Math221: Matrix Computations Homework \#14, Due Dec. 8, 2008

- Let $A \in \mathbf{R}^{n \times n}$ be a square matrix. Let $H \in \mathbf{R}^{n \times n}$ be the upper Hessenberg matrix obtained from Hessenberg reduction on A. It is known that there exists an orthogonal matrix Q such that $Q^{T} A Q=H$. What is the first column of Q ?
- Let $A \in \mathbf{R}^{n \times n}$ be a square matrix. Let Q be orthogonal and H upper Hessenberg such that $Q^{T} A Q=H$. Let P be the Householder matrix, the first column of which is the same as that of Q. Define $\hat{A}=P^{T} A P$, and let \hat{H} be the upper Hessenberg matrix obtained from Hessenberg reduction on \hat{A}. What is the relationship between \hat{H} and H ?
- Problem 6.9.

