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Math221: Matrix Computations

Homework #10 Solutions

• Problem 5.13 Solution: The QR iteration takes the following form:

Let A0 = A, i = 0;

repeat

Ai − σiI = QiRi;

Ai+1 = RiQi + σiI;

i = i+ 1.

The shift σi in the QR iteration is chosen to be the (n, n) entries of Ai. In other words,
σi = eT

nAien, where en ∈ Rn is the vector whose entries are zero everywhere except the last
entry, which is one.

Define Q0 = I and Qi = Qi−1Qi for i = 1, 2, · · · . It follows that Ai = QT
i AQi. Further let qi

and q̂i be the last columns of Qi and Qi, respectively. It is easy to see that q̂i = Qiqi. With
this notation,

σi = eT
nQT

i AQien = q̂T
i Aq̂i.

Let γi be the (n, n) entry of Ri. From the QR iteration, we have

qT
i (Ai − σiI) = qT

i (QiRi) = eT
nRi = γie

T
n ,

which implies that

qi = γi (Ai − σiI)−1 en = γiQT
i (A− σiI)−1Qien.

Hence
Qiqi = γi (A− σiI)−1Qien.

In other words,
q̂i+1 = γi (A− σiI)−1 q̂i,

where σi = q̂T
i Aq̂i and where γi is a normalizing factor. This is clearly the Rayleigh quotient

iteration.
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• Let A = QΛQ∗ be the eigendecomposition of A, with Q = [q1, · · · , qn], and let the initial
vector x0 = q1 + q2. Show that RQI fails to converge in exact arithmetic. Run rayleigh.m

with this initial vector to see what it does in finite precision.

Solution: Let λ1 and λ2 be the eigenvalues corresponding to q1 and q2. We assume λ1 < λ2.

It follows that ρ0
def
= ρ(x0, A) = (λ1 + λ2)/2. It follows that

y0 = (A− ρ0I)−1 x0/‖x0‖2 =

(
λ1 − λ2

2

)−1
1√
2

(q1 − q2) .

Hence

x1 = y0/‖y0‖2 =
1√
2

(q2 − q1) .

With one more step of RQI, we would get

x2 =
1√
2

(q2 + q1) = x0.

Hence RQI stalls.

• Let B ∈ Rn×n be an upper bidiagonal matrix. Find explicit formulas for its inverse.

• Generate upper bidiagonal matrices of various dimensions, and run matlab code BiSVD.m

(available on class website) to compute their smallest singular values. You should try dif-
ferent scalings on the diagonal entries so the smallest singular values can be really tiny
(10−100 − 10−50, for example).

To check that these are indeed very accurate singular values, we use the formula

1/σmax

(
B−1

)
= σmin (B) . (1)

The matlab svd function is backward stable. We generate B−1 explicitly using the explicit
formulas. This way the largest singular value of B−1 is computed to full machine preci-
sion. Compare 1/σmax (B−1) with the singular values computed using BiSVD.m to show that
BiSVD.m is highly accurate even for tiny singular values.

Solution: Let B = D + H, where D is a non-singular diagonal matrix and H is non-zero
only on its first super-diagonal. Define Ĥ = D−1H, which has the same non-zero pattern as
H. Since Ĥn = 0, it follows that

B−1 =
(
I + Ĥ

)−1
D−1 =

n−1∑
k=0

(−1)kĤkD−1.

Let D = diag(α1, · · · , αn) and

Ĥ =


0 β1

0 β2
. . . . . .

βn−1

0

 .
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Then Ĥk is a matrix that is non-zero only on its k-th super-diagonal, whose entries are

i+k−1∏
j=i

βj, i = 1, · · · , n− k.

• Problem 5.28 Solution: Let λ be an eigenvalue with eigenvector x 6= 0. Hence Ax = λx
and x∗Ax = λx∗x. Taking complex conjugate of the last equation, we have

λ̄x∗x = x∗A∗x = −x∗Ax = −λx∗x,

which leads to λ̄ = −λ. Hence λ is pure imaginary. Furthermore, this implies that the real
part of every eigenvalue of I − A must be 1. Hence I − A does not have a zero eigenvalue,
which means I − A must be non-singular. Since

C∗C = (I − A∗)−1 (I + A∗) (I − A)−1 (I + A) = (I + A)−1 (I − A) (I − A)−1 (I + A) = I,

C is unitary.


