1. On page 5 in the text, backward stability is defined as follows:

IF $\operatorname{alg}(x)$ is our algorithm for f(x), including the effects of round-OFF, we call $\operatorname{alg}(x)$ a backward stable algorithm for f(x) if for all x there is a "SMALL" δx such that $\operatorname{alg}(x) = f(x + \delta x)$. δx is called the backward error. Informally, we say that we get the exact answer $(f(x + \delta x))$ for a slightly wrong problem $(x + \delta x)$.

Identify the x and f(x) for

- systems of linear equations.
- Least Squares problems.
- QR factorization.

In the first two cases, also identify a backward stable algorithm for computing f(x). In the third case, explain why a backward stable algorithm might NOT exist. We exclude overflow/underflow considerations.

2. Let

$$A = \begin{pmatrix} I & Z \\ 0 & I \end{pmatrix},$$

where $Z \in \mathbf{R}^{n \times n}$ and I is the identity matrix. Express the 2-norm condition number of A using the singular values of Z.

3. Let T be an $m \times m$ lower triangular matrix and b be an m-vector. Show how to solve the $m \times m$ linear system of equations Tx = b in about m^2 flops.

4. Let $H \in \mathbf{R}^{5 \times 5}$ be a matrix of the form

where all the x's denote non-zero entries. Matrices with the non-zero pattern of H are called Hessenberg matrices. Show how to use 4 Givens rotations to QR factorize H. 5. Consider the following variant of the least squares problem:

$$\min_{x} \left(\|Ax - b\|_{2}^{2} + \rho^{2} \|x\|_{2}^{2} \right),$$

where the matrix A, the vector b and scalar $\rho > 0$ are given. Find the normal equation for this problem and develop a QR-type algorithm for solving the normal equation.