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Math221: Matrix Computations

Homework #8 Solutions

• Problem 4.6:

1. Let A = QAA
′Q∗A and B = QBB

′Q∗B be the Schur decompositions of A and B, respec-
tively. Both A′ and B′ are upper triangular and QA and QB are unitary. It follows
that

QAA
′Q∗AX −XQBB

′Q∗B = C,

and that
A′Y − Y B′ = C ′, (1)

where Y = Q∗AXQB and C ′ = Q∗ACQB. Once we have solved for Y , we can recover X
by computing X = QAY Q

∗
B.

2. Partition

A′ =
(
Ã a

α

)
, B′ =

(
B̃ b

β

)
and C ′ =

(
C̃ c1
c∗2 γ

)
and

Y =
(
Ỹ y1

y∗2 δ

)
.

It follows from (1) that

αy∗2 − y∗2B̃ = c∗2 (2)

(α− β) δ − y∗2b = γ (3)

Ãy1 + δa− Ỹ b− βy1 = c1 (4)

ÃỸ + ay∗2 − Ỹ B̃ = C̃. (5)

Equation (2) implies

y∗2
(
αI − B̃

)
= c∗2,

which has a unique solution for any c2 when all eigenvalues of B̃ differ from α. Having
computed y∗2, we can compute δ from equation (3) as

(α− β) δ = y∗2b+ γ.
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This equation has a unique solution when α differs from β. Overall, we can solve both
y2 and δ uniquely as long as α is not an eigenvalue of B′.

From equation (5), we can now proceed to recursively compute the lower triangular
part of Y from the following equation:

ÃỸ − Ỹ B̃ = C̃ − ay∗2.

As long as A′ and B′ do not share eigenvalues, we can proceed to uniquely determine
the lower triangular part of Y .

Having done so, we can now further determine the strictly upper triangular part of Y ,
one column at a time, from left to right. With an induction argument, assuming we
have determined all upper triangular components of Ỹ , so that all components of Ỹ
have been determined, we can now proceed to determine y1 from equation (4) as(

Ã− βI
)
y1 = c1 − δa+ Ỹ b.

This equation has a unique solution when A′ and B′ do not share a common eigenvalue.

To recap, we solve the lower triangular part of Y from right to left, one column at
a time, including the diagonals. Once this is done, we solve for the strictly upper
triangular part of Y from left to right, one column at a time. (Alternatively, we can
also solve for Y from top left to bottom right, one column and one row at a time.)

• Problem 4.7: Since S−1 =
(
I −R

I

)
, we have

S−1TS =
(
I −R

I

)(
A C

B

)(
I R

I

)
=
(
A C + AR−RB

B

)
.

Hence we can choose R such that

R B − A R = C.

In order for this equation to indeed have a solution, we require that A and B have no common
eigenvalues.

• Problem 4.8: Let X =
(
I −A

I

)
. Then X−1 =

(
I A

I

)
and

X
(
AB 0
B 0

)
X−1 =

(
0 0
B BA

)
.

Since eigenvalues of
(
AB A
B 0

)
are those of AB and 0’s, and eigenvalues of

(
0 0
B BA

)
are

those of BA and 0, and since these matrices are similar, it follows that both AB and BA
have the same set of non-zero eigenvalues.

• Problem 4.10:
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1. H = (A + A∗)/2 is Hermitian, whereas S = (A − A∗)/2 is skew-Hermitian, with
A = H + S. This decomposition is unique.

2. Let A = QUQ∗ be the Schur form for A, where Q is unitary and U upper triangular.
Then the eigenvalues of A are simply the diagonal entries of U . Let U = Ĥ + Ŝ, where
Ĥ Hermitian and Ŝ skew-Hermitian. It follows that the diagonal entries on the main
diagonal of Ĥ are the real parts of the eigenvalues of A. Consequently,∑

i

|R(λi)|2 ≤ ‖Ĥ‖2F .

Since
Ĥ = (U + U∗)/2 = (Q∗AQ+ (Q∗AQ)∗) /2 = Q∗HQ,

it follows that
‖Ĥ‖F = ‖H‖2F .

Hence ∑
i

|R(λi)|2 ≤ ‖H‖2F .

3. Continue the arguments above, since and the diagonal entries on the main diagonal of
Ŝ are the imaginary parts of the eigenvalues of A, and since ‖Ŝ‖F = ‖S‖F , we have∑

i

|I(λi)|2 ≤ ‖S‖2F .

4. Again let A = QUQ∗ be the Schur form for A. Then we have to prove that A is normal
if and only U is. So we have to prove that A is normal if and only if∑

i

|λi|2 = ‖U‖22.

On the other hand, since λi’s are the eigenvalues of A, they must be on the diagonal of
U . The last equation therefore implies that all off-diagonal entries of U must vanish.
Hence U is diagonal and hence A = QUQ∗ must be normal.


