Prof. Ming Gu, 861 Evans, tel: 2-3145
Office Hours: TuWTh 12:00-1:30PM
Email: mgu@math.berkeley.edu http://www.math.berkeley.edu/~mgu/MA221

Math221: Matrix Computations Homework \#7 Solutions

- Let $A \in \mathbf{R}^{n \times n}$ be non-singular. The QR factorization with column pivoting gives

$$
A \Pi=Q R
$$

where Π is a permutation. Let D be the diagonal of R and $U=D^{-1} R$, so that U is an upper triangular matrix with unit diagonal entries. This leads to

$$
A \Pi=Q D U
$$

- Show that $\|U\|_{\max }=1$.

Solution: By definition of column pivoting, we have that $\left|R_{i, i}\right| \geq\left\|R_{i: n, j}\right\|_{2}$ for all i and all $j>i$. This implies that all diagonal entries of U are 1 and no off-diagonal entry of U can be bigger than 1 .

- Show that $\left\|U^{-1}\right\|_{\max } \leq 2^{n-1}$.

Solution: Let $W=U^{-1}$. We will use induction on n to show that the diagonal entries of W are all 1 and

$$
\begin{equation*}
\left|W_{i, j}\right| \leq 2^{j-i-1}, \quad \text { for all } \quad j>i \tag{1}
\end{equation*}
$$

This is obviously true for $n=1$ and $n=2$. Assuming this is also true for $n-1 \geq 2$. Partition

$$
U=\left(\begin{array}{cc}
\widehat{U} & u \\
& 1
\end{array}\right)
$$

Then

$$
W=\left(\begin{array}{cc}
\widehat{W} & -\widehat{W} u \\
1
\end{array}\right)
$$

where $\widehat{W}=\widehat{U}^{-1}$ is also upper triangular. By induction assumption, the diagonal entries of \widehat{W} are all 1 and

$$
\left|\widehat{W}_{i, j}\right| \leq 2^{j-i-1}, \quad \text { for all } \quad j>i .
$$

With this assumption, we see that all diagonal entries of W are 1 and all off-diagonal entries of W satisfy equation (1) except those in its last column.
Since $\|u\|_{\max } \leq 1$, it follows that the j-th entry of $\widehat{W} u$ is bounded in absolute value by

$$
1+\sum_{i=j+1}^{n-1} 2^{i-j-1}=2^{n-j-1}
$$

Hence equation (1) indeed holds for matrix dimension n.

- For different values of n and c, compute $\left\|U^{-1}\right\|_{\max }$ for the Kahan matrix (kahan.m at class website).
- Problem 4.2: For any square matrix A, let its Schur form be $A=Q T Q^{*}$, where T is upper triangular and Q is unitary. Since

$$
A A^{*}=Q\left(T T^{*}\right) Q^{*} \quad \text { and } \quad A^{*} A=Q\left(T^{*} T\right) Q^{*}
$$

it follows that A is normal if and only if T is normal.

- Problem 4.3: We have

$$
A x=\lambda x \quad \text { and } \quad y^{*} A=\mu y^{*}
$$

Hence

$$
\lambda y^{*} x=y^{*}(\lambda x)=y^{*} A x=\left(y^{*} A\right) x=\left(\mu y^{*}\right) x=\mu y^{*} x
$$

which implies $(\lambda-\mu) y^{*} x=0$, or $y^{*} x=0$.

- Problem 4.4:

1.

$$
f(A)=\sum_{i=-\infty}^{+\infty} a_{i} A^{i}=Q\left(\sum_{i=-\infty}^{+\infty} a_{i} T^{i}\right) Q^{*}=Q f(T) Q^{*}
$$

2. Since T is upper triangular, the (i, i) entry of T^{j} is $\left(T_{i, i}\right)^{j}$. Hence the (i, i) entry of $f(T)$ is $\sum_{j=-\infty}^{+\infty} a_{j}\left(T_{i, i}\right)^{j}=f\left(T_{i, i}\right)$.
3.

$$
T f(T)=T\left(\sum_{i=-\infty}^{+\infty} a_{i} T^{i}\right)=\left(\sum_{i=-\infty}^{+\infty} a_{i} T^{i}\right) T=f(T) T
$$

4. Partition

$$
T=\left(\begin{array}{cc}
\widehat{T} & t \\
& \tau
\end{array}\right), \quad \text { and } \quad f(T)=\left(\begin{array}{cc}
f(\widehat{T}) & F \\
& f(\tau)
\end{array}\right)
$$

The earlier equation becomes

$$
\left(\begin{array}{cc}
\widehat{T} & t \\
& \tau
\end{array}\right)\left(\begin{array}{cc}
f(\widehat{T}) & F \\
& f(\tau)
\end{array}\right)-\left(\begin{array}{cc}
f(\widehat{T}) & F \\
& f(\tau)
\end{array}\right)\left(\begin{array}{cc}
\widehat{T} & t \\
& \tau
\end{array}\right)=0
$$

which expands to

$$
\left(\begin{array}{cc}
\widehat{T} f(\widehat{T}) & \widehat{T} F+f(\tau) t \\
\tau f(\tau)
\end{array}\right)-\left(\begin{array}{cc}
f(\widehat{T}) \widehat{T} & f(\widehat{T}) t+\tau F \\
f(\tau) \tau
\end{array}\right)
$$

The (1,2) block of this equation yields

$$
\begin{equation*}
(\widehat{T}-\tau I) F=(f(\widehat{T})-f(\tau) I) t \tag{2}
\end{equation*}
$$

which can be used to solve for F given $f(\widehat{T})$.
This suggests an algorithm to solve for $f(T)$ as follows: We first compute all the diagonals of $f(T)$. We then apply equation (2) to every 2×2 block submatrix along the main diagonal to solve for all the entries in the first superdiagonal of $f(T)$. Similarly, we then apply equation (2) to every 3×3 block submatrix along the main diagonal to solve for all the entries in the second superdiagonal of $f(T)$, and so on. Mathematically, this procedure will always work since the coefficient matrix $\widehat{T}-\tau I$ is always non-singular given that eigenvalues of A are distinct.

