1. (20 Points) Let $A \in \mathbf{R}^{n \times n}$. Show that $||A^k|| \le ||A||^k$ for all positive integers k and for any induced norm $|| \cdot ||$.

- 2. (20 Points) Assume that the matrix $A \in \mathbf{R}^{n \times n}$ is diagonalizable with real eigenvalues. In other words, there exists a diagonal matrix D and a non-singular matrix T, with $D, T \in \mathbf{R}^{n \times n}$, such that $A = TDT^{-1}$. Show that
 - (a) The matrix TDT^T is symmetric.
 - (b) There exist symmetric matrices $W, V \in \mathbf{R}^{n \times n}$, with W non-singular, so that $A = VW^{-1}$.

- 3. (20 Points) Let $W \in \mathbf{R}^{m \times m}$ be a non-singular matrix and let $A \in \mathbf{R}^{m \times n}$ and $b \in \mathbf{R}^m$, with $n \leq m$. Consider the weighted least squares problem $\min_x ||W(Ax b)||_2$.
 - (a) Write the normal equation for this problem.
 - (b) Sketch a backward stable algorithm for solving the problem. Count the number of flops up to the leading terms.

4. (20 Points) Let $A, Q \in \mathbf{R}^{n \times n}$ with $Q = (q_1 \cdots q_n)$ orthogonal. Suppose that

$$Q^T A Q = H \tag{1}$$

is upper Hessenberg such that all subdiagonal entries of H are positive. The Implicit Q Theorem states that columns q_2 through q_n are uniquely determined by q_1 . Derive the Arnoldi algorithm from (1).

5. (20 Points) Use the SVD to show that if $A \in \mathbf{R}^{m \times n}$ with $m \ge n$, then there exists $Q \in \mathbf{R}^{m \times n}$ with orthornormal columns $(Q^T Q = I)$ and a positive semidefinite matrix $P \in \mathbf{R}^{n \times n}$ such that A = QP.