Math 221 Final Exam, Dec. 12, 2007

1. (20 Points) Let $A \in \mathbf{R}^{n \times n}$. Show that $\left\|A^{k}\right\| \leq\|A\|^{k}$ for all positive integers k and for any induced norm $\|\cdot\|$.
2. (20 Points) Assume that the matrix $A \in \mathbf{R}^{n \times n}$ is diagonalizable with real eigenvalues. In other words, there exists a diagonal matrix D and a non-singular matrix T, with $D, T \in$ $\mathbf{R}^{n \times n}$, such that $A=T D T^{-1}$. Show that
(a) The matrix $T D T^{T}$ is symmetric.
(b) There exist symmetric matrices $W, V \in \mathbf{R}^{n \times n}$, with W non-singular, so that $A=$ $V W^{-1}$.
3. (20 Points) Let $W \in \mathbf{R}^{m \times m}$ be a non-singular matrix and let $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^{m}$, with $n \leq m$. Consider the weighted least squares problem $\min _{x}\|W(A x-b)\|_{2}$.
(a) Write the normal equation for this problem.
(b) Sketch a backward stable algorithm for solving the problem. Count the number of flops up to the leading terms.
4. (20 Points) Let $A, Q \in \mathbf{R}^{n \times n}$ with $Q=\left(\begin{array}{lll}q_{1} & \cdots & q_{n}\end{array}\right)$ orthogonal. Suppose that

$$
\begin{equation*}
Q^{T} A Q=H \tag{1}
\end{equation*}
$$

is upper Hessenberg such that all subdiagonal entries of H are positive. The Implicit Q Theorem states that columns q_{2} through q_{n} are uniquely determined by q_{1}. Derive the Arnoldi algorithm from (1).
5. (20 Points) Use the SVD to show that if $A \in \mathbf{R}^{m \times n}$ with $m \geq n$, then there exists $Q \in \mathbf{R}^{m \times n}$ with orthornormal columns $\left(Q^{T} Q=I\right)$ and a positive semidefinite matrix $P \in \mathbf{R}^{n \times n}$ such that $A=Q P$.

