
Math 54 - Homework 8 Solutions

5.4.2

ker(AT) = ker

([
1 1 1
1 2 3

])

[
1 1 1
1 2 3

]
→

[
1 1 1
0 1 2

]
→

[
1 0 −1
0 1 2

]

[
1 0 −1
0 1 2

]


1
−2
1



 = 0

Basis for ker(AT ) =









1
−2
1










For the sketch illustrating (Im(A))⊥ = ker(AT ), Im(A) is the plane spanned by


1
1
1



,




1
2
3



. Notice that




1
−2
1



 is orthogonal to




1
1
1



 and




1
2
3





5.4.7

A is a n× n symmetric matrix. This implies that A = AT

(Im(A))⊥ = ker(AT ) = ker(A)

Or alternatively, Im(A) = (ker(A))⊥
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5.4.8

A has dimension m× n

y has dimension m× 1

ker(A) = 0 ⇒ ATA is invertible

Least squares solution of L(x) = y is (ATA)−1ATy

(a)

L+(y) = (ATA)−1ATy

A+ = (ATA)−1AT

It is easy to verify that L+ is linear

L+(y + z) = L+(y) + L+(z)

L+(ky) = kL+(y)

(b)

If A is invertible, then (ATA)−1 = A−1(AT )−1

then, A+ = (ATA)−1AT

= A−1(AT )−1AT

= A−1

If L is invertible, L+ = L−1

(c)
L+(L(x)

L+(Ax)

(ATA)−1ATAx

= x

(d)

L(L+(y)

= L((ATA)−1ATy)

= A(ATA)−1ATy
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5.4.10 (a)

Let x be a solution to the system x = xh + x0 where xh ∈ ker(A), x0 ∈ (ker(A))⊥

Ax = b

A(xh + x0) = b

Axh + Ax0 = b

Ax0 = b

(b)

Ax0 = b

Ax1 = b

where x0, x1 ∈ (ker(A))⊥

A(x0 − x1)

= Ax0 −Ax1

= b− b = 0

which is a contradiction. It would imply that x0 − x1 ∈ ker(A)

(c)

If x1 is a solution, it can be written as x1 = xker(A) + xker(A)⊥

However, in (b) we established that xker(A)⊥ has only one possible value, x0

Thus, x1 = xker(A) + x0

Look at ‖x1‖2 = (xker(A) + x0) · (xker(A) + x0)

= x0 · x0 + something positive = ‖x0‖2 + something positive

It follows that ‖x1‖2 > ‖x0‖2
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5.4.15

A is an m× n matrix

ker(A) = {0}

ATA is invertible by fact 5.4.2b

B · A = I

AT · BT = I

ATA(ATA)−1 = I

Let B = (A(ATA)−1)T = (ATA)−1AT

5.4.22

x∗ = (ATA)−1AT b

=




[

3 5 4
2 3 5

]


3 2
5 3
4 5








−1 [

3 5 4
2 3 5

]


5
9
2



 =
[

3
−2

]

b−Ax∗ =




0
0
0




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5.5.2

< f, g + h >=< g + h, f >=< g, f > + < h, f >=< f, g > + < f, h >

5.5.4 (a)

< A,B >= tr(AT B)

= tr



[a1 . . . an]




b1
...

bn









= tr([a1 · b1 + . . . + an · bn])

You can think of this as a one by one matrix

The trace of a square matrix is the sum of its diagonal matrix.

Thus, < A,B > is the dot product of A and B

(b)

< A,B >= tr








a1
...

am



 [b1 . . . bm]





= a1 · b1 + . . . am · bm

5.5.10

< f, g >=
1
2

∫ 1

−1
f(t)g(t) dt

< f, g(t) >=
1
2

∫ 1

−1
t(at2 + bt + c) dt

=
1
2

[
9t4

4
+

bt3

3
+

ct2

2

]1

−1

set < t, g(t) >= 0, we get
2b

3
= 0 or b = 0

g(t) = at2 + c

A basis for the space of all functions in P2 that are orthogonal to f(t) = t is {1, t2}.

Apply Gram-Schmidt to the basis {v1, v2}
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u1 =
v1

‖v1‖
=

1√
1
2

∫ 1
−1 dt

= 1

u2 =
v⊥2
‖v⊥2 ‖

where v⊥2 = v2 − (u1 · v2)u1 = t2 − 1
3

‖v⊥2 ‖2 =< t2 − 1
3
, t2 − 1

3
>

=< t2, t2 > +2 < t2,−1
3

> + < −1
3
,−1

3
>

=
1
5
− 2

9
+

1
9

=
1
5
− 1

9
=

9− 5
45

=
4
45

u2 =
45
4

(t2 − 1
3
)

5.5.12

f(t) = |t|

bk =< f(t), sin(kt) >

=
1
π

∫ π

−π
|t| sin(kt) dt

ck =< f(t), cos(kt) >=
1
π

∫ π

−π
|t| cos(kt) dt

a0 =< f(t),
1√
2

>=
1√
2π

∫ π

−π
|t| dt =

1√
2π

π2

5.5.16

P1 with inner product < f, g >=
∫ 1

0
f(t)g(t) dt

(a)

Basis for P1 = {v1, v2} = {1, t}

u1 =
v1

‖v1‖
=

1√∫ 1
0 dt

= 1

u2 =
v⊥2
‖v⊥2 ‖

=
√

12(t− 1
2
)

where v⊥2 = v2 − (u1 · v2)u1 = (t− 1
2
)
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‖v⊥2 ‖ =

√∫ 1

0
t2 − t +

1
4

dt

=

√[
t3

3
− t2

2
+

1
4
t

]1

0

=
√

1
3
− 1

2
+

1
4

=
√

1
12

(b)

We need to find projp1(f(t))

projp1(f) =< u1, f > u1+ < u2, f > u2

=< 1, t2 > 1 +
〈√

12
(

t− 1
2

)
, t2

〉√
12(t− 1

2
)

5.2
This is FALSE. (AB)T = BTAT (= ATBT unless BT and AT commute.

5.4
This is TRUE.

A and S are orthongonal

‖S−1ASx‖ = ‖SS−1ASx‖

= ‖ASx‖

= ‖Sx‖

= ‖x‖

5.10
This is TRUE.

AA−1 = I

(AA−1)T = IT

(A−1)TAT = I

5.20
ker(A) = 0 only guarantees that the column vectors are linearly independent. How-

ever, by fact 5.3.10, we also necessitate that the column vectors have length 1 and are
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orthogonal to each other.

5.22 This is TRUE because )n is an inner product space, and also by the Gram-
Schmidt process.

6.1.2
det

[
2 3
4 5

]
= 2 ∗ 5− 3 ∗ 4 = −2

6.1.6

det




6 0 0
5 4 0
3 2 1



 = 6 ∗ 4 ∗ 1 = 24

6.1.12
det

[
1 k
k 4

]
= 4− k2

This is invertible only if k (= ±2

6.1.22

det




cos(k) 1 − sin(k)

0 2 0
sin(k) 0 cos(k)





= cos(k)(2 cos(k))− 1× 0− sin(k)(−2 sin(k))

= 2(cos2(k) + sin2(k)) = 2

6.1.40

There are lots of zeroes everywhere. This is good.

det = 3 ∗ −2 ∗ −4 ∗ −5

= −120

6.1.44
For n by n matrix A: det(kA) = kn ∗ det(A).

Proof by induction works here. When n=1 or 2, this is easy to see. Assume true for n=m-1,
show statement is true for n=m.

6.1.55 (a)

Notice that d4 = d3 − det




1 1 0
0 1 1
0 1 1





= d3 − d2
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In general, dn = dn−1 − dn−2

(b)
d1 = 1; d2 = 0

The rest follows from the recursive formula.

1, 0,−1,−1, 0, 1︸ ︷︷ ︸, 1, 0,−1,−1, 0, 1︸ ︷︷ ︸, . . .

Note that the the sequence repeats

It fllows from part (a) that 100 mod 6 = 4 so, d100 = d4 = −1
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