SOLUTIONS: ASSIGNMENT 3

2.4.15 Compute the matrix product

$$\left[\begin{array}{ccc} 1 & -2 & -5 \\ -2 & 5 & 11 \end{array}\right] \left[\begin{array}{ccc} 8 & -1 \\ 1 & 2 \\ 1 & -1 \end{array}\right].$$

Explain why the result does not contradict Fact 2.4.9.

$$\begin{bmatrix} 1 & -2 & -5 \\ -2 & 5 & 11 \end{bmatrix} \begin{bmatrix} 8 & -1 \\ 1 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 8-2-5 & -1-4+5 \\ -16+5+11 & 2+10-11 \end{bmatrix} = I_2.$$

Fact 2.4.9 only applies if the two matrices being multiplied are $n \times n$. Since these two matrices are 2×3 and 3×2 they need not be invertible.

2.4.20 True / False: For two invertible $n \times n$ matrices A and B, $(A-B)(A+B) = A^2 - B^2$.

False.

$$(A - B)(A + B) = A^2 - B^2 + AB - BA \neq A^2 - B^2$$

because matrix multiplication is noncommutative.

2.4.23 True / False: $(ABA^{-1})^3 = AB^3A^{-1}$.

True.

$$(ABA^{-1})^3 = (ABA^{-1})(ABA^{-1})(ABA^{-1}) = AB^3A^{-1}$$

since matrix multiplication is associative.

2.4.26 Use the given partition to compute the product. Check your work by computing the same product without using a partition.

$$AB = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 & 3 \\ 3 & 4 & 4 & 5 \\ \hline 0 & 0 & 1 & 2 \\ 0 & 0 & 3 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} A_{11} & A_{12} \\ \hline 0 & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ \hline 0 & B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} A_{11}B_{11} & A_{11}B_{12} + A_{12}B_{22} \\ \hline 0 & A_{22}B_{22} \end{bmatrix}$$

Using the partition,

$$A_{11}B_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$A_{11}B_{12} + A_{12}B_{22} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 7 & 9 \end{bmatrix}$$

$$A_{22}B_{22} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

So

$$AB = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 3 & 4 & 7 & 9 \\ \hline 0 & 0 & 1 & 2 \\ 0 & 0 & 3 & 4 \end{bmatrix}.$$

Without using the partition,

$$AB = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 & 3 \\ 3 & 4 & 4 & 5 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 3 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 & 2+1 & 3+2 \\ 3 & 4 & 4+3 & 5+4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 3 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 & 3 & 5 \\ 3 & 4 & 7 & 9 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 3 & 4 \end{bmatrix}$$

2.4.41 Consider the matrix

$$D_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}.$$

We know that the linear transformation $T(\overrightarrow{x}) = D_{\alpha} \overrightarrow{x}$ is a counter-clockwise rotation through an angle α .

(a) For two angles, α and β , consider the products $D_{\alpha}D_{\beta}$ and $D_{\beta}D_{\alpha}$. Arguing geometrically, describe the linear transformations $\overrightarrow{y} = D_{\alpha}D_{\beta}\overrightarrow{x}$ and $\overrightarrow{y} = D_{\beta}D_{\alpha}\overrightarrow{x}$. Are the two transformations the same?

The transformation $\overrightarrow{y} = D_{\alpha}D_{\beta}\overrightarrow{x}$ represents a counterclockwise rotation by the angle β , followed by a counterclockwise rotation by the angle α . On the other hand, the transformation $\overrightarrow{y} =$

- $D_{\beta}D_{\alpha}\overrightarrow{x}$ represents a counterclockwise rotation by the angle α followed by a counterclockwise rotation by the angle β . Both transformations are a counterclockwise rotation by $\alpha + \beta$ so they are the same.
- (b) Now compute the products $D_{\alpha}D_{\beta}$ and $D_{\beta}D_{\alpha}$. Do the results make sense in terms of your answer in part (a)? Recall the trigonometric identities

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\begin{split} D_{\alpha}D_{\beta} &= \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{bmatrix} \\ &= \begin{bmatrix} \cos\alpha\cos\beta - \sin\alpha\sin\beta & -\cos\alpha\sin\beta - \sin\alpha\cos\beta \\ \sin\alpha\cos\beta + \cos\alpha\sin\beta & -\sin\alpha\sin\beta + \cos\alpha\cos\beta \end{bmatrix} \\ &= \begin{bmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) \\ \sin(\alpha+\beta) & \cos(\alpha+\beta) \end{bmatrix} \\ D_{\beta}D_{\alpha} &= \begin{bmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{bmatrix} \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \\ &= \begin{bmatrix} \cos\beta\cos\alpha - \sin\beta \\ \sin\alpha & \cos\alpha \end{bmatrix} \\ &= \begin{bmatrix} \cos\beta\cos\alpha - \sin\beta\sin\alpha & -\cos\beta\sin\alpha - \sin\beta\cos\alpha \\ \sin\beta\cos\alpha + \cos\beta\sin\alpha & -\sin\beta\sin\alpha + \cos\beta\cos\alpha \end{bmatrix} \\ &= \begin{bmatrix} \cos(\beta+\alpha) & -\sin(\beta+\alpha) \\ \sin(\beta+\alpha) & \cos(\beta+\alpha) \end{bmatrix} \\ So D_{\alpha}D_{\beta} &= D_{\beta}D_{\alpha}. \end{split}$$

- 2.8 True / False: The function $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ 1 \end{bmatrix}$ is a linear transformation.
 - False, T is not a linear transformation because it does not satisfy $T\begin{bmatrix}0\\0\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}.$
- 2.15 True/False: The matrix $\begin{bmatrix} k & -2 \\ 5 & k-6 \end{bmatrix}$ is invertible for all real numbers k.

True. A 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if its determinant $ad-bc\neq 0$. The determinant of this matrix is

$$k(k-6) + 10 = k^2 - 6k + 10 = (k^2 - 6k + 9) + 1 = (k-3)^2 + 1 \neq 0.$$

2.40 True/False: If A^2 is invertible, then the matrix A itself is invertible.

True. If A^2 is invertible, there is a matrix B such that $(A^2)B = I$. Since matrix multiplication is associative, A(AB) = I. In other words, A is invertible and AB is its inverse.

2.46 If A is an $n \times n$ matrix such that $A^2 = 0$, then the matrix $I_n + A$ must be invertible.

True, since $(I_n + A)(I_n - A) = I_n + A - A - A^2 = I_n$, so $I_n - A$ is the inverse of $I_n + A$.

3.1.8 Find vectors that span the kernel of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}$.

$$\operatorname{rref}(A) = \left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 2 \end{array} \right].$$

$$x_1 - x_3 = 0$$

$$x_2 + 2x_3 = 0$$

$$x_3 = t$$

$$x_1 = x_3 = t$$

$$x_2 = -2x_3 = -2t$$

The kernel of A is $\begin{bmatrix} t \\ -2t \\ t \end{bmatrix}$ so it is spanned by $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

3.1.23 Describe the image and kernel of this transformation geometrically: reflection about the line $y = \frac{x}{3}$ in \mathbb{R}^2 .

Reflection is its own inverse so this transformation is invertible. Its image is \mathbb{R}^2 and its kernel is $\{\overrightarrow{0}\}$.

3.1.32 Give an example of a linear transformation whose image is the line spanned by

$$\begin{bmatrix} 7 \\ 6 \\ 5 \end{bmatrix}$$

in \mathbb{R}^3 .

The image of a transformation $T(\overrightarrow{x}) = A\overrightarrow{x}$ is the span of the column vectors of A, we can simply take

$$A = \left[\begin{array}{c} 7 \\ 6 \\ 5 \end{array} \right].$$

3.1.42 Express the image of the matrix

$$A = \left[\begin{array}{rrrr} 1 & 1 & 1 & 6 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 2 \\ 1 & 4 & 7 & 0 \end{array} \right]$$

as the kernel of a matrix B.

Following the hint, the image of A is the set of vectors \overrightarrow{y} in \mathbb{R}^4 such that the system $A\overrightarrow{x} = \overrightarrow{y}$ is consistent. Writing this system explicitly in terms of coordinates,

$$\begin{vmatrix} x_1 & + & x_2 & + & x_3 & + & 6x_4 & = & y_1 \\ x_1 & + & 2x_2 & + & 3x_3 & + & 4x_4 & = & & y_2 \\ x_1 & + & 3x_2 & + & 5x_3 & + & 2x_4 & = & & & y_3 \\ x_1 & + & 4x_2 & + & 7x_3 & & = & & & y_4 \end{vmatrix}$$

Reducing to row-echelon form,

$$\begin{vmatrix} x_1 & - & x_3 & + & 8x_4 & = & & 4y_3 & - & 3y_4 \\ x_2 & + & 2x_3 & - & 2x_4 & = & - & y_3 & + & y_4 \\ 0 & & = & y_1 & - & 3y_3 & + & 2y_4 \\ 0 & & = & y_2 & - & 2y_3 & + & y_4 \end{vmatrix}$$

If \overrightarrow{y} is a vector in \mathbb{R}^4 , we can always choose the appropriate \overrightarrow{x} so that the first two equations are true, so the system is consistent if and only if \overrightarrow{y} is a solution to the last two equations. In other words, \overrightarrow{y} is in the kernel of the matrix

$$B = \left[\begin{array}{rrr} 1 & 0 & -3 & 2 \\ 0 & 1 & -2 & 1 \end{array} \right].$$

3.1.52 Consider a $p \times m$ matrix A and a $q \times m$ matrix B, and form the partitioned matrix

$$C = \left[\begin{array}{c} A \\ B \end{array} \right].$$

What is the relationship between ker(A), ker(B), and ker(C)?

If \overrightarrow{x} is a vector in \mathbb{R}^m , then $C\overrightarrow{x} = 0$ if and only if both $A\overrightarrow{x} = 0$ and $B\overrightarrow{x} = 0$. Therefore

$$\ker(C) = \ker(A) \cap \ker(B).$$

3.2.2 Is W a subspace of \mathbb{R}^3 ?

$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x \le y \le z \right\}$$

No, because W is not closed under scalar multiplication. For example, (0,0,1) is in W, but -1(0,0,1) = (0,0,-1) is not in W.

3.2.5 Give a geometrical description of all subspaces of \mathbb{R}^3 . Justify your answer.

A subspace of \mathbb{R}^3 is either \mathbb{R}^3 itself, a plane containing the origin, a line through the origin, and the origin itself. This is because a basis of \mathbb{R}^3 can contain either 3, 2, 1 or 0 linearly independent vectors, respectively.

3.2.34 Consider the 5×4 matrix

$$A = \left[\begin{array}{ccc} | & | & | & | \\ \overrightarrow{v_1} & \overrightarrow{v_2} & \overrightarrow{v_3} & \overrightarrow{v_4} \\ | & | & | & | \end{array} \right].$$

We are told that the vector $\overrightarrow{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ is in the kernel of A. Write $\overrightarrow{v_4}$ as a linear combination of $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, $\overrightarrow{v_3}$.

$$0 = A\overrightarrow{x} = \overrightarrow{v_1} + 2\overrightarrow{v_2} + 3\overrightarrow{v_3} + 4\overrightarrow{v_4}$$
$$\overrightarrow{v_4} = -\frac{1}{4}\overrightarrow{v_1} - \frac{2}{4}\overrightarrow{v_2} - \frac{3}{4}\overrightarrow{v_3}$$

3.2.36 Consider a linear transformation T from \mathbb{R}^n to \mathbb{R}^p and some linearly dependent vectors $\overrightarrow{v_1}, \overrightarrow{v_2}, \cdots, \overrightarrow{v_m}$ in \mathbb{R}^n . Are the vectors $T(\overrightarrow{v_1}), T(\overrightarrow{v_2}), \cdots, T(\overrightarrow{v_m})$ necessarily linearly dependent? How can you tell?

The $T(\overrightarrow{v_i})$ are linearly dependent because they satisfy the same linear dependence relation as the $\overrightarrow{v_i}$. Suppose that a_1, a_2, \dots, a_m are constants, not all 0, such that

$$a_1\overrightarrow{v_1} + a_2\overrightarrow{v_2} + \dots + a_m\overrightarrow{v_m} = 0.$$

Then

$$0 = T(a_1\overrightarrow{v_1} + a_2\overrightarrow{v_2} + \dots + a_m\overrightarrow{v_m})$$

= $T(a_1\overrightarrow{v_1}) + T(a_2\overrightarrow{v_2}) + \dots + T(a_m\overrightarrow{v_m})$
= $a_1T(\overrightarrow{v_1}) + a_2T(\overrightarrow{v_2}) + \dots + a_mT(\overrightarrow{v_m})$