1 H̃µ(x; 0, t) − ∇−1 H̃ν(x; 0, t)
∣∣∣
Sλ
∈ N

[1
q
,

1
t

]
for all λ.

The stated equivalence is another consequence of 1.14 b) which gives that

↓ ∇ω H̃µ(x; 0, 1/t) = ∇−1 H̃µ(x; 0, t) 3.56

Remark 3.6
In the case µ = (2, 1n−2) we can give a representation theoretical proof of the Schur positivity

of the polynomial ∇ωH̃µ[X; 0, 1/t]. Let us recall that if

{ν1, ν2, . . . , νd, }

are the predecessors of a given partition µ, then φµ[X; q, t] denotes the Frobenius characteristic of
the intersection

d∧
i=1

Mνi

Now, using the “Science fiction” heuristic, it is shown in ([3] Theorem 3.2) that the Frobenius
characteristic of the join

d∨
i=1

Mνi

is given by the polynomial
(−1)d−1∇dφµ[X; q, t]

Tν1Tν2 · · ·Tνd
.

In the case of a partition µ with two predecessors α, β this result reduces to (see 3.10 and 3.22)

Fch Mα ∨Mβ = − 1
TαTβ

∇2
(TβH̃α − TαH̃β

Tβ − Tα

)
= ∇ H̃α − H̃β

Tα − Tβ
.

Using 1.14, this relation may also be rewritten as

Fch Mα ∨Mβ = ∇ ↓ H̃α/Tα − H̃β/Tβ
1/Tα − 1/Tβ

= ∇ ↓ TβH̃α − TαH̃β

Tβ − Tα
.

In summary we see (again from 3.11) that in the two corner case we must have

Fch Mα ∨Mβ = ∇ ↓ Fch Mα ∧Mβ . 3.57
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It has been shown in [2] that all of the assertions of the Science fiction heuristics do hold true when
µ is a hook. Note further that, in the particular case µ = (2, 1n+1), α = (1n) and β = (2, 1n−2) we
must have

Fch Mα ∧Mβ = H̃21n−2 [X; 0, t ] . 3.58

To see this, observe that from 3.15 we get the equations

a) H̃α = φ(2) +
φ(1)

Tβ
, b) H̃β = φ(2) +

φ(1)

Tα
. 3.59

Now in this case
H̃α = H̃1n = hn

[
X

1−t
]
(1− t)(1− t2) · · · (1− tn) . 3.60

Moreover, since the polynomials in M1n have no yi
′s , the Frobenius characteristic of Mα ∧Mβ ,

namely φ(2), can have no q′s. Thus, combining this observation with 3.60 and the fact that Tβ =
T21n−2 = qt(

n−1
2 ), we derive from 3.59 a) that φ(1) must have q as a factor. This given, by letting

q → 0 in 3.59 b) we finally get that

φ(2) = H̃β [X; 0, t ] ,

and this is 3.58. Substituting this result in 3.57 yields

Fch Mα ∨Mβ = ∇ ↓ H̃β [X; 0, t ] = ∇ωH̃21n−2 [X; 0, 1/t ] .

This establishes the Schur positivity of ∇ωH̃21n−2 [X; 0, 1/t ]. Incidentally, this also shows the Schur-
positivity of the difference

∇ω H̃µ(x; 0, 1/t) − ∇ω H̃ν(x; 0, 1/t)

for µ = (2, 1n−2) and ν = (1n).

4. The q, t-Catalan revisited.
We recall that in [11] Garsia-Haiman conjecture that the symmetric function

DHn[X; q, t ] =
∑
µ`n

TµH̃µ[X; q, t ] MBµ(q, t) Πµ(q, t)
h̃µ(q, t) h̃′µ(q, t)

4.1

should give the Frobenius characteristic of the Diagonal Harmonic alternants in the variables x1, . . . , xn; y1, . . . , yn.
Since it can be shown (see [12]) that

H̃µ[X; q, t ]
∣∣∣
S1n

= Tµ

we see that the rational expression

Cn(q, t) = DHn[X; q, t ]
∣∣∣
S1n

=
∑
µ`n

T 2
µ MBµ(q, t) Πµ(q, t)

h̃µ(q, t)h̃′µ(q, t)
, 4.2
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should give the Hilbert series of the diagonal harmonic alternants and in particular it should evaluate
to a polynomial in q, t with positive integer coefficients. It is also shown in [11] that

a) Cn(q, 1) = Cn(q) and b) q(
n
2)Cn(q, 1/q) =

1
[n+ 1]q

[
2n
n

]
q

. 4.3

For these reasons Cn(q, t) has come to be referred to as the “q, t-Catalan”.
Computer experimentations with Cn(q, t) always yield a beautiful polynomial, symmetric

in q, t. Moreover, the specialization in 4.3 a) suggests that there must be a pair of statistics on Dick
paths, both having marginal distributions q-counting paths by area, with joint distribution given
by Cn(q, t). The construction of these statistics should make a challenging combinatorial problem.
In fact, although the polynomiality of Cn(q, t) can now be easily derived by combining 4.2 with
Corollary 1.2, even the mere positivity of Cn(q, t) has remained an open problem to this date.

In this section we shall show that the identities in I.12 lead to a relatively simple formula
for Cn(q, t) which does not involve ∇ or the Macdonald polynomials. We include this result here in
the hope that it may be helpful in further study of this remarkable polynomial.

To begin with we should note that a formula for Cn(q, t) with the desired properties should
come out of the identity in 2.6 by means of Theorem 1.1. In fact, expanding en in terms of the basis
in I.13 and then using 4.2 and 1.18 we should obtain an entirely new expression not only for Cn(q, t)
but for ∇en as well. Unfortunately, computer experimentation quickly reveals that the resulting
expansion of ∇en is of forbidding complexity even for relatively small values of n. Nevertheless, a
perusal of the tables of Schur function images by ∇ revealed that certain coefficients of ∇en may
be indirectly obtained from corresponding coefficients of ∇hn+1. In particular we can prove the
following general identity:

∇en
∣∣
S1n

=
(−1
qt

)n
∇hn+1

∣∣
S1n+1

. 4.4

This turns out to be a breakthrough since hn+1 itself happens to have a relatively simple expansion
in terms of the basis in I.13. More precisely we have

Theorem 4.1
For n ≥ 0

hn+1 =
1
M̃n

n∑
i=0

(
n

i

)
(−1)i en−i1 D∗1e

i
1 1 , 4.5

and consequently

∇hn+1 =
1
M̃n

n∑
i=0

(
n

i

)
(−1)n−iDn−i

1 e1D
i
1 1 . 4.6

Proof
Note that I.12 (ii)∗, for k = n, can be written as

D∗n+1 =
1
M̃

(
e1D

∗
n −D∗n e1

)
. 4.7
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A simple induction argument then yields that

D∗n+1 =
1
M̃n

n∑
i=0

(
n

i

)
(−1)i en−i1 D∗1e

i
1 , 4.8

and 4.5 follows from 4.8 because I.10, for k = n+ 1 and F = 1 , reduces to

D∗n+1 1 = hn+1 .

This given, 4.6 is obtained from 4.5 by repeated applications of I.12 (iii) and (iii)∗.

To prove 4.4 we need a few auxiliary identities.

Proposition 4.1

en =
∑
µ`n

H̃µ[X; q, t ] MBµ(q, t)Πµ(q, t)
h̃µ(q, t)h̃′µ(q, t)

4.9

hn = (−qt)n−1
∑
µ`n

H̃µ[X; q, t ] MBµ(1/q, 1/t)Πµ(q, t)
h̃µ(q, t)h̃′µ(q, t)

4.10

with Πµ(q, t) as given by I.3.
Proof

Formula 4.9 was first derived in [11], but for sake of completeness we will sketch the proof
here. We start with 1.2 a) and c) for Y = 1− u and get, by equating the homogeneous components
of degree n :

∑
ρ`n

pρ[X]pρ[1− u]
(−1)|ρ|−l(ρ)zρ pρ[M ]

=
∑
µ`n

H̃µ[X; q, t ]
∏
s∈µ

(
1− u tl′µ(s)qa

′
µ(s)
)

h̃µ(q, t)h̃′µ(q, t)
, 4.11

where we have used the specialization

H̃µ[1− u; q, t ] =
∏
s∈µ

(
1− u tl′µ(s)qa

′
µ(s)
)
, 4.12

a proof of which may be found in [12].
Now dividing both sides of 4.12 by (1− u) and passing to the limit as u→1 we obtain

pn
(−1)n−1pn[M ]

=
∑
µ`n

H̃µ[X; q, t ]Πµ(q, t)
h̃µ(q, t)h̃′µ(q, t)

. 4.13

Next, from the definition I.10 of D0, we get

(1−D0) pn = (−1)n−1pn[M ] en .

At the same time I.12 (i) and I.4 give

(1−D0)H̃µ[X; q, t ] = M Bµ(q, t) H̃µ[X; q, t ] .
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Thus 4.8 follows by applying (1−D0) to both sides of 4.13.
To obtain 4.10 we start with the observation that hn = ωen and, using 1.13, derive from 4.8

that

hn =
∑
µ`n

TµH̃µ[X; 1/q, 1/t ] MBµ(q, t)Πµ(q, t)
h̃µ(q, t)h̃′µ(q, t)

. 4.14

Making the replacements t→1/t and q→1/q and using the simple identities

h̃µ(1/q, 1/t) =
h̃µ(q, t)
Tµ tn

, h̃′µ(1/q, 1/t) =
h̃′µ(q, t)
Tµ qn

formula 4.14 becomes

hn =
∑
µ`n

(tq)n−1TµH̃µ[X; q, t ] MBµ(1/q, 1/t) Πµ(1/q, 1/t)
h̃µ(q, t)h̃′µ(q, t)

, 4.15

and since
Tµ Πµ(1/q, 1/t) = (−1)n−1 Πµ(q, t)

we see that formula 4.15 is equivalent to 4.10, and the proof is now complete.

This places us in a position to establish the following general identity.

Theorem 4.2
For n ≥ 1 we have

(∇hn)[1− u] = −u (−qt)n∇en−1[1− u] . 4.16

In particular we derive that for 1 ≤ k ≤ n
∇hn

∣∣
S1k,n−k

= (−qt)n−1(∇en−1)
∣∣
S1k−1,n−k

. 4.17

Proof
Note first that 1.37 for k = 0 gives

Bµ(1/q, 1/t) =
∑
ν→µ

cµ,ν(1/q, 1/t) .

Now from 1.38 we easily derive that

cµ,ν(1/q, 1/t) = cµ,ν(q, t)
Tν
Tµ

.

Using this and 4.12 in 4.10 yields

(∇hn)
[
1− u

]
= (−qt)n−1

∑
µ`n

Tµ
∏
s∈µ(1− tl′µ(s)qa

′
µ(s)) MΠµ(q, t)

h̃µ(q, t)h̃′µ(q, t)

∑
ν→µ

cµ,ν(q, t)
Tν
Tµ

= (−qt)n−1
∑
ν`n−1

Tν
∏
s∈ν(1− tl′ν(s)qa

′
ν(s)) MΠν(q, t)

h̃ν(q, t) h̃′ν(q, t)
×

×
∑
µ←ν

cµ,ν(q, t)
h̃ν(q, t) h̃′µ(q, t)

h̃ν(q, t) h̃′µ(q, t)

(
1− uTµ

Tν

)(
1− Tµ

Tν

)
= (−qt)n−1

∑
ν`n−1

Tν
∏
s∈ν(1− tl′ν(s)qa

′
ν(s)) Πν(q, t)

h̃ν(q, t) h̃′ν(q, t)

∑
µ←ν

dµ,ν(q, t)
(

1− uTµ
Tν

)(
1− Tµ

Tν

)
4.18
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where we have used 1.38 and 1.39 to get that

M cµ,ν(q, t)
h̃ν(q, t) h̃′µ(q, t)

h̃ν(q, t) h̃′µ(q, t)
= dµ,ν(q, t) .

Simple manipulations which use formula 1.40 for k = 0, 1 &2 finally give∑
µ←ν

dµ,ν(q, t)
(

1− uTµ
Tν

)(
1− Tµ

Tν

)
= −uM Bν(q, t) .

Substituting this in 4.18 yields

(∇hn)
[
1− u

]
= −u (−qt)n−1

∑
ν`n−1

Tν
∏
s∈ν(1− tl′ν(s)qa

′
ν(s)) M Bν(q, t)Πν(q, t)

h̃ν(q, t) h̃′ν(q, t)
,

which is easily seen to imply 4.16 via 4.8, 4.12 and the definition of ∇.

Now it is well known and easy to show that

Sλ[1− u] =

{
(−u)k(1− u) if λ = (n− k, 1k)

0 otherwise .

This given, formula 4.17 immediately follows by dividing both sides of 4.16 by (1− u) and equating
coefficients of uk.

As corollary of 4.17 we obtain our desired formula for the q, t-Catalan.

Theorem 4.3

Cn(q, t) =
1
Mn

n∑
i=0

(
n

i

)
(−1)iDn−i

1 e1D
i
1 1

∣∣∣
S1n+1

4.19

Proof
We can clearly see from 4.1 and 4.8 that DHn = ∇en. Thus from 4.2 we get that

Cn(q, t) = ∇en
∣∣
S1n

.

On the other hand 4.17 with n→n+ 1 and k = 0 specializes to 4.4 giving

Cn(q, t) =
(−1
qt

)n
∇hn+1

∣∣
S1n+1

=
(−1
qt

)n 1
M̃n

n∑
i=0

(
n

i

)
(−1)n−iDn−i

1 e1D
i
1 1

∣∣∣
S1n+1

,

where the last equality is due to 4.6. This proves 4.19 since qtM̃ = M .

It is worth noting that the same idea can be used to obtain a recursive way of computing
the q, t-Catalan. More precisely we have
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Theorem 4.4
Let Γn be a sequence of operators defined by the following conditions:

a) Γ1 = D2 ,

b) Γn =
1
M

(
D1Γn−1 − Γn−1D1

)
.

4.20

Then
Cn(q, t) = Γn 1

∣∣∣
S1n+1

. 4.21

Proof
Conjugating 4.7 by ∇ we get (using I.12 (iii)∗ and (iii))

∇D∗n+1∇−1 =
1
M̃

(
(−D1)∇D∗n∇−1 − ∇D∗n∇−1(−D1)

)
. 4.22

This given, note that if we set

Γn =
(−1
qt

)n
∇D∗n+1∇−1 4.23

then (since ∇−11 = 1) we get

Γn 1 =
(−1
qt

)n
∇D∗n+11 =

(−1
qt

)n
∇hn+1

and this gives 4.21.
On the other hand 4.23 converts 4.22 into

Γn =
(−1
qt

) 1
M̃

(
(−D1)Γn−1 − Γn−1(−D1)

)
which is simply another way of writing 4.20 b). Finally note that 4.23 gives

Γ0 = ∇D∗1∇−1 = e1

and from 4.21 b) we get

Γ1 =
1
M

(
D1e1 − e1D1

)
.

Thus 4.20 a) follows from I.12 (ii).

5. Plethystic form for Macdonald operators of higher index.

The main goal of this section is to show that the operators ∆F studied in section 1, and in
particular ∇ itself, may also be given a plethystic form. We believe that the arguments of the proof
may be as interesting as the result itself, since the latter, because of its inherent complexity, may
be only of theoretical significance.
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To begin we need to review notation and introduce some auxiliary variables. Recall that it
is customary to set (see [16] p. xiv)

(a; t)n =
n∏
i=1

(1− ati−1) (t; t)n =
n∏
i=1

(1− ti) .

This given, for an alphabet Zr = z1 + · · ·+ zr set

∆′r(Zr; q, t) =
∏
j 6=k

(zj z−1
k ; q)∞

/∏
j 6=k

(t zj z−1
k ; q)∞ = Ω

[
− 1− t

1− q
∑
j 6=k

zj
zk

]
5.1

where here and after, j 6= k runs over 1 ≤ j, k ≤ r.
We shall also make crucial use here of the constant term scalar product introduced in [22,

Chapter VI.9] by setting, for any two polynomials f and g,

〈f, g〉′r,q,t =
1
r!
f(z1, . . . , zr)g(z1

−1, . . . , zr
−1)∆′r(Zr; q, t)

∣∣
z0 , 5.2

where the symbol “
∣∣
z0” represents the operation of taking the constant term in the preceding ex-

pression.
For any composition λ, define the alphabets

Zλ =
l(λ)∑
i=1

λi∑
j=1

zij , Z−1
λ =

l(λ)∑
i=1

λi∑
j=1

z−1
ij . 5.3

Also let λ! =
∏
i λi! , n(λ′) =

∑
i

(
λi
2

)
and set

Eµ(q, t) =
∑
i≥1

qµiti−1 =
−Dµ(q, t)

1− t = (q − 1)Bµ(q, t) +
1

1− t . 5.4

Our main result may be stated as follows.
Theorem 5.1

Let λ be a composition and P [X] a symmetric function. Define the linear operator ∆λ by
setting

∆λP [X] =
tn(λ′)

λ!(1− t)|λ|P [X + (q − 1)(t− 1)Z−1
λ ]Ω[−X Zλ]

× Ω
[
−(t− 1)(q − 1)

∑
i<j

(z−1
i1 + · · ·+ z−1

i,λi
)(zj1 + · · ·+ zj,λj )

]

× Ω
[
(t− 1)

l(λ)∑
i=1

∑
1≤j,k≤λi
j 6=k

zij
zik

]∣∣∣∣∣
z0

.

5.5

Then for all partitions µ and λ we have

∆λH̃µ[X; q, t] = eλ[Eµ(q, t)] H̃µ[X; q, t] . 5.6
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The proof will be obtained by combining some of the basic identities satisfied by Macdonald
operators together with a number of auxiliary propositions we are about to establish.

Let us recall that in [22, Chapter VI.3], Macdonald defines an operator Dr
n that we will call

D
(n)
r . Using plethystic notation, it may be written as

D(n)
r (q, t)P [Xn] =

∑
|I|=r

AI(Xn; t)P [Xn + (q − 1)XI ] ,

where Xn is an n letter alphabet and for any r-subset I of {1, . . . , n}, we set XI =
∑
i∈I xi and

AI(Xn; t) =
∏

i∈I ; j /∈I

txi − xj
xi − xj

.

We will present another form of these operators that does not require us to take subalphabets of
Xn.

A generating function for these operators is

D(n)(u; q, t) =
n∑
r=0

urD(n)
r (q, t) .

Macdonald shows [22, p. 324] that for l(µ) ≤ n, we have

D(n)(u; q, t)Pµ(x; q, t) =

(
n∏
i=1

(1 + u qµitn−i)

)
Pµ(x; q, t) .

By taking the coefficient of ur on both sides, we obtain

D(n)
r (q, t)Pµ(x; q, t) = er

[
n∑
i=1

qµitn−i
]
Pµ(x; q, t) . 5.7

These operators depend on n, the size of the alphabet. We will “stabilize” them with respect to n
by reexpressing them in terms of Eµ(q, t). To this end let

E′µ(q, t) = Eµ(q, t−1) . 5.8

Note that we have

er
[
E′µ(q, t)

]
= er

[ ∞∑
i=1

qµit1−i
]

= t−(n−1)rer

[
n∑
i=1

qµitn−i +
∞∑

i=n+1

tn−i
]

= t−(n−1)r
r∑

k=0

er−k

[ ∞∑
i=1

t−i
]
ek

[
n∑
i=1

qµitn−i
]

= t−(n−1)r
r∑

k=0

(−1)r−k

(t; t)r−k
ek

[
n∑
i=1

qµitn−i
]
.

5.9
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We may therefore stabilize the Macdonald operators by setting

D̂(n)
r = t−(n−1)r

r∑
k=0

(−1)r−k

(t; t)r−k
D

(n)
k . 5.10

This will produce eigenvalues that only depend on µ and r, but not n. More precisely we have

D̂(n)
r Pµ[Xn; q, t] = er

[
E′µ(q, t)

]
Pµ[Xn; q, t] . 5.11

For example, Macdonald’s one stable operator E [22, p. 321] may be expressed E = D̂1 + 1
1−t . To

recover the D(n)
r ’s from the D̂(n)

r ’s, we need the following well-known and easily derived variation of
Möbius inversion:

Lemma 5.1

Let fr, gr be sequences, r = 0, 1, . . . , n. Then

gr =
r∑

k=0

fk
(t; t)r−k

for r = 0, . . . , n 5.12

if and only if

fr =
r∑

k=0

(−1)kt(
k
2)gr−k

(t; t)k
=

r∑
k=0

(−1)r−kt(
r−k

2 )gk
(t; t)r−k

for r = 0, . . . , n. 5.13

It follows that the original Macdonald operators may be recovered from the stabilized ones via

D(n)
r =

r∑
k=0

t(
r−k

2 )+k(n−1)

(t; t)r−k
D̂

(n)
k . 5.14

For any symmetric function f , we are now in a position to construct operators D̂f such that
for any partition µ,

D̂f Pµ[X; q, t] = f [E′µ(q, t)]Pµ[X; q, t] . 5.15

Indeed, when f = eλ1 · · · eλk and the alphabet is of the form X = Xn, we may take

D̂
(n)
λ = D̂(n)

eλ
= D̂

(n)
λ1
· · · D̂(n)

λk
.

Since the elementary symmetric functions are a basis of all symmetric functions, we may form D̂
(n)
f

as a linear combination of these.

We shall find new plethystic forms of the operators D̂(n)
λ that do not depend on n.
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Proposition 5.1
Let λ be a composition and P [X] a symmetric function. Set

D̂λP [X] =
1

λ!(1− t−1)|λ|tn(λ′)
P [X + (q − 1)Z−1

λ ] Ω[(1− t−1)X Zλ]

× Ω
[
(1− t−1)(q − 1)

∑
i<j

(z−1
i1 + · · ·+ z−1

i,λi
)(zj1 + · · ·+ zj,λj )

]

× Ω
[
(t−1 − 1)

l(λ)∑
i=1

∑
1≤j,k≤λi
j 6=k

zij
zik

]∣∣∣∣∣
z0

.

5.16

Then for all n ≥ |λ|,
D̂λP [Xn] = D̂

(n)
λ P [Xn] , 5.17

and in particular, for all partitions µ and λ,

D̂λPµ[X; q, t] = eλ
[
E′µ(q, t)

]
Pµ[X; q, t] . 5.18

The operators D̂f satisfying 5.15 are then D̂f =
∑
λ aλD̂λ, where the coefficients aλ are

given by f =
∑
λ aλeλ.

Proof
We first do this for the case λ = (r). The general case will follow by composing the resulting

operators. The definition 5.16 in terms of the alphabet Zr is

D̂rP [X] =
1

r!(1− t−1)rt(
r
2)
P [X + (q − 1)Z−1

r ] Ω[(1− t−1)X Zr]Ω
[
(t−1 − 1)

∑
1≤j,k≤r
j 6=k

zj
zk

]∣∣∣∣∣
z0

, 5.19

and we are to show that D̂rP [Xn] = D̂
(n)
r P [Xn] for all n ≥ r.

Consider the modified Macdonald kernel

Ω
[

1− t−1

q − 1
Xn Y

]
=

∑
µ: l(µ)≤n

Pµ
[
Xn; q, t−1

]
Qµ
[
−Y ; q, t−1

]
.

Apply D̂(n)
r to it:

D̂(n)
r Ω

[
1− t−1

q − 1
Xn Y

]
= t−(n−1)r

r∑
k=0

(−1)r−k

(t; t)r−k
D

(n)
k Ω

[
1− t−1

q − 1
Xn Y

]

= t−(n−1)r
r∑

k=0

(−1)r−k

(t; t)r−k

∑
|I|=k

AI(Xn; t)Ω
[

1− t−1

q − 1
(Xn + (q − 1)XI)Y

]

= t−(n−1)rΩ
[

1− t−1

q − 1
Xn Y

] r∑
k=0

(−1)r−k

(t; t)r−k

∑
|I|=k

AI(Xn; t)Ω
[
(1− t−1)XI Y

]
.

5.20
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To evaluate the inside summation∑
|I|=k

AI(Xn; t)Ω
[
(1− t−1)XI Y

]
=

∑
|I|=k

AI(Xn; t)
∑
µ

Pµ(XI ; 0, t−1)Qµ(Y ; 0, t−1) , 5.21

we apply Proposition 3.1 of [15]: for k ≤ n and all µ,

∑
|I|=k

AI(x; t)Pµ
[
XI ; 0, t−1

]
= t(

k
2)+(n−k)l(µ)

[
n− l(µ)
k − l(µ)

]
t

Pµ
[
Xn; 0, t−1

]
.

(The right side is 0 when l(µ) ≤ k ≤ n fails to hold.) This gives that 5.21 equals∑
µ

t(
k
2)+(n−k)l(µ)

[
n− l(µ)
k − l(µ)

]
t

Pµ
[
Xn; 0, t−1

]
Qµ[Y ; 0, t−1]

=
n∑

m=0

t(
k
2)+(n−k)m

[
n−m
k −m

]
t

∑
µ: l(µ)=m

Pµ
[
Xn; 0, t−1

]
Qµ[Y ; 0, t−1] .

5.22

The m summation may be restricted to 0 ≤ m ≤ k because the t-binomial coefficient vanishes
otherwise. Plugging 5.22 back into 5.20 and then reversing the order of the k,m summations gives

D̂
(n)
r Ω

[
1−t−1

q−1 Xn Y
]

Ω
[

1−t−1

q−1 Xn Y
] = t−(n−1)r

r∑
k=0

(−1)r−k

(t; t)r−k

k∑
m=0

t(
k
2)+(n−k)m

[
n−m
k −m

]
t

∑
µ: l(µ)=m

Pµ
[
Xn; 0, t−1

]
Qµ[Y ; 0, t−1]

= t−(n−1)r
r∑

m=0

(−1)r−mt(
m
2 )+m(n−m)

(
r∑

k=m

(−1)k−m

(t; t)r−k
t(
k−m

2 )
[
n−m
k −m

]
t

)

×

 ∑
µ: l(µ)=m

Pµ
[
Xn; 0, t−1

]
Qµ[Y ; 0, t−1]

 .

5.23
The details of evaluating the parenthesized sums in 5.23 will follow this proof. The k-sum may be
simplified by 5.42 to

r∑
k=m

(−1)k−m

(t; t)r−k
t(
k−m

2 )
[
n−m
k −m

]
t

=
r−m∑
k=0

(−1)k

(t; t)r−m−k
t(
k
2)
[
n−m
k

]
t

=
t(r−m)(n−m)

(t; t)r−m

so that the right side of 5.23 equals

tr
r∑

m=0

(−1)r−mt(
m
2 )−mr

(t; t)r−m

∑
µ: l(µ)=m

Pµ
[
Xn; 0, t−1

]
Qµ[Y ; 0, t−1] .

We will evaluate this sum in 5.34. It is a long computation involving the scalar product 5.2, and it
equals

1

r! (1− t−1)rt(
r
2)

Ω
[
(1− t−1)Xn Zr

]
Ω
[
(1− t−1)Y Z−1

r

]
Ω
[
(t−1 − 1)

∑
j 6=k

zj
zk

]∣∣∣∣∣
z0

. 5.24
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Equating the left side of 5.23 with 5.24 and rearranging gives

D̂(n)
r Ω

[
1− t−1

q − 1
Xn Y

]
=

1

r! (1− t−1)rt(
r
2)

Ω
[

1− t−1

q − 1
(Xn + (q − 1)Z−1

r )Y
]

× Ω
[
(1− t−1)Xn Zr

]
Ω
[
(t−1 − 1)

∑
j 6=k

zj
zk

]∣∣∣∣∣
z0

= D̂rΩ
[

1− t−1

q − 1
Xn Y

]
.

5.25

From this we conclude that D̂(n)
r P [Xn] = D̂rP [Xn] for any symmetric function P [X], so 5.17 holds

for λ = (r).
Now for an arbitrary composition λ = (λ1, . . . , λl), we must check that D̂λ = D̂λ1 · · · D̂λl .

We induct on l. Set ρ = (λ1, . . . , λl−1), r = λl, and verify that D̂ρD̂rP [X] = D̂λP [X]. We break up
the alphabet Zλ = Uρ + Vr where Uρ =

∑l(ρ)
i=1

∑λi
j=1 zij and Vr =

∑r
j=1 zλl,j . Then by 5.19,

D̂rP [X] =
1

r!(1− t−1)rt(
r
2)
P [X + (q − 1)V −1

r ]Ω
[
(1− t−1)X Vr

]
Ω
[
(t−1 − 1)

∑
1≤j,k≤r
j 6=k

zlj
zlk

]∣∣∣∣∣
v0

5.26

so by 5.16,

D̂ρD̂rP [X] =
P [X + (q − 1)(U−1

ρ + V −1
r )]

r!ρ!(1− t−1)|ρ|+rtn(ρ′)+(r2)
Ω
[
(1− t−1)(X + (q − 1)U−1

ρ )Vr
]

× Ω
[
(t−1 − 1)

∑
1≤j,k≤r
j 6=k

zlj
zlk

]
Ω
[
(1− t−1)X Uρ

]

× Ω
[
(1− t−1)(q − 1)

∑
1≤i<j≤l(ρ)

(z−1
i1 + · · ·+ z−1

i,ρi
)(zj1 + · · ·+ zj,ρj )

]

× Ω
[
(t−1 − 1)

l(ρ)∑
i=1

∑
1≤j,k≤ρi
j 6=k

zij
zik

]∣∣∣∣∣
u0 v0

=
P [X + (q − 1)(U−1

ρ + V −1
r )]

λ!(1− t−1)|λ|tn(λ′)
Ω
[
(1− t−1)X (Uρ + Vr)

]
× Ω

[
(1− t−1)(q − 1)

(
U−1
ρ Vr +

∑
1≤i<j≤l(ρ)

(z−1
i1 + · · ·+ z−1

i,ρi
)(zj1 + · · ·+ zj,ρj )

)]

× Ω
[
(t−1 − 1)

(l(ρ)∑
i=1

∑
1≤j,k≤ρi
j 6=k

zij
zik

+
∑

1≤j,k≤r
j 6=k

zlj
zlk

)]∣∣∣∣∣
u0 v0

and on combining the alphabets into Zλ = Uρ + Vr, it simplifies to 5.16 as required.
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Proof of Theorem 5.1

Since Macdonald’s Jµ(x; q, t) is a scalar multiple of Pµ(x; q, t), it follows from 5.16 and 5.18
that

D̂λJµ[X; q, t] =
1

λ!(1− t−1)|λ|tn(λ′)
Jµ[X + (q − 1)Z−1

λ ; q, t]Ω
[
(1− t−1)X Zλ

]
× Ω

[
(1− t−1)(q − 1)

∑
i<j

(z−1
i1 + · · ·+ z−1

i,λi
)(zj1 + · · ·+ zj,λj )

]

× Ω
[
(t−1 − 1)

l(λ)∑
i=1

∑
1≤j,k≤λi
j 6=k

zij
zik

]∣∣∣∣∣
z0

= eλ
[
E′µ(q, t)

]
Jµ[X; q, t] .

5.27

We will transform this from Jµ to H̃µ using I.6. Replace X by X/(1− t) in 5.27:

1
λ!(1− t−1)|λ|tn(λ′)

Jµ

[
X + (q − 1)(1− t)Z−1

λ

1− t ; q, t
]
Ω[−tX Zλ]

×Ω
[
(1− t−1)(q − 1)

∑
i<j

(z−1
i1 + · · ·+ z−1

i,λi
)(zj1 + · · ·+ zj,λj )

]

×Ω
[
(t−1 − 1)

l(λ)∑
i=1

∑
1≤j,k≤λi
j 6=k

zij
zik

]∣∣∣∣∣
z0

= eλ
[
E′µ(q, t)

]
Jµ

[
X

1− t ; q, t
]
.

5.28

Replace t by t−1, multiply both sides by tn(µ), and express it in terms of H̃µ via I.6:

tn(λ′)

λ!(1− t)|λ| H̃µ[X + (q − 1)(1− t−1)Z−1
λ ; q, t]Ω

[
−t−1X Zλ

]
×Ω
[
−(t− 1)(q − 1)

∑
i<j

(z−1
i1 + · · ·+ z−1

i,λi
)(zj1 + · · ·+ zj,λj )

]

×Ω
[
(t− 1)

l(λ)∑
i=1

∑
1≤j,k≤λi
j 6=k

zij
zik

]∣∣∣∣∣
z0

= eλ[Eµ(q, t)] H̃µ[X; q, t] .

5.29

Replace Zλ by tZλ. The constant term with respect to Zλ is unaffected, and 5.29 is transformed to

tn(λ′)

λ!(1− t)|λ| H̃µ[X + (q − 1)(t− 1)Z−1
λ ; q, t]Ω[−X Zλ]

×Ω
[
−(t− 1)(q − 1)

∑
i<j

(z−1
i1 + · · ·+ z−1

i,λi
)(zj1 + · · ·+ zj,λj )

]

×Ω
[
(t− 1)

l(λ)∑
i=1

∑
1≤j,k≤λi
j 6=k

zij
zik

]∣∣∣∣∣
z0

= eλ[Eµ(q, t)] H̃µ[X; q, t]
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so that 5.6 holds.

Proposition 5.2
Define a linear operator

∇n =
∑
|λ|≤n

en−|λ|

[
1

(1− t)(1− q)

]
mλ

[
1

q − 1

]
∆λ . 5.30

Then if P [X] is a symmetric polynomial that is homogeneous of degree n,

∇nP [X] = ∇P [X] . 5.31

Proof.
Since

Tµ = en[Bµ] = en

[
Eµ − 1

1−t
q − 1

]
,

an operator equivalent to ∇ on homogeneous polynomials of degree n is ∆f , where

f =
∑
|λ|≤n

aλ(q, t)eλ

where the coefficients aλ(q, t) are defined by

en

[
X − 1

1−t
q − 1

]
=
∑
λ

aλ(q, t)eλ[X] .

We expand this as follows.

en

[
X − 1

1−t
q − 1

]
=

n∑
r=0

er

[
X

q − 1

]
en−r

[
1

(1− t)(1− q)

]

=
n∑
r=0

en−r

[
1

(1− t)(1− q)

]∑
λ`r

mλ

[
1

q − 1

]
eλ[X]

=
∑
|λ|≤n

(
en−|λ|

[
1

(1− t)(1− q)

]
mλ

[
1

q − 1

])
eλ[X]

5.32

We now evaluate the sums used in the proof of Proposition 5.1.

Proposition 5.3
For r ≥ 0, and any alphabets X, Y ,

r∑
m=0

1
(t; t)r−m

∑
µ: l(µ)=m

Pµ[X; 0, t] Qµ[Y ; 0, t]

=
1

r!(1− t)rΩ[(1− t)X Zr] Ω
[
(1− t)Y Z−1

r

]
Ω
[
(t− 1)

∑
j 6=k

zj
zk

]∣∣∣∣∣
z0

5.33
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and
r∑

m=0

(−1)r−mt(
m
2 )−mr

(t; t)r−m

∑
µ: l(µ)=m

Pµ
[
X; 0, t−1

]
Qµ
[
Y ; 0, t−1

]
=

1

r!(t− 1)rt(
r
2)

Ω
[
(1− t−1)X Zr

]
Ω
[
(1− t−1)Y Z−1

r

]
Ω
[
(t−1 − 1)

∑
j 6=k

zj
zk

]∣∣∣∣∣
z0

.

5.34
For m ≥ 0, and any alphabets X, Y ,∑

µ: l(µ)=m

Pµ[X; 0, t] Qµ[Y ; 0, t]

=
m∑
r=0

(−1)m−rt(
m−r

2 )

(t; t)m−r r! (1− t)rΩ[(1− t)X Zr] Ω
[
(1− t)Y Z−1

r

]
Ω
[
(t− 1)

∑
j 6=k

zj
zk

]∣∣∣∣∣
z0

.

5.35

Proof.
Macdonald shows that under the scalar product 5.2, the symmetric functions Pµ[Zr; q, t]

and Qλ[Zr; q, t] are orthogonal when µ 6= λ, and

〈Pµ[Zr; q, t], Qµ[Zr; q, t]〉′r,q,t = Ω
[
− (1− t)(1− qt−1)

1− q
∑

1≤i<j≤r
tj−i

]∏
s∈µ

1− qa′µ(s)tr−l
′
µ(s)

1− qa′µ(s)+1tr−l
′
µ(s)−1

.

5.36
On setting q = 0, the Ω term simplifies to

Ω
[
−(1− t)

∑
1≤i<j≤r

tj−i
]

= Ω
[
(t− 1)(tr−1 + 2tr−2 + · · ·+ (r − 1)t)

]
= Ω

[
tr + tr−1 + · · ·+ t2 − (r − 1)t

]
=

(1− t)r
(t; t)r

.

5.37

Additionally, on setting q = 0, the product term of 5.36 restricts to s ∈ µ for which a′µ(s) = 0, that
is, to the cells (i, 0) (for i = 0, 1, . . . , l(µ)− 1) of the first column, giving

〈Pµ[Zr; 0, t], Qµ[Zr; 0, t]〉′r,0,t =
(1− t)r
(t; t)r

l(µ)−1∏
i=0

(1− tr−i) =
(1− t)r

(t; t)r−l(µ)
. 5.38

For arbitrary alphabets X, Y , we now evaluate

Ωr[X;Y ; t] = 〈Ω[(1− t)X Zr],Ω[(1− t)Y Zr]〉′r,0,t 5.39

in two ways. By expanding these as Hall-Littlewood kernels, we obtain

Ωr[X;Y ; t] =

〈∑
µ

Pµ[X; 0, t] Qµ[Zr; 0, t],
∑
λ

Pλ[Zr; 0, t] Qλ[Y ; 0, t]

〉′
r,0,t

=
∑
µ

Pµ[X; 0, t] Qµ[Y ; 0, t] · 〈Qµ[Zr; 0, t], Pµ[Zr; 0, t]〉′r,0,t

=
r∑

m=0

(1− t)r
(t; t)r−m

∑
µ: l(µ)=m

Pµ[X; 0, t] Qµ[Y ; 0, t] .

5.40
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On the other hand, by evaluating 5.39 via 5.2, we obtain

Ωr[X;Y ; t] =
1
r!

Ω[(1− t)X Zr] Ω
[
(1− t)Y Z−1

r

]
Ω
[
(t− 1)

∑
j 6=k

zj
zk

]∣∣∣∣∣
z0

. 5.41

Equating 5.40 with 5.41 gives 5.33. On replacing t by 1/t, using (t−1; t−1)k = (−1)kt−k(k+1)/2(t; t)k,
and simplifying, we obtain 5.34. Finally, applying Lemma 5.1 to 5.33 gives 5.35.

Lemma 5.2
For 0 ≤ r ≤ n,

r∑
k=0

(−1)kt(
k
2)

(t; t)r−k

[
n

k

]
t

=
trn

(t; t)r
. 5.42

Proof
We specialize the “q-binomial theorem” [16, p. 20]

(ab; q)r =
r∑

k=0

[
r

k

]
q

bk(a; q)k(b; q)r−k 5.43

by setting q = t, a = 0, and b = t−n, and then manipulating it.

1 = (0; t)r =
r∑

k=0

[
r

k

]
t

t−nk(t−n; t)r−k

=
r∑

k=0

[
r

k

]
t

t−n(r−k) (t−n; t)k

=
r∑

k=0

[
r

k

]
t

t−n(r−k) (−1)kt(
k
2)−nk (t; t)n

(t; t)n−k

= t−nr
r∑

k=0

(−1)kt(
k
2)
[
n

k

]
t

(t; t)r
(t; t)r−k

.

5.44

Multiplying by tnr/(t; t)r gives 5.42.

To terminate we should mention that even the operators ∆F have some surprising positivity
properties. In fact, we have strong computer evidence that ∆Sνem is always Schur positive. More
precisely we are led to the following

Conjecture V
For any integer m ≥ 1 and for all pairs of partitions ν, λ with m ≥ l(ν) and λ ` m we have

∑
µ`m

Sν [Bµ(q, t)]K̃λµ(q, t)(1− t)(1− q)Bµ(q, t)Πµ(q, t)
h̃µ(q, t)h̃′µ(q, t)

∈ N[q, t]
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matique Mathématique, edited by S. Brlek, U. du Québec à Montréal)
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Publ. I.R.M.A. Strasbourg, (1988) 131-171. (To appear also in the the new edition of [7]
above)

[22] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Mathemat-
ical Monographs, The Clarendon Press Oxford University Press, New York, 1995, Oxford
Science Publications.

[23] E. Reiner, A Proof of the n! Conjecture for Generalized Hooks, to appear in the Journal of
Combinatorial Theory, Series A.

[24] H. Weyl, The Classical Groups, their Invariants and Representations, Princeton University
Press (1946).


