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Abstract

A new class of preconditioners for the iterative solution of the linear systems arising from
interior point methods is proposed. For many of these methods, the linear systems are sym-
metric and indefinite. The system can be reduced to a system of normal equations which is
positive definite. We show that all preconditioners for the normal equations system have an
equivalent for the augmented system while the opposite is not true. The new class of precondi-
tioners works better near a solution of the linear programming problem when the matrices are
highly ill conditioned. The preconditioned system can be reduced to a positive definite one.
The techniques developed for a competitive implementation are rather sophisticated since the
subset of columns is not known a priori. The new preconditioner applied to the conjugate
gradient method compares favorably with the Cholesky factorization approach on large-scale
problems whose Cholesky factorization contains too many nonzero entries.
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1. Introduction

In this work, a new class of preconditioners for the iterative solution of the linear
systems arising from interior point methods is proposed. Each iteration of an interior
point method involves the solution of one or more linear systems. The most common
approach for solving these systems is to reduce an indefinite system, which is known
as the augmented system, to a smaller positive definite one, called normal equations
(Schur complement).

We will show that every preconditioner for the reduced system yields an equiva-
lent preconditioner for the augmented system but the converse is not true. Therefore,
we choose to work with the augmented system because of the greater opportunity to
find an effective preconditioner.

The new class of preconditioners avoids computing the normal equations. These
preconditioners rely on an LU factorization of an a priori unknown subset of the
constraint matrix columns instead. We also develop some theoretical properties of the
preconditioned matrix and reduce it to a positive definite one. Several techniques for
an efficient implementation of these preconditioners are presented. Among the tech-
niques used is the study of the nonzero structure of the constraint matrix to speed up
the numerical factorization. We also investigate the performance of some particular
cases with this preconditioner.

We use the following notation throughout this work. Lower case Greek letters
denote scalars, lower case Latin letters denote vectors and upper case Latin letters
denote matrices. The symbol 0 will denote the scalar zero, the zero column vector
and the zero matrix. Its dimension will be clear from context. The dimension of
identity matrix / will be given by a subscript when it is not clear from context.
The Euclidean norm is represented by || - || which will also represent the 2-norm
for matrices. The relation X = diag(x) means that X is a diagonal matrix whose
diagonal entries are the components of x. The range of the matrix A will be denoted
by Z(A) and its null space by A4"(A).

2. Primal-dual interior point methods

Consider the linear programming problem in the standard form:

minimize c'x

subjectto Ax =b, x>0, (2.1)

where A is a full row rank m x n matrix and ¢, b and x are column vectors of appro-
priate dimension. Associated with problem (2.1) is the dual linear programming
problem

maximize b'y

subjectto Ay +z=¢, z2>0, (2.2)
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where y is an m-vector of free variables and z is the n-vector of dual slack variables.
The duality gap is defined as c'x — b'y. It reduces to x'z for feasible points.

Since Karmarkar [17] presented the first polynomial time interior point method
for linear programming, many methods have appeared. Among them, one of the
most successful is the predictor—corrector method [22,20]. In the predictor—corrector
approach, the search directions are obtained by solving two linear systems. First we
compute the affine directions

0 I A\ [AX ra
z x ol|laz]l=|r], 2.3)
A 0 0/ \aAy rp

where X = diag(x), Z = diag(z) and the residuals are given by r, = b — Ax, rqy =
¢ — Ay — z and r, = —X Ze. Then, the search directions (Ax, Ay, Az) are com-
puted solving (2.3) with r, replaced by r. = e — XZe — AX AZe where p is the
centering parameter and e is the vector of all ones.

2.1. Computing the search directions

In terms of computational cost, the key step of an iteration is the solution of a
linear system like (2.3). Since both systems share the same matrix, we will restrict the
discussion to one linear system. By eliminating the variables Az the system reduces

to:
—D A"\ (Ax\_ (ra—X"'r,
(2 5)@)=070)

where, D = X~!Z is an n x n diagonal matrix and the lower block diagonal matrix
0 has dimension m x m (recall that A € R"*"). We refer to (2.4) as the augmented
system. Eliminating Ax from (2.4) we get

ADT'A'Ay =1, + A(D7 g — Z7ry) (2.5)

which is called the normal equations. The diagonal matrix D changes at each itera-
tion but the other matrices in (2.4) and (2.5) remain fixed.

We remark that the augmented and normal equations systems for problems with
bounded variables have the same structure of the systems for the standard form.
Therefore, the ideas developed here can be readily applied to these problems.

2.2. Approaches for solving the linear systems

Using the Cholesky factorization of the normal equations system for comput-
ing the search directions in interior point methods is by far the most widely used
approach (see for example [1,9,18]). However, the factored matrix can have much
less sparsity and is often more ill-conditioned than the matrix of system (2.4).
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One way around this problem is to use iterative methods. In most applications,
however, it is essential to modify a hard to solve linear system into an equivalent
system easier to solve by the iterative method. This technique is known as precondi-
tioning.

Consider the following situation: given Kx = r, we solve the equivalent linear
system M~'KN~'% =7, where ¥ = Nx and # = M~ !r. The system is said to be
preconditioned and M ~! K N~! is called the preconditioned matrix.

Since the iterative methods require the matrix only for computing matrix—vector
products there is no need to compute the normal equations unless the preconditioner
depends on it.

Attempts to solve (2.5) using the preconditioned conjugate gradient method have
achieved mixed results [18,19], mainly because the linear systems become highly
ill-conditioned as the interior point method approaches an optimal solution.

Therefore, the augmented system began to be considered even though it is indefi-
nite. Implementations using the Bunch—Parlett factorization [6] proved to be more
stable but they are slower than solving (2.5) (see [13,15]). Better results were recently
obtained for the symmetric indefinite system [12]. A multifrontal approach applied
to the augmented system has been investigated in [11]. Approaches that avoid the
two dimensional diagonal blocks are given in [21,28].

In [3], several iterative methods applied to the preconditioned augmented system
are compared with the direct approach obtaining good results for some instances.

3. The augmented system

A slightly more general form for the augmented system (2.4) arises naturally in
several areas of applied mathematics such as optimization, fluid dynamics, electrical
networks, structural analysis and heat equilibrium. In some of these applications,
the matrix D is not necessarily diagonal although it is symmetric positive definite.
The techniques for solving the linear systems vary widely within these areas since
the characteristics of the system are problem dependent. See for example [5,26,29,
16].

In this section we shall work with a more general form for the augmented system:

-D A
(24 o5
where E is a positive definite matrix. Vanderbei [27] shows that this form can be
always obtained for linear programming problems.
The following lemma supports the choice of considering the augmented system
instead of the normal equations when designing preconditioners for iterative meth-
ods. It will be shown that for every preconditioner of the normal equations, an equiv-

alent preconditioner can be derived for the augmented system. However, the converse
statement is not true.
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Lemma 3.1. Let (3.6) be nonsingular and D be symmetric positive definite. Given
any nonsingular matrices J and H of appropriate dimension, it is possible to con-
struct a preconditioner (M, N), such that

(=D AN ., (I 0
M <A )Y =\o suapa+pmt)

Proof. Let D = LL' and consider the preconditioner

_ L' 0 _ L™t D lA'H!
1 1 _
M= (JAD—1 J) and N = ( 0 H! )

then,

(=D AY (1 0
M <A E)N _<o Jap-a+Eymt)

The next lemma shows that for the augmented system (2.4) the converse statement
is not true.

Lemma 3.2. Consider the augmented system given by

-D A"\ (Ax\ _ (ra—X"'r,
A EJ\Ay) ™ rp ’

and its normal equations AD~'A' + E where D is nonsingular and A has full row
rank. Then any symmetric block triangular preconditioner

(s 3)

will result in a preconditioned augmented system whose normal equations are inde-
pendent of F and H.

Proof. Consider again the class of symmetric preconditioners given by

F 0\ (-D A"Y(F' HY _ —FDF! FAY'— FDH'
H J A E 0 J')  \JAF'— HDF! C ’
where, C = —HDH'4+ HA'YJ'+ JAH' + JEJ..
Therefore, the preconditioned system will be as follows:

—FDF! FAYJ'— FDHY (A% _ F(rg — X 'ry)
JAF' — HDF! C Ay) T \Jrp+H@ra—X""ry))”

now, by eliminating AX we get
JADT'A' + EYJ'AY = J(rp + AD™ ' (ra — X)), (3.7)

this system does not depend on either F' or H, thus any choice for these matrices that
preserves nonsingularity are valid preconditioners which lead to (3.7). [
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These results can be applied in a more general context. For instance D can be
any symmetric positive definite matrix not necessarily diagonal. Moreover, there is
no restriction to £ whatsoever. However, if E is positive semi-definite, the normal
equations will be positive definite.

4. The splitting preconditioner

In this section we will develop and study a class of symmetric preconditioners for
the augmented system that exploits its structure. In view of the discussion in previous
sections, the preconditioners are designed to avoid forming the normal equations.

4.1. Building a preconditioner

Since the augmented system is naturally partitioned into block form, let us start
with the most generic possible block symmetric preconditioner for the augmented
system

—1 _ -t __ F G

M= =N"= (H J)’

and choose the matrix blocks step by step according to our goals. The preconditioned
augmented matrix (2.4) will be the following

—FDF'+ FA'G'+ GAF* —FDH'+ FA'YJ'+ GAH"'

—HDF'+ HA'G'+ JAF* —HDH'+ HA'YJ'+ JAH')"
At this point we begin making decisions about the blocks. We start by observing
that the lower-right block is critical in the sense that the normal equations matrix
AD~! At appears in the expression for many reasonable choices of J and H. Setting
J = 0 helps to avoid the normal equations. This choice seems to be rather drastic
at first glance leaving few options for the selection of the other blocks. But, as we
will soon see, the careful selection of the remaining blocks will lead to promising
situations. With J = 0 the preconditioned augmented system reduces to

—FDF'+ FA'G'+ GAF' —FDH'+ GAH"
—HDF'+ HA'G —HDH"

Let us turn our attention to the off diagonal blocks. If we can make them zero
blocks, the problem decouples into two smaller linear systems. Thus, one idea is to
write F'' = D1 A'G'. However, this choice leads to A (F') D A (G"') and is not
acceptable. A more reasonable choice is G' = (HAY) ™' HDF" giving

—FDF'+ FA'G'+ GAF! 0
0 —HDH')"

Now, let us decide how to chose H. The choices A, AD™! or variations of it will

not be considered since matrices with the nonzero pattern of the normal equations
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will appear in the lower-right block and also as part of G. On the other hand, setting
H = [I 0]P where P is a permutation matrix such that H A" is nonsingular does
not introduce a normal equations type matrix. The lower-right block reduces to a
diagonal matrix —Dp = —H D H' where,

t_(Dv O
PDP' = ( ) DB>’ (4.8)

and we achieve one of the main goals, namely avoiding the normal equations.

Finally, we can concentrate on F at the upper left block. The choice F = o
seems to be natural and as we shall see later leads to some interesting theoreti-
cal properties for the preconditioned matrix. Summarizing, the final preconditioned
matrix takes the form

_ t D _1
M- (TP ANy o (FI+DTIAGHHGADTE 0 ) g
A 0 0 —Dp

where,

Mol = D~ G
H 0

1
with G = H‘DgB’], HP'=[I O0]land AP'=[B N].

The price paid for avoiding the normal equations system is to find B and solve
linear systems using it. However, the factorization QB = LU is typically easier to
compute than the Cholesky factorization. In fact, it is known [14] that the sparsity
pattern of L' and U is contained in the sparsity pattern of R, where AA' = R'R, for
any valid permutation Q. In practice, the number of nonzero entries of R is much
larger than the number of nonzero entries of L and U added.

Let us make a few observations about the preconditioned matrix (4.9). It has the
same inertia as the augmented system (2.4). Also, since the lower-right block matrix
has m negative eigenvalues, the preconditioned matrix

D=

S=_—I+D2A'G' + GAD™? (4.10)

has m negative and n — m positive eigenvalues. Therefore the preconditioned matrix
is indefinite except for the odd case where m = n.

We close this section by showing a property of the matrices in the preconditioned
block (4.10) which leads to the results of the next section.

1
Lemmad.1. Let A =[B N] with B nonsingular and G = HtDéB—1 where H =
[I O] Then G'D™2A' = AD™3G = I.

Proof. It is sufficient to show that G'D~2 A' = I.
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—tn3 -1 t
B™'DZ[I 01D 2[B N]|'=
1 _1
B™'DZ[Dg? 0][B N]'=
B7'[I 0][B N]'=1. O

This result can be easily extended for any permutation A = [B N]P with B non-
singular.

4.2. Theoretical properties

In this section we will study some properties of matrices of the type
K=-1,+U'V'+ VU, whereUV =V'U'=1I,, (4.11)

and U, V' are m x n matrices. The preconditioned matrix (4.10) given in the previ-
ous section belongs to this class of matrices. First we show that the eigenvalues of
K are bounded away from zero.

Theorem 4.1. Let A be an eigenvalue of K given by (4.11) where U and V' €
R™" then |\| > 1.

Proof. Let v be a normalized eigenvector of K associated with A, then

Kv=A\v,
K*v= A2v,
(I —UV'—VU4+UVVU + VUU'VYHo = 2%,
v+ UV = VU)Y(VU = UWVYHo = 2%,

Multiplication on the left by v' gives 1 + w'w = A% where, w = (VU — U'VY)w.
Thus, we obtain A2 > 1.

Corollary 4.1. The preconditioned matrix (4.9) is nonsingular.

Thus, K is not only nonsingular but it has no eigenvalues in the neighborhood of
zero. The following remarks are useful for showing other important results.

Remark 4.1. Since U and V' € R™*" are such that UV = I,,, VU is an oblique
projection onto Z(V). Thus, if x € Z(V), then VUx = x.

Theorem 4.2. The matrix K in (4.11) where U and V' € R™" has at least one
eigenvalue A such that |1| = 1.
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Proof. Observe that if K 4 I is singular, K has at least an eigenvalue A = —1. Let
us consider three cases:

(i) n >2m, K+ 1 is singular, since for any square matrices A and B
rank(A + B) < rank(A) + rank(B).

(ii) n < 2m, observe that dim(span{Z(U"%) U Z(V)}) < n. Also, U' and V have
rank m since UV = I,,. Thus, dim(Z(U"% N Z(V)) > 0 since n < 2m. Hence,
there is at least one eigenvector v = 0 such that v € Z(U") N #(V) therefore,
by Remark 4.1, Kv = (= + U'V'+ VU)v = —v+v+v = .

(iii) n = 2m, from (ii) if Z(U"Y) N (V) # {0} there is a eigenvalue A = 1. Other-
wise there exists an eigenvector v such that v,y = 0 or vy = 0. Without
loss of generality consider that vy = 0, where vy vy € Z(V) and v -y €
(VY. Thus, v e A (V') and there is an eigenpair (§ = A + 1, v) where
VUv =0v. Butthen A+ 1= (0or 1) since UV = [ and from Theorem 4.1
itmustbe A = —1. [0

Corollary 4.2. The condition number k2 (K) in (4.11) is given by max |A(K)|.

The proof is immediate from Theorems 4.1 and 4.2, the definition of k2 (K) =
% and recalling that K is symmetric.
4.2.1. Reduction to positive definite systems

Consider again the indefinite linear system at the left upper block (4.10). It is pos-
sible to reduce it to a smaller positive definite system. Expanding the above equation
we obtain the following matrix:

1 1

2 p—1 -2
s=p| T | PsBNDy|p (4.12)
D,>N'B™'D} —1

Therefore the problem can be reduced to solve a positive definite linear system
involving either matrix

1 1
In+DiB 'NDy'N'B™'D} (4.13)
or

_1 1
Li—m + D> N'B™'DgB~'ND,>. (4.14)
These matrices have some interesting theoretical properties related to the indefinite

matrix K.

_1 1
Let us first define W = D, > N'B~'D. Then, the positive definite matrices (4.13)
and (4.14) can be written as I + W'W and I + W W' respectively.

Lemma 4.2. The matrices in (4.13) and (4.14) are positive definite and their eigen-
values are greater or equal to one.
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Proof. Let v be a normalized eigenvector of 1 + WW" and 0 its associated eigen-
value, then

(I + WWho = v,
v (v 4+ WWh) = 6v'v,
1+uu=0,

where u = W'v. Thus @ > 1. The proof for I + W'W is similar. [

Remark 4.2. The matrices in (4.13) and (4.14) have the same set of eigenvalues
with the exception of the extra eigenvalue equal to one for the matrix of higher
dimension.

The next result is also important since it relates the eigenpairs of the indefinite
matrix with the eigenpairs of the positive definite matrices. Notice that

I WY\ (I WY _ [(I+WW 0
w —1)\w —1]— 0 I+ WWwt

thus if,

1+ W'w 0 w\_ o (u
0 I+wWwt\v] ™ v

then (9, u) is an eigenpair of I + W'W and (6, v) is an eigenpair of I + W W', where
0 =22

Therefore the indefinite system can still be an option for solving the linear system
since it has a better eigenvalue spectrum distribution. However, experiments solv-
ing (4.13) with the conjugate gradient method obtained better results than using the
SYMMLQ method for solving (4.10).

From (4.12) we can get

w1 _ (I—=WTW W'T
(PSP _< TW -7 )

where, T = (I + WW"~!. The smallest eigenvalue of S~ is given by

u—WTwu+ Wty
TWu — W'Tv

’

)2 =

where, |u'v!|| = 1. Let N = B~'N, which can be seen as a scaling of the linear
programming problem. Close to a solution, at least n — m entries of D are large.
Thus, with a suitable choice of the columns of B, the diagonal entries of Dp and

N ¢
Dg,l are very small close to a solution. In this situation, W = D * N tDé approaches
the zero matrix, T approaches the identity matrix and both the largest eigenvalue of
S and k2 (S) approach one.
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4.3. Choosing the set of columns

Given a good choice of columns of A to form B this preconditioner should work
better close to a solution, where the linear systems are highly ill conditioned.

1
A strategy to form B is to minimize || DgB_lN D;,i || This problem is hard to
solve but it can be approximately solved with an inexpensive heuristic. Select the
first m linearly independent columns of AD~! with smallest 1-norm. This choice of
columns tends to produce better-conditioned matrices as the interior point method
approaches a solution. Due to the splitting nature of the preconditioner, we shall call
it the splitting preconditioner.

4.4. Equivalence to the normal equations

It is useful to note that the matrix (4.13) can be obtained via the normal equations.
Recall that A = [B NP thus, AD~'A' = BDy' B + N Dy,' N'. Now, multiplying

1
itby Dy B~! and post-multiplying by its transpose leads to

1 1 1 1
DB ' (ADT'AYB™'D} =1+ D_B"'NDy'N'B™'D}. (4.15)

It can be shown that the right hand side vector for both preconditioned systems is the
same.

A partition of matrix A has been used before as a preconditioner for network
interior point methods [25]. In this situation B is a tree and is easy to find. Therefore,
the preconditioner (4.13) can be viewed as a generalization. We also remark that the
rules for choosing the set of columns are not the same.

5. Practical aspects

Iterative methods only need to access the matrix to compute matrix—vector prod-
ucts. In this section we present a more stable way to compute this product versus
using the matrix directly as in w = Kx. Let us consider for simplicity our matrix
to be of the form (4.11). We can write any n-dimensional vector x as x = xz(v) +
Xy (vty- Thus,

Kx=—x+U"V'xyy) + VUx
= —x vty + U Vi) + VU vy

by Remark 4.1. Now, since V' = [I 0]P its null and range spaces can be easily rep-
resented in a code and all the calculations for it consist of managing certain indices
properly. Observe that the first two terms do not have nonzero entries in common
for any of the positions. Hence, no floating-point operations are needed to add them.
If we compute the product Kx without these considerations, some round-off error
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will be introduced for the zero sum —xg(v) + U Vxzv) and often this error is large
enough compared with the other entries of x. A welcomed side effect is that n floating
point operations are saved with this procedure.

Another practical aspect concerns the recovery of the solution. The approximate
solution for the original system can be easily recovered from the solution for the
preconditioned system (X, y) by computing

(5)=4(5):

where the residual is given by

ry\ _ by + Dx — Aly
) \bp—Ax—Ey )’

Sometimes the norm of the error ||r||> = ||r1]|> + |r2]|? is too large due to the round-
off error introduced on computing the preconditioned system and recovering the
solution. It can get particularly large at the final iterations of the interior point method.
One way to reduce this error is to compute ¥ = D~'(A'y — by) and form a new
approximate solution (X, y). The error for the new solution 7 will be given by 7> =
r» + AD7'ry if we assume that /] = b; + DX — A'y is zero. Thus, we update the
solution whenever ||| is above a given tolerance and ||7|| < ||r||. This approach is
related to iterative refinement for the augmented system [4] keeping y unchanged.

5.1. Inexact solutions

An idea that immediately comes to mind when using iterative procedures for solv-
ing the linear systems is to relax the required tolerance. Thus, we start the interior
point method with a relaxed tolerance (10~%) and, whenever an iteration does not
(at least) halve the gap (x'z), the tolerance is changed to the square root of machine
epsilon.

In the context of the predictor—corrector variant there is another place for applying
this idea. Recall that for computing the search directions, two linear systems are
solved. The first one gives the perturbation parameter and the nonlinear correction
for the Newton’s method. The second one is written in such a way that it gives already
the final search directions. Thus, the first linear system may be solved with a more
relaxed tolerance than the second one.

5.2. Keeping the set of columns

A nice property of the splitting preconditioner is that we can work with the selec-
ted set of columns for some iteration. As a consequence, the preconditioner is very
cheap to compute for these iterations.

It is important to notice that keeping the matrix B from previous iterations does
not mean to keep the same preconditioner since D will change from iteration to
iteration and the preconditioner depends on it too.
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In the experiments given later we change the set whenever the iterative method
takes more iterations than a certain threshold value (,/m) or when the solution given
by the iterative method is not accurate.

5.3. The LU factorization

This class of preconditioners is not competitive against the direct method ap-
proach by computing the Cholesky factorization without a careful implementation.
The computation of an LU factorization where the set of independent columns is
unknown at the beginning of the factorization may be too expensive. In this section
we discuss the most important techniques for the implementation of a competitive
code. This is a research topic in its own and a complete description of all techniques
used can be found in [23].

For this application, the most economical way to compute the LU factorization
is to work with the delayed update form. It fits very well with our problem because
when a linearly dependent column appears, it is eliminated from the factorization
and the method proceeds with the next column in the ordering.

One of the main drawbacks of a straightforward implementation of the splitting
preconditioner is the excessive fill-in in the LU factorization. The reason is that
the criterion for reordering the columns does not take the sparsity pattern of A into
account. A good technique consists of interrupting the factorization when excessive
fill-ill occurs and reordering the independent columns found thus far by the number
of nonzero entries. The factorization is then started from scratch and the process is
repeated until m independent columns are found. In our implementation we consider
excessive fill-in a factorization that produces more nonzero entries than the number
of nonzero entries from the normal equations system.

A second factorization is applied on the chosen set of independent columns using
standard techniques for computing an efficient sparse LU factorization. This ap-
proach improves the results significantly for some problems. Therefore, the second
factorization is always done. As a welcome side effect, it is not necessary to store U
in the factorizations that determine B.

One difficulty in determining the subset of independent columns is the number
of dependent columns visited in the process. An idea consists in verify whether a
column is dependent or not during the delayed update form of the LU factorization.
If we find that a candidate column is already dependent on the first say, k columns,
it is useless to continue updating the candidate column for the remaining columns
of L.

5.4. Symbolically dependent columns

Given an ordering of columns, we want to find the unique set of m independent
columns that preserves the ordering. The brute force approach for this problem con-
sists in computing the factorization column by column and discarding the (nearby)
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dependent columns along the way. The strategies developed here will indicate when
a column can be ignored in the factorization. The set of independent columns found
by these techniques is the same set obtained by the brute force approach.

Symbolically dependent columns are columns that are linearly dependent in struc-
ture for all numerical values of their nonzero entries. The idea is to find a set of
say k columns with nonzero entries in at most k — 1 rows. This set of columns is
symbolically dependent.

Let us first consider a square matrix for simplicity. In this situation, the problem
is equivalent to permuting nonzero entries onto the diagonal. This problem is equiv-
alent to finding a matching of a bipartite graph where the rows and columns form
the set of vertices and the edges are represented by the nonzero entries. This idea
was first used by Duff [10] and it is applied as a first step for permuting a matrix to
block triangular form. If a nonzero entry cannot be assigned to the diagonal in the
matching process for a given column that column is symbolically dependent.

In [8] this idea is extended to rectangular matrices. The authors are concerned
with finding a set of independent columns of the matrix which gives a sparse LU
factorization. Thus, the columns are reordered by degree and the matching algorithm
applied giving a set of candidate columns, denoted here as key columns, which are
not symbolically dependent.

Our idea for using the key columns comes from the fact that the number of inde-
pendent columns before the kth key column on the matrix is at most k — 1. Therefore,
it is possible to speed up the LU factorization whenever we find k — 1 numerically
independent columns located before the kth key column. The speed up is achieved
by skipping all the columns from the current one to the kth key column.

5.5. Symbolically independent columns

We now define the symbolically independent columns i.e., columns that are lin-
early independent in structure for all numerical values of their nonzero entries. A
powerful strategy consists in moving the symbolically independent columns to the
beginning of the ordered list since those columns are necessarily going to be in
the factorization. Then these columns can be reordered further in order to reduce the
number of fill-ins in the LU factorization. Notice that the symbolically dependent
columns can be ignored in this step. Thus, we are concerned only with the key
columns given by the matching algorithm.

We are not aware of any efficient algorithm for finding all the symbolically inde-
pendent columns from a given ordered set. Therefore, we use heuristics approaches
to identify some of the symbolically dependent columns.

5.5.1. First nonzero entries
On the description of the heuristic below, we say that column j is the first entry
column of row i if j contains the first nonzero entry in row i on the ordered set. We
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consider a column j symbolically independent given an ordered set if at least one of
the following rules applies:

1. Column j is the first entry column of at least one row;
2. Column j is the second entry column of a row i and the first entry column of row
i is also first entry column for at least another row not present on column ;.

This set of rules guarantees that the columns selected are symbolically indepen-
dent but it does not guarantee that all symbolically independent columns are found.
For instance, consider the following sparse matrix:

X X X
X X
X

5.5.2. Strongly connected components

This strategy is also applied to the key columns. Since the key columns are
determined by a matching procedure, a permutation for computing the strongly
connected components is already at hand. Given the strongly connected components,
their columns are reordered by the splitting criteria. Now, the following result
holds:

Theorem 5.1. Let B be an m x m matrix and B P a given ordering of B’s columns
with nonzero diagonal entries. Consider the block triangular matrix Q BP Q' where
the columns inside each strongly connected component are ordered according with
P. Let k be the smallest index in P among the first symbolically dependent col-
umns of each component considering only the rows from the respective component.
Then every column whose index in ordering P is smaller than k is symbolically
independent in BP.

Proof. The first k — 1 columns of B P are symbolically independent on their respec-
tive component. Moreover, the columns of each component are symbolically inde-
pendent (considering only these k — 1 columns). Since Q B P Q' is block triangular,
any column is symbolically independent from the previous blocks. Therefore, these
k — 1 columns are symbolically independent among them. [J

Thus, we look for the first symbolically dependent column in its own component
considering only the rows from the respective component. All columns with smaller
index in the ordering are symbolically independent.

Another advantage of this strategy is that we can apply the heuristics for finding
symbolically independent columns inside each diagonal block.
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5.6. Discarding dependent rows

In order for the splitting preconditioner to work, the constraint matrix A cannot
have dependent rows. The following procedure finds the dependent rows and discards
them before the interior point method starts.

The techniques used for finding B can be applied to the columns ordered by
degree. Moreover, rows containing entries that are part of singleton columns can
be ignored in this factorization since these rows are necessarily independent. This
idea can be applied in the resulting matrix until there are no longer any singleton
columns. Thus, finding dependent rows is inexpensive most of the time. Actually,
there are problems like those with only inequality constraints where no factorization
is performed at all. This factorization can be computed even more efficiently [2].

6. Numerical experiments

In this section we present several numerical experiments with the new precon-
ditioner. The experiments are meant to expose the type of problems where the new
approach performs better. Therefore, these experiments are not to be seen as a way
to determine the best approach for the interior point methods in a general context.
For instance, we observe that the new preconditioner fails to achieve convergence for
several problems from the netlib collection, such as GREENBE and PILOT families,
under the strict conditions the experiments were made. Nevertheless, the results do
indicate that the new approach is an important option for some classes of problems.

The procedures for solving the linear systems with the splitting preconditioner are
coded in C and are applied within the PCx code [9], a state of the art interior point
methods implementation. PCx’s default parameters are used except that multiple cor-
rections are not allowed and all tolerances for the interior point and conjugate gradi-
ent methods are set to the square root of machine epsilon.

All the experiments are carried out on a Sun Ultra-60 station. The floating-point
arithmetic is IEEE standard double precision.

In order to illustrate the expected behavior of the iterative methods solution for
solving the normal equations system Table 1 shows the number of iterations using
the conjugate gradient method with the incomplete Cholesky factorization and the
splitting preconditioner as the interior point method progresses. The Euclidian resid-
ual norm is used to measure convergence. No fill-in is allowed in the incomplete
Cholesky approach and whenever a small pivot is found it is set to one and remaining
entries of the corresponding column to zero. The starting vector used is the right hand
side.

The chosen problem is KEN13 from netlib. The dimension of the linear system
is 14,627 after preprocessing. Iteration zero corresponds to computing the starting
point. Only the number of iterations of the conjugate gradient method for solving the
first linear system is shown. The number of iterations for solving the second linear
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Table 1
KEN13 conjugate gradient method iterations
IP iteration Inner iterations
Incomplete Cholesky Splitting preconditioner

0 49 195
1 49 203
2 45 258
3 39 190
4 24 171
5 24 185
6 20 128
7 22 130
8 22 133
9 32 126
10 44 108
11 71 91
12 104 92
13 171 76
14 323 63
15 480 52
16 834 43
17 1433 34
18 2146 30
19 4070 22
20 7274 18
21 11,739 17
22 15,658 15
23 24,102 12
24 13,463 10
25 5126 6
Average 3360 84

system is very close to it. An interesting observation is that the incomplete Cholesky
preconditioners generally take very few inner iterations to converge at the early stage
of the interior point outer iterations, but this deteriorates in the later outer iterations
as the interior point method nears convergence. With the splitting preconditioner the
exact opposite occurs. The last few outer iterations are the ones where it performs
better. This property of the splitting preconditioner is highly desirable since the linear
systems in the last outer iterations are the most ill conditioned.

We now briefly describe the problems used on the remaining numerical experi-
ments. Problems FIT1P and FIT2P belong to the netlib collection of linear program-
ming problems.

The PDS model is a multi-commodity problem with 11 commodities and whose
size is a function of the number of days being modeled. Thus, PDS-2 models two
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days, PDS-20 models 20 days and so on. A generator for this model is available and
experiments for problems of a variety of sizes are presented.

DIFFICULT is the linear programming relaxation of a large network design prob-
lem. This problem was supplied by Eva Lee and formulated by Daniel Bienstock.

The QAP problems are models for the linearized quadratic assignment problem
[24]. The problems tested here for the QAP model are from the QAPLIB [7] collec-
tion with the modification described in [24].

The following computational results compare the behavior of the direct method
approach against the splitting preconditioner. The preconditioned positive definite
matrix (4.15) is used for the experiments. Since the splitting preconditioner is de-
signed for the last interior point iterations the diagonal of the normal equations
matrix is first adopted as preconditioner for the conjugate gradient method until the
initial gap (x(t)z()) for the linear programming problem is reduced by at least 10° or
until the number of inner iterations for solving the linear system is above its own
dimension divided by four when the splitting preconditioner is taken.

Table 2 contains the basic statistics about the test problems. The dimension and
number of nonzero entries shown for the matrix of constraints refer to the prepro-
cessed problems. The number of nonzero entries for the normal equations includes
only the lower half of the matrix. The number of nonzero entries for matrix L of the
Cholesky factorization is obtained after reordering the rows of A by the minimum
degree criteria.

Table 3 reports the number of iterations for the interior point method where the
linear systems are solved by either the Cholesky factorization of the normal equa-
tions, or with the conjugate gradient method with the splitting preconditioner. Col-
umn ‘Fact.” contains the number of LU factorizations needed for the interior point
methods including the factorization for computing the starting point. Notice that
the number of outer iterations for the interior point methods on both approaches
is about the same for most problems. Only problem DIFFICULT presented a large
difference. No results for problems PDS-25 to PDS-60 are reported for the Cholesky
approach because it would take a large amount of time and memory to solve these
problems.

It is interesting to notice that the direct approach does not obtain a clear advantage
over the iterative approach for these problems. We remark that the solutions obtained
in these experiments agree in at least significant eight digits for all the problems
whose objective value are known to us.

Table 4 shows a comparison between both approaches for the total running time.
Time to preprocess the linear programming problem and input data was not ac-
counted, since those do not depend on the adopted method. All the remaining time
procedures were measured. The splitting approach takes less total time for solv-
ing the problems. It is no surprise since these models were chosen for this reason.
The purpose of these experiments is to show the type of problems where the new
approach is expected to perform better. For example, on problems like FITIP and
FIT2P that have dense columns, the normal equations matrix is already very dense
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Table 2
Problems statistics
Problem Dimension Number of nonzero entries
Matrix A AD™ 1At Matrix L

FITIP 627x 1677 9868 196,878 196,878
FIT2P 3000x 13,525 50,284 4,501,500 4,501,500
DIFFICULT 31,514x274,372 806,284 689,260 5,842,076
PDS-01 1291x3623 7726 5955 11,230
PDS-02 2609x 7339 15,754 12,256 39,613
PDS-06 9156x28,472 61,120 46,578 563,278
PDS-10 15,648 x48,780 104,550 79,866 1,647,767
PDS-15 24,031x77,366 165,993 125,528 4,232,804
PDS-20 32,287x 106,180 227,541 170,973 7,123,636
PDS-25 40,264 x 131,526 281,873 212,083 10,674,326
PDS-50 80,339x272,513 582,206 432,371 42,074,817
PDS-60 96,514x332,862 710,234 524,563 -
CHRI2A 947 x 1662 5820 16,217 81,675
CHRI12B 947 x 1662 5820 16,325 81,549
CHRI12C 947 x 1662 5820 16,169 81,964
CHRI15A 1814 %3270 11,460 36,794 221,035
CHRI15B 1814x3270 11,460 36,899 221,922
CHR15C 1814 %3270 11,460 36,749 226,357
CHRISA 3095x5679 19,908 72,458 557,491
CHRI18B 3095x5679 19,908 72,368 562,356
CHR20A 4219x7810 27,380 107,509 942,275
CHR20B 4219x7810 27,380 107,349 924,810
CHR20C 4219x7810 27,380 107,809 1,003,786
CHR22A 5587x10,417 36,520 153,856 1,424,837
CHR22B 5587x10,417 36,520 153,680 1,453,225
CHR25A 8149x 15,325 53,725 249,324 2,653,126
ELS19 4350x 13,186 50,882 137,825 3,763,686
HIL12 1355%x3114 15,612 34,661 611,836
NUGO08 383x792 3096 6363 44,956
NUGI5 2729%x9675 38,910 88,904 2,604,504
ROUI0 839x 1765 8940 19,274 242,015
SCR10 689 x 1540 5940 13,094 129,297
SCR12 1151x2784 10,716 24,965 334,090
SCRI15 2234x6210 24,060 59,009 1,254,242
SCR20 5079x 15,980 61,780 166,709 6,350,444

as it can be seen in Table 2. Thus, this approach takes much more computational
effort.

The process of discarding dependent rows is very efficient. In particular, for
problems FIT1P, FIT2P and DIFFICULT no factorization was performed in order
to verify the independence among all rows. Finding singleton rows and columns also
helps to obtain good results. On all PDS problems that strategy resulted in null block
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Table 3
Cholesky versus splitting preconditioner—iterations
Problem Cholesky iterations Splitting
Iterations Fact.

FITIP 22 23 3
FIT2P 25 29 5
DIFFICULT 32 41 4
PDS-01 22 24 4
PDS-02 26 28 4
PDS-06 39 40 4
PDS-10 51 46 4
PDS-15 63 59 4
PDS-20 69 72 5
PDS-25 - 73 6
PDS-50 - 84 5
PDS-60 - 85 5
CHRI12A 16 17 6
CHRI12B 12 12 2
CHRI12C 13 14 5
CHRI5A 12 15 3
CHRI15B 16 17 4
CHRI15C 16 18 4
CHRI18A 24 25 6
CHRI18B 14 13 2
CHR20A 23 26 8
CHR20B 26 29 8
CHR20C 20 20 5
CHR22A 23 25 5
CHR22B 32 33 8
CHR25A 31 32 8
ELS19 31 31 17
HIL12 18 16 13
NUGO08 11 11 7
NUGI5 22 25 18
ROUI10 18 20 7
SCR10 18 15 5
SCR12 14 14 4
SCRI15 23 27 18
SCR20 22 27 18

diagonal matrix in at least one iteration. That is, the refactorization for these matrices
spent no floating-point operations and generated no fill-in entries. The same hap-
pened on problem DIFFICULT. For these problems and also for many others block
diagonal matrices with very small dimension often occurred.

The QAP model problems also lead to normal equations matrices that are not
much sparse although in a lesser degree than the FIT problems since these problems
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Table 4
Cholesky versus splitting preconditioner—time and flops

Problem Cholesky Splitting

Time MFlops Time MFlops
FITIP 153 87.6 5.3 4.2
FIT2P 44,122 9110.3 67.1 33.0
DIFFICULT 26,776 7335.2 8214 2264.7
PDS-01 2.24 0.3 8.8 44
PDS-02 10.99 1.9 34.6 15.7
PDS-06 760 201.4 497 161.0
PDS-10 5145 1014.9 1316 327.8
PDS-15 29,004 4436.6 4285 772.3
PDS-20 71,237 9441.6 8371 1277.6
PDS-25 - 17,663.9 13,940 1811.9
PDS-50 - 156,416.2 60,215 6625.9
PDS-60 - - 89,651 9073.1
CHRI2A 12.5 8.5 5.9 4.6
CHRI12B 9.9 8.5 6.2 8.2
CHRI12C 10.3 8.5 52 5.0
CHRI5A 37.7 31.7 12.7 11.6
CHRI15B 49.0 324 13.1 10.0
CHRI15C 48.9 33.2 14.1 10.3
CHRISA 252 116.7 49.1 24.8
CHRI18B 160 118.0 28.6 32.1
CHR20A 567 244.1 97.6 459
CHR20B 598 232.6 113 48.9
CHR20C 586 285.8 70.0 45.0
CHR22A 1022 414.8 150 79.8
CHR22B 1395 433.0 189 61.2
CHR25A 3156 995.4 442 144.0
ELS19 15,175 5212.0 2444 169.1
HIL12 547 386.6 89.4 69.1
NUGO08 5.48 7.5 2.7 33
NUGI5 6706 3473.8 2962 1064.5
ROUI10 117 98.1 21.4 16.1
SCR10 40.5 34.3 6.4 6.0
SCR12 141 136.0 14.6 14.1
SCRI15 1946 1008.3 257.7 72.5
SCR20 26,171 12,331.3 1929 455.9

do not have dense columns. This feature, together with the fact that the factoriza-
tion generates a large number of fill-in entries makes the Cholesky approach less
effective. That can be more easily observed as the size of the problems grows.

The PDS model problems do not generate dense normal equations matrices. On
the other hand, the Cholesky factorization can generate many fill-in entries. As the
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Fig. 1. Splitting approach (k) versus direct approach (O)—PDS model.

dimension of the problem increases, the splitting approach performs better compared
to the direct approach. Fig. 1 is a good illustration of it.

Another factor that helps the splitting preconditioner obtain good results for the
PDS model is that the number of LU factorizations is very small compared to the
number of iterations. Therefore, computing a solution for the linear systems in a
large number of iterations for these problems is inexpensive since no factorization
is computed. This fact also applies for problem DIFFICULT explaining the good
performance of the new approach even considering that the normal equations matrix
is sparse.

7. Conclusions

We have shown that from the point of view of designing preconditioners, it is bet-
ter to work with the augmented system instead of working with the normal equations.
Two important results support this statement. First, all preconditioners developed for
the normal equations system lead to an equivalent preconditioner for the augmented
system. However, the opposite statement is not true. Whole classes of precondition-
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ers for the augmented system can result in the same preconditioner for the normal
equations.

Based upon this result we designed a preconditioner for the augmented system.
This preconditioner reduces the system to positive definite matrices, and therefore
the conjugate gradient method can be applied, and the resulting iteration is quite
competitive with the normal equations approach.

An important advantage of the splitting preconditioner is that it becomes better
in some sense as the interior point method advances towards an optimal solution.
That is a very welcome characteristic since the linear system is known to be very ill
conditioned close to a solution, these systems are difficult to solve by iterative meth-
ods with most of the previously known preconditioners. Moreover, this new method
seems to be well suited for classes of problems where the Cholesky factorization has
a large amount of nonzero entries, even when the original normal equations matrix
is fairly sparse. However, an efficient implementation of the splitting preconditioner
is not trivial.
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