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Math221: Matrix Computations

Homework #10 Solutions

e Problem 5.13 Solution: The QR iteration takes the following form:

LetA():A,Z:O,

repeat
Ai —oill = QiR;;
A1 = RiQ; + 031
1 =1+ 1.

The shift o; in the QR iteration is chosen to be the (n,n) entries of A;. In other words,
o; = efAz-en, where e, € R" is the vector whose entries are zero everywhere except the last
entry, which is one.

Define Qg =1 and Q; = 9O, 1Q; for i =1,2,---. It follows that A; = QiTAQi. Further let ¢;
and @; be the last columns of @); and Q;, respectively. It is easy to see that ¢; = Q,;q;. With
this notation,

03 = €ZQ?AQi€n = @TA@-.
Let 7; be the (n,n) entry of R;. From the QR iteration, we have

g (Ai—oil) = qf (QiR;) = e[ R; = vie],
which implies that
di = i (Ai - Uz'f)_l €n = %’QiT (A - UJ)_I Qién.

Hence

Qigi = i (A — Uz‘f)_l Qitn.

In other words,

~ -1 ~
Giv1 =7 (A—ol) " @,
where 0; = ¢l Ag; and where ~; is a normalizing factor. This is clearly the Rayleigh quotient
iteration.
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o Let A = QAQ* be the eigendecomposition of A, with @ = [q1, -, ¢,], and let the initial
vector xg = q1 + g2. Show that RQI fails to converge in exact arithmetic. Run rayleigh.m
with this initial vector to see what it does in finite precision.

Solution: Let A; and Ay be the eigenvalues corresponding to ¢; and go. We assume Ay < Ag.
It follows that pg def p(xo, A) = (A + A2)/2. It follows that

JELC) R
9 \/§QI q2) -

quA—mn*mm%m:(

Hence

1
Iy = yo/Hyon = ﬁ (Q2 - Ch) .

With one more step of RQI, we would get

1

Ty = —= + = Xp.
2 \/§(Q2 Q) 0

Hence RQI stalls.
e Let B € R™" be an upper bidiagonal matrix. Find explicit formulas for its inverse.

e Generate upper bidiagonal matrices of various dimensions, and run matlab code BiSVD.m
(available on class website) to compute their smallest singular values. You should try dif-
ferent scalings on the diagonal entries so the smallest singular values can be really tiny
(107190 — 1079, for example).

To check that these are indeed very accurate singular values, we use the formula
1/Omax (B™) = 0win (B). (1)

The matlab svd function is backward stable. We generate B~! explicitly using the explicit
formulas. This way the largest singular value of B~! is computed to full machine preci-
sion. Compare 1/0 . (B™!) with the singular values computed using BiSVD.m to show that
BiSVD.m is highly accurate even for tiny singular values.

Solution: Let B = D + H, where D is a non-singular diagonal matrix and H is non-zero
only on its first super-diagonal. Define H = D~'H, which has the same non-zero pattern as
H. Since H™ = 0, it follows that

_ n—1 .
B =(I+H) D'=Y (-1)'H*D".
k=0
Let D = diag(ay, -+, a,) and
0 f
- 0 b
H = '
ﬁn—l
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Then H* is a matrix that is non-zero only on its k-th super-diagonal, whose entries are

i+k—1

II 65 i=1,---,n—k.
j=i
e Problem 5.28 Solution: Let A be an eigenvalue with eigenvector x # 0. Hence Az = A\x
and x*Axr = Az*z. Taking complex conjugate of the last equation, we have
\otr =¥ A'r = —z* Ax = —\z*x,

which leads to A = —\. Hence \ is pure imaginary. Furthermore, this implies that the real
part of every eigenvalue of I — A must be 1. Hence I — A does not have a zero eigenvalue,
which means I — A must be non-singular. Since

CC=T—-A)"U+A)VI-AT"T+A=(I+A"T-AT-A"I+A4)=1,

C is unitary.



