
SOLUTIONS: ASSIGNMENT 3

2.4.15 Compute the matrix product

[
1 −2 −5
−2 5 11

] 8 −1
1 2
1 −1

 .

Explain why the result does not contradict Fact 2.4.9.

[
1 −2 −5
−2 5 11

] 8 −1
1 2
1 −1

 =
[

8− 2− 5 −1− 4 + 5
−16 + 5 + 11 2 + 10− 11

]
= I2.

Fact 2.4.9 only applies if the two matrices being multiplied are n× n.
Since these two matrices are 2×3 and 3×2 they need not be invertible.

2.4.20 True / False: For two invertible n×n matrices A and B, (A−B)(A+
B) = A2 −B2.

False.

(A−B)(A + B) = A2 −B2 + AB −BA 6= A2 −B2

because matrix multiplication is noncommutative.

2.4.23 True / False: (ABA−1)3 = AB3A−1.

True.

(ABA−1)3 = (ABA−1)(ABA−1)(ABA−1) = AB3A−1

since matrix multiplication is associative.

2.4.26 Use the given partition to compute the product. Check your work by
computing the same product without using a partition.

AB =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1




1 2 2 3
3 4 4 5
0 0 1 2
0 0 3 4


=

[
A11 A12

0 A22

] [
B11 B12

0 B22

]
=

[
A11B11 A11B12 + A12B22

0 A22B22

]
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Using the partition,

A11B11 =
[

1 0
0 1

] [
1 2
3 4

]
=

[
1 2
3 4

]
A11B12 + A12B22 =

[
1 0
0 1

] [
2 3
4 5

]
+

[
1 0
0 1

] [
1 2
3 4

]
=

[
3 5
7 9

]
A22B22 =

[
1 0
0 1

] [
1 2
3 4

]
=

[
1 2
3 4

]
So

AB =


1 2 3 5
3 4 7 9
0 0 1 2
0 0 3 4

 .

Without using the partition,

AB =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1




1 2 2 3
3 4 4 5
0 0 1 2
0 0 3 4



=


1 2 2 + 1 3 + 2
3 4 4 + 3 5 + 4
0 0 1 2
0 0 3 4



=


1 2 3 5
3 4 7 9
0 0 1 2
0 0 3 4


2.4.41 Consider the matrix

Dα =
[

cos α − sinα
sinα cos α

]
.

We know that the linear transformation T (−→x ) = Dα
−→x is a counter-

clockwise rotation through an angle α.

(a) For two angles, α and β, consider the products DαDβ and DβDα.
Arguing geometrically, describe the linear transformations −→y =
DαDβ

−→x and −→y = DβDα
−→x . Are the two transformations the

same?
The transformation −→y = DαDβ

−→x represents a counterclockwise
rotation by the angle β, followed by a counterclockwise rotation
by the angle α. On the other hand, the transformation −→y =
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DβDα
−→x represents a counterclockwise rotation by the angle α

followed by a counterclockwise rotation by the angle β. Both
transformations are a counterclockwise rotation by α +β so they
are the same.

(b) Now compute the products DαDβ and DβDα. Do the results make
sense in terms of your answer in part (a)? Recall the trigono-
metric identities

sin(α± β) = sin α cos β ± cos α sinβ

cos(α± β) = cos α cos β ∓ sinα sinβ

DαDβ =
[

cos α − sinα
sinα cos α

] [
cos β − sinβ
sinβ cos β

]
=

[
cos α cos β − sinα sinβ − cos α sinβ − sinα cos β
sinα cos β + cos α sinβ − sinα sinβ + cos α cos β

]
=

[
cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

]
DβDα =

[
cos β − sinβ
sinβ cos β

] [
cos α − sinα
sinα cos α

]
=

[
cos β cos α− sinβ sinα − cos β sinα− sinβ cos α
sinβ cos α + cos β sinα − sinβ sinα + cos β cos α

]
=

[
cos(β + α) − sin(β + α)
sin(β + α) cos(β + α)

]
So DαDβ = DβDα.

2.8 True / False: The function T

[
x
y

]
=

[
y
1

]
is a linear transforma-

tion.

False, T is not a linear transformation because it does not satisfy

T

[
0
0

]
=

[
0
0

]
.

2.15 True/False: The matrix
[

k −2
5 k − 6

]
is invertible for all real numbers

k.

True. A 2×2 matrix
[

a b
c d

]
is invertible if and only if its determinant

ad− bc 6= 0. The determinant of this matrix is

k(k − 6) + 10 = k2 − 6k + 10 = (k2 − 6k + 9) + 1 = (k − 3)2 + 1 6= 0.
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2.40 True/False: If A2 is invertible, then the matrix A itself is invertible.

True. If A2 is invertible, there is a matrix B such that (A2)B = I.
Since matrix multiplication is associative, A(AB) = I. In other words,
A is invertible and AB is its inverse.

2.46 If A is an n×n matrix such that A2 = 0, then the matrix In +A must
be invertible.

True, since (In + A)(In −A) = In + A−A−A2 = In, so In −A is the
inverse of In + A.

3.1.8 Find vectors that span the kernel of the matrix A =
[

1 1 1
1 2 3

]
.

rref(A) =
[

1 0 −1
0 1 2

]
.

x1 − x3 = 0
x2 + 2x3 = 0

x3 = t

x1 = x3 = t

x2 = −2x3 = −2t

The kernel of A is

 t
−2t
t

 so it is spanned by

 1
−2
1

.

3.1.23 Describe the image and kernel of this transformation geometrically:
reflection about the line y =

x

3
in R2.

Reflection is its own inverse so this transformation is invertible. Its
image is R2 and its kernel is {−→0 }.

3.1.32 Give an example of a linear transformation whose image is the line
spanned by  7

6
5


in R3.
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The image of a transformation T (−→x ) = A−→x is the span of the column
vectors of A, we can simply take

A =

 7
6
5

 .

3.1.42 Express the image of the matrix

A =


1 1 1 6
1 2 3 4
1 3 5 2
1 4 7 0


as the kernel of a matrix B.

Following the hint, the image of A is the set of vectors −→y in R4 such
that the system A−→x = −→y is consistent. Writing this system explicitly
in terms of coordinates,

x1 + x2 + x3 + 6x4 = y1

x1 + 2x2 + 3x3 + 4x4 = y2

x1 + 3x2 + 5x3 + 2x4 = y3

x1 + 4x2 + 7x3 = y4

Reducing to row-echelon form,

x1 − x3 + 8x4 = 4y3 − 3y4

x2 + 2x3 − 2x4 = − y3 + y4

0 = y1 − 3y3 + 2y4

0 = y2 − 2y3 + y4

If −→y is a vector in R4, we can always choose the appropriate −→x so
that the first two equations are true, so the system is consistent if and
only if −→y is a solution to the last two equations. In other words, −→y is
in the kernel of the matrix

B =
[

1 0 −3 2
0 1 −2 1

]
.

3.1.52 Consider a p × m matrix A and a q × m matrix B, and form the
partitioned matrix

C =
[

A
B

]
.

What is the relationship between ker(A), ker(B), and ker(C)?
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If −→x is a vector in Rm, then C−→x = 0 if and only if both A−→x = 0 and
B−→x = 0. Therefore

ker(C) = ker(A) ∩ ker(B).

3.2.2 Is W a subspace of R3?

W =


 x

y
z

 : x ≤ y ≤ z


No, because W is not closed under scalar multiplication. For example,
(0, 0, 1) is in W , but −1(0, 0, 1) = (0, 0,−1) is not in W .

3.2.5 Give a geometrical description of all subspaces of R3. Justify your an-
swer.

A subspace of R3 is either R3 itself, a plane containing the origin, a line
through the origin, and the origin itself. This is because a basis of R3

can contain either 3, 2, 1 or 0 linearly independent vectors, respectively.

3.2.34 Consider the 5× 4 matrix

A =

 | | | |
−→v1

−→v2
−→v3

−→v4

| | | |

 .

We are told that the vector −→x =


1
2
3
4

 is in the kernel of A. Write

−→v4 as a linear combination of −→v1 ,
−→v2 ,

−→v3.

0 = A−→x = −→v1 + 2−→v2 + 3−→v3 + 4−→v4

−→v4 = −1
4
−→v1 −

2
4
−→v2 −

3
4
−→v3

3.2.36 Consider a linear transformation T from Rn to Rp and some linearly
dependent vectors −→v1 ,

−→v2 , · · · ,−→vm in Rn. Are the vectors T (−→v1), T (−→v2), · · · , T (−→vm)
necessarily linearly dependent? How can you tell?

The T (−→vi ) are linearly dependent because they satisfy the same lin-
ear dependence relation as the −→vi . Suppose that a1, a2, · · · , am are
constants, not all 0, such that

a1
−→v1 + a2

−→v2 + · · ·+ am
−→vm = 0.
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Then

0 = T (a1
−→v1 + a2

−→v2 + · · ·+ am
−→vm)

= T (a1
−→v1) + T (a2

−→v2) + · · ·+ T (am
−→vm)

= a1T (−→v1) + a2T (−→v2) + · · ·+ amT (−→vm)
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