Math221 Midterm Solutions, 2007

1. On page 5 in the text, backward stability is defined as follows:

IF $\operatorname{alg}(x)$ IS OUR ALGORITHM FOR $f(x)$, INCLUDING THE EFFECTS OF ROUNDOFF, WE CALL $\operatorname{alg}(x)$ A backward stable algorithm FOR $f(x)$ IF FOR ALL x THERE IS A "SMALL" δx SUCH THAT $\operatorname{alg}(x)=f(x+\delta x)$. δx IS CALLED THE backward error. Informally, we say that we get the exact answer $(f(x+\delta x))$ FOR A SLIGHTLY WRONG PROBLEM $(x+\delta x)$.

Identify the x and $f(x)$ for

- systems of linear equations.

Solution: $A x=b$, where A and b are the input, the x in the definition, and $x=A^{-1} b$ is the $f(x)$, the output.

- Least Squares problems.

Solution: This problem is

$$
\min _{x}\|A x-b\|_{2},
$$

where A and b are the input, the x in the definition, and the solution to the normal equation

$$
A^{T} A x=A^{T} b
$$

is the $f(x)$, the output.

- QR factorization.

Solution: The QR factorization is

$$
A=Q R
$$

where Q is orthogonal and R is upper triangular. Here A is the input, the x in the definition, and Q and R are the output $f(x)$.

In the first two cases, also identify a backward stable algorithm for computing $f(x)$. In the third case, explain why a backward stable algorithm might NOT exist. We exclude overflow/underflow considerations.
Solution: GEPP is backward stable for solving linear systems of equations as long as the element growth factor is controled. QR factorization is a good method for solving both linear equations and least squares problems.
Computing a backward stable QR factorization would be very tricky. This is because Q is an orthogonal matrix. By definition, even the Q factor in the perturbed output $f(x+\delta x)$ must still be exactly orthogonal. It is unlikely any algorithm will be able to do so in general.
2. Let

$$
A=\left(\begin{array}{cc}
I & Z \\
0 & I
\end{array}\right),
$$

where $Z \in \mathbf{R}^{n \times n}$ and I is the identity matrix. Express the 2-norm condition number of A using the singular values of Z.
Solution: Let $Z=U \Sigma V^{T}$ be the SVD of Z, then

$$
A=\left(\begin{array}{cc}
U & 0 \\
0 & V
\end{array}\right)\left(\begin{array}{cc}
I & \Sigma \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
U^{T} & 0 \\
0 & V^{T}
\end{array}\right)
$$

Of the three matrices on the right hand side, only the middle matrix is not orthogonal, and its singular values are the singular values of A. Each diagonal entry σ of Σ induces a pair of singular values in the 2×2 matrix

$$
\left(\begin{array}{ll}
1 & \sigma \\
0 & 1
\end{array}\right) .
$$

These singular values are

$$
\sqrt{\frac{2+\sigma^{2} \pm \sigma \sqrt{\sigma^{2}+4}}{2}}
$$

The singular values of A are all these pairs of singular values. Hence the 2-norm condition number of A is

$$
\sqrt{\frac{2+\sigma_{\max }^{2}+\sigma_{\max } \sqrt{\sigma_{\max }^{2}+4}}{2+\sigma_{\min }^{2}+\sigma_{\min } \sqrt{\sigma_{\min }^{2}+4}}} .
$$

3. Let T be an $m \times m$ lower triangular matrix and b be an m-vector. Show how to solve the $m \times m$ linear system of equations $T x=b$ in about m^{2} flops.
Solution: Forward substitution.
4. Let $H \in \mathbf{R}^{5 \times 5}$ be a matrix of the form

$$
H=\left(\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
& x & x & x & x \\
& & x & x & x \\
& & & x & x
\end{array}\right),
$$

where all the x 's denote non-zero entries. Matrices with the non-zero pattern of H are called Hessenberg matrices. Show how to use 4 Givens rotations to QR factorize H.

Solution: A Givens rotation is of the form

$$
G=\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)
$$

where $c^{2}+s^{2}=1$. It is used to zero out a component in a 2 dimensional vector. We apply a Givens rotation to zero out the $(2,1)$ entry:

$$
G_{1} H=\left(\begin{array}{ccccc}
\mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
& \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\
& x & x & x & x \\
& & x & x & x \\
& & & x & x
\end{array}\right),
$$

where the \mathbf{x} entries represent entries that have been changed.
There are 4 subdiagonal entries in H. We use 4 Givens rotations, executed one by one, to zero out all of them.
5. Consider the following variant of the least squares problem:

$$
\min _{x}\left(\|A x-b\|_{2}^{2}+\rho^{2}\|x\|_{2}^{2}\right),
$$

where the matrix A, the vector b and scalar $\rho>0$ are given. Find the normal equation for this problem and develop a QR-type algorithm for solving the normal equation.

Solution: We let

$$
\widehat{A}=\binom{A}{\rho I} \quad \text { and } \quad \hat{b}=\binom{b}{0} .
$$

Then the given problem becomes

$$
\min _{x}\|\widehat{A} x-\widehat{b}\|_{2}^{2}
$$

to which the standard QR factorization method can be applied.

