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Math221: Matrix Computations

Homework #8 Solutions

e Problem 4.6:

1. Let A= QAA'Q% and B = QpB’'Q% be the Schur decompositions of A and B, respec-
tively. Both A’ and B’ are upper triangular and Q4 and Q) are unitary. It follows
that

QaA QX — XQpB'Qp = C,

and that

AY —-YB =(C', (1)
where Y = Q4 XQp and C" = Q% CQp. Once we have solved for YV, we can recover X
by computing X = QY Q%.

2. Partition i B b &
A’:( “), B’:( ) and 0’:<* Cl)
« B Gy

and -

It follows from (1) that

ays —yB = (2)
(a=PB)6—ysb = «v (3)

Ay +6a—Yb— By = ¢, (4)
AY +ay; —YB=_C. (5)

Equation (2) implies

Yy (a[ — B) = ¢,
which has a unique solution for any ¢, when all eigenvalues of B differ from «. Having
computed y5, we can compute § from equation (3) as

(= B)d =y3b+.
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This equation has a unique solution when « differs from 3. Overall, we can solve both
Y2 and ¢ uniquely as long as « is not an eigenvalue of B’.

From equation (5), we can now proceed to recursively compute the lower triangular
part of Y from the following equation:

AY —YB =C — ays.

As long as A" and B’ do not share eigenvalues, we can proceed to uniquely determine
the lower triangular part of Y.

Having done so, we can now further determine the strictly upper triangular part of Y,
one column at a time, from left to right. With an induction argument, assuming we
have determined all upper triangular components of Y, so that all components of ¥
have been determined, we can now proceed to determine y; from equation (4) as

(A= BI)y1 =1~ da+Yb.

This equation has a unique solution when A" and B’ do not share a common eigenvalue.

To recap, we solve the lower triangular part of Y from right to left, one column at
a time, including the diagonals. Once this is done, we solve for the strictly upper
triangular part of Y from left to right, one column at a time. (Alternatively, we can
also solve for Y from top left to bottom right, one column and one row at a time.)

e Problem 4.7: Since S7! = (I —]R>7 we have
1 (1 —R)(A C)([ R)_(A C+AR—RB)
s TS_< ; o 7= . .
Hence we can choose R such that
RB—-—AR=C.

In order for this equation to indeed have a solution, we require that A and B have no common
eigenvalues.

e Problem 4.8: Let X = (I _A). Then X1 = (I A) and

I i
AB 0\ w1 (0 0
X(5 o)X =5 pa):
Since eigenval f( B A) those of AB and 0's. and eigenval f(o 0)
mece elgenva ues o B 0 are ose O an S, an elgenva ues o B BA are

those of BA and 0, and since these matrices are similar, it follows that both AB and BA
have the same set of non-zero eigenvalues.

e Problem 4.10:
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= (A + A*)/2 is Hermitian, whereas S = (A — A*)/2 is skew-Hermitian, with
A = H + S. This decomposition is unique.

. Let A = QUQ" be the Schur form for A, where @ is unitary and U upper triangular.

Then the eigenvalues of A are simply the diagonal entries of U. Let U = H+ S, where
H Hermitian and S skew-Hermitian. It follows that the diagonal entries on the main
diagonal of H are the real parts of the eigenvalues of A. Consequently,

ZIR ) < |H|3.

Since
H=(U+U")/2=(Q"AQ+ (Q"AQ)") /2 = Q"HQ,
it follows that .
[HllF = [1H|7

Hence

Z\R OIF < [1H|F-

Continue the arguments above, since and the diagonal entries on the main diagonal of
S are the imaginary parts of the eigenvalues of A, and since ||S||F = ||S]|F, we have

ZII P < IISE-

Again let A = QUQ* be the Schur form for A. Then we have to prove that A is normal
if and only U is. So we have to prove that A is normal if and only if

S IN = U3

On the other hand, since \;’s are the eigenvalues of A, they must be on the diagonal of
U. The last equation therefore implies that all off-diagonal entries of U must vanish.
Hence U is diagonal and hence A = QUQ* must be normal.



