Prof. Ming Gu, 861 Evans, tel: 2-3145
Office Hours: TuWTh 12:00-1:30PM
Email: mgu@math.berkeley.edu http://www.math.berkeley.edu/~mgu/MA221

Math221: Matrix Computations Homework \#11 Solutions

- Solution to Problem 6.5: We can write

$$
A=X \Lambda_{A} X^{-1}, \quad B=Y \Lambda_{B} Y^{-1}
$$

By Lemma 6.3,

$$
\begin{aligned}
I \otimes A+B \otimes I & =I \otimes\left(X \Lambda_{A} X^{-1}\right)+\left(Y \Lambda_{B} Y^{-1}\right) \otimes I \\
& =\left(Y Y^{-1}\right) \otimes\left(X \Lambda_{A} X^{-1}\right)+\left(Y \Lambda_{B} Y^{-1}\right) \otimes\left(X X^{-1}\right) \\
& =(Y \otimes X)\left(I \otimes \Lambda_{A}+\Lambda_{B} \otimes I\right)\left(Y^{-1} \otimes X^{-1}\right) \\
& =(Y \otimes X)\left(I \otimes \Lambda_{A}+\Lambda_{B} \otimes I\right)(Y \otimes X)(Y \otimes X)^{-1}
\end{aligned}
$$

The matrix $I \otimes \Lambda_{A}+\Lambda_{B} \otimes I$ is a diagonal matrix, with its diagonal entries being $\alpha_{i}+\beta_{j}$ for $1 \leq i, j \leq n$.

The Sylvester equation $A X+X B^{T}=C$ can be equivalently written as

$$
(I \otimes A+B \otimes I) \operatorname{vec}(X)=\operatorname{vec}(C)
$$

This equation is solvable for any given C if and only if $I \otimes A+B \otimes I$ is non-singular. In other words, if and only if $\alpha_{i}+\beta_{j} \neq 0$ for all $1 \leq i, j \leq n$. Since B and B^{T} have the same set of eigenvalues, this is the same set of conditions for the non-singularity of the alternative Sylvester equation $A X+X B=C$.

