Math 54 - Homework 8 Solutions

5.4.2

$$ker(\mathbf{A^T}) = ker\left(\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}\right)$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = 0$$
Basis for $ker(\mathbf{A}^T) = \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}$

For the sketch illustrating $(Im(\mathbf{A}))^{\perp} = ker(\mathbf{A}^T)$, $Im(\mathbf{A})$ is the plane spanned by $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$. Notice that $\begin{bmatrix} 1\\-2\\1 \end{bmatrix}$ is orthogonal to $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$

5.4.7

A is a $n \times n$ symmetric matrix. This implies that $\mathbf{A} = \mathbf{A}^T$

$$(Im(\mathbf{A}))^{\perp} = ker(\mathbf{A}^T) = ker(\mathbf{A})$$

Or alternatively, $Im(\mathbf{A}) = (ker(\mathbf{A}))^{\perp}$

5.4.8

A has dimension $m \times n$

y has dimension $m \times 1$

$$ker(\mathbf{A}) = 0 \Rightarrow \mathbf{A}^T \mathbf{A}$$
 is invertible

Least squares solution of $L(\mathbf{x}) = \mathbf{y}$ is $(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$

(a)

$$L^{+}(\mathbf{y}) = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{y}$$
$$\mathbf{A}^{+} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}$$

It is easy to verify that L^+ is linear

$$L^{+}(\mathbf{y} + \mathbf{z}) = L^{+}(\mathbf{y}) + L^{+}(\mathbf{z})$$
$$L^{+}(k\mathbf{y}) = kL^{+}(\mathbf{y})$$

(b)

If A is invertible, then $(\mathbf{A}^T \mathbf{A})^{-1} = A^{-1} (A^T)^{-1}$

then,
$$\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$$

= $\mathbf{A}^{-1} (\mathbf{A}^T)^{-1} \mathbf{A}^T$
= \mathbf{A}^{-1}

If L is invertible, $L^+ = L^{-1}$

(c)

$$L^{+}(L(x)$$

$$L^{+}(\mathbf{A}x)$$

$$(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{A}x$$

$$= x$$

(d)

$$L(L^{+}(\mathbf{y}))$$

$$= L((\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{y})$$

$$= \mathbf{A}(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{y}$$

5.4.10 (a)

Let **x** be a solution to the system $\mathbf{x} = x_h + x_0$ where $x_h \in ker(\mathbf{A}), x_0 \in (ker(\mathbf{A}))^{\perp}$

$$\mathbf{A}\mathbf{x} = b$$
 $\mathbf{A}(x_h + x_0) = b$
 $\mathbf{A}x_h + \mathbf{A}x_0 = b$
 $\mathbf{A}x_0 = b$

(b)

$$\mathbf{A}x_0 = b$$

$$\mathbf{A}x_1 = b$$
where $x_0, x_1 \in (ker(\mathbf{A}))^{\perp}$

$$\mathbf{A}(x_0 - x_1)$$

$$= \mathbf{A}x_0 - \mathbf{A}x_1$$

$$= b - b = 0$$

which is a contradiction. It would imply that $x_0 - x_1 \in ker(\mathbf{A})$

(c)

If x_1 is a solution, it can be written as $x_1 = \mathbf{x}_{ker(\mathbf{A})} + \mathbf{x}_{ker(\mathbf{A})^{\perp}}$

However, in (b) we established that $\mathbf{x}_{\ker(\mathbf{A})^{\perp}}$ has only one possible value, x_0

Thus,
$$x_1 = \mathbf{x}_{ker(\mathbf{A})} + x_0$$

Look at $||x_1||^2 = (\mathbf{x}_{ker(\mathbf{A})} + x_0) \cdot (\mathbf{x}_{ker(\mathbf{A})} + x_0)$
 $= x_0 \cdot x_0 + \text{something positive} = ||x_0||^2 + \text{something positive}$
It follows that $||x_1||^2 > ||x_0||^2$

5.4.15

A is an $m \times n$ matrix

$$ker(\mathbf{A}) = \{\mathbf{0}\}$$

 $\mathbf{A}^T \mathbf{A}$ is invertible by fact 5.4.2b

$$\mathbf{B} \cdot \mathbf{A} = \mathbf{I}$$

$$\mathbf{A}^T \cdot \mathbf{B}^T = \mathbf{I}$$

$$\mathbf{A}^T \mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} = \mathbf{I}$$
Let $\mathbf{B} = (\mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1})^T = (\mathbf{A}^T \mathbf{A})^{-1} A^T$

5.4.22

$$x^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T b$$

$$= \left(\begin{bmatrix} 3 & 5 & 4 \\ 2 & 3 & 5 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 5 & 3 \\ 4 & 5 \end{bmatrix} \right)^{-1} \begin{bmatrix} 3 & 5 & 4 \\ 2 & 3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 9 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$b - \mathbf{A} x^* = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$< f, g + h > = < g + h, f > = < g, f > + < h, f > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = < f, g > + < f, h > = <$$

5.5.4 (a)

$$\langle A, B \rangle = tr(A^T B)$$

$$= tr \left([a_1 \dots a_n] \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \right)$$

$$= tr([a_1 \cdot b_1 + \dots + a_n \cdot b_n])$$

You can think of this as a one by one matrix

The trace of a square matrix is the sum of its diagonal matrix.

Thus, $\langle A, B \rangle$ is the dot product of A and B

(b)

$$\langle A, B \rangle = tr \left(\begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix} [b_1 \dots b_m] \right)$$

= $a_1 \cdot b_1 + \dots a_m \cdot b_m$

5.5.10

A basis for the space of all functions in P_2 that are orthogonal to f(t) = t is $\{1, t^2\}$.

Apply Gram-Schmidt to the basis $\{v_1, v_2\}$

$$u_{1} = \frac{v_{1}}{\|v_{1}\|} = \frac{1}{\sqrt{\frac{1}{2} \int_{-1}^{1} dt}} = 1$$

$$u_{2} = \frac{v_{2}^{\perp}}{\|v_{2}^{\perp}\|} \text{ where } v_{2}^{\perp} = v_{2} - (u_{1} \cdot v_{2})u_{1} = t^{2} - \frac{1}{3}$$

$$\|v_{2}^{\perp}\|^{2} = \langle t^{2} - \frac{1}{3}, t^{2} - \frac{1}{3} \rangle$$

$$= \langle t^{2}, t^{2} \rangle + 2 \langle t^{2}, -\frac{1}{3} \rangle + \langle -\frac{1}{3}, -\frac{1}{3} \rangle$$

$$= \frac{1}{5} - \frac{2}{9} + \frac{1}{9} = \frac{1}{5} - \frac{1}{9} = \frac{9 - 5}{45} = \frac{4}{45}$$

$$u_{2} = \frac{45}{4}(t^{2} - \frac{1}{3})$$

5.5.12

$$f(t) = |t|$$

$$b_k = \langle f(t), \sin(kt) \rangle$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} |t| \sin(kt) dt$$

$$c_k = \langle f(t), \cos(kt) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} |t| \cos(kt) dt$$

$$a_0 = \langle f(t), \frac{1}{\sqrt{2}} \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} |t| dt = \frac{1}{\sqrt{2\pi}} \pi^2$$

5.5.16

$$P_1$$
 with inner product $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$

(a)

Basis for
$$P_1 = \{v_1, v_2\} = \{1, t\}$$

$$u_1 = \frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{\int_0^1 dt}} = 1$$

$$u_2 = \frac{v_2^{\perp}}{\|v_2^{\perp}\|} = \sqrt{12}(t - \frac{1}{2})$$
where $v_2^{\perp} = v_2 - (u_1 \cdot v_2)u_1 = (t - \frac{1}{2})$

$$||v_2^{\perp}|| = \sqrt{\int_0^1 t^2 - t + \frac{1}{4} dt}$$

$$= \sqrt{\left[\frac{t^3}{3} - \frac{t^2}{2} + \frac{1}{4}t\right]_0^1}$$

$$= \sqrt{\frac{1}{3} - \frac{1}{2} + \frac{1}{4}}$$

$$= \sqrt{\frac{1}{12}}$$

(b)

We need to find $proj_{p_1}(f(t))$

$$proj_{p_1}(f) = \langle u_1, f \rangle u_1 + \langle u_2, f \rangle u_2$$
$$= \langle 1, t^2 \rangle 1 + \left\langle \sqrt{12} \left(t - \frac{1}{2} \right), t^2 \right\rangle \sqrt{12} \left(t - \frac{1}{2} \right)$$

5.2

This is **FALSE**. $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T \neq \mathbf{A}^T \mathbf{B}^T$ unless \mathbf{B}^T and \mathbf{A}^T commute.

5.4

This is **TRUE**.

 ${\bf A}$ and ${\bf S}$ are orthonoonal

$$\|\mathbf{S}^{-1}\mathbf{A}\mathbf{S}x\| = \|\mathbf{S}\mathbf{S}^{-1}\mathbf{A}\mathbf{S}x\|$$
$$= \|\mathbf{A}\mathbf{S}x\|$$
$$= \|\mathbf{S}x\|$$
$$= \|x\|$$

5.10

This is **TRUE**.

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$$
$$(\mathbf{A}\mathbf{A}^{-1})^T = \mathbf{I}^T$$
$$(\mathbf{A}^{-1})^T\mathbf{A}^T = \mathbf{I}$$

5.20

 $ker(\mathbf{A}) = 0$ only guarantees that the column vectors are linearly independent. However, by fact 5.3.10, we also necessitate that the column vectors have length 1 and are

orthogonal to each other.

5.22 This is **TRUE** because \Re^n is an inner product space, and also by the Gram-Schmidt process.

6.1.2
$$\det \left[\begin{array}{cc} 2 & 3 \\ 4 & 5 \end{array} \right] = 2*5 - 3*4 = -2$$

6.1.6
$$\det \begin{bmatrix} 6 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 2 & 1 \end{bmatrix} = 6 * 4 * 1 = 24$$

6.1.12
$$\det \left[\begin{array}{cc} 1 & k \\ k & 4 \end{array} \right] = 4 - k^2$$

This is invertible only if $k \neq \pm 2$

6.1.22
$$\det \begin{bmatrix} \cos(k) & 1 & -\sin(k) \\ 0 & 2 & 0 \\ \sin(k) & 0 & \cos(k) \end{bmatrix}$$
$$= \cos(k)(2\cos(k)) - 1 \times 0 - \sin(k)(-2\sin(k))$$
$$= 2(\cos^2(k) + \sin^2(k)) = 2$$

6.1.40

There are lots of zeroes everywhere. This is good.

$$det = 3 * -2 * -4 * -5$$
$$= -120$$

6.1.44

For n by n matrix A: $det(k\mathbf{A}) = k^n * det(\mathbf{A})$.

Proof by induction works here. When n=1 or 2, this is easy to see. Assume true for n=m-1, show statement is true for n=m.

6.1.55 (a)

Notice that
$$d_4 = d_3 - det \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

= $d_3 - d_2$

In general,
$$d_n = d_{n-1} - d_{n-2}$$

(b)
$$d_1 = 1; d_2 = 0$$

The rest follows from the recursive formula.

$$\underbrace{1,0,-1,-1,0,1}_{},\underbrace{1,0,-1,-1,0,1}_{},\dots$$

Note that the sequence repeats

It fllows from part (a) that 100 mod 6=4 so, $d_{100}=d_4=-1$