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Math221: Matrix Computations

Solutions to Homework #G6

Problem 3.8: P and () can never be equal. The determinent of a Householder reflection
matrix is always —1. On the other hand, since the determinent of a Givens rotation matrix
is always 1, the determinent of (), the product of n — 1 Givens rotations is, still 1.

Problems 3.12: Let

_ Ya 0\ 1 _ Yp 0) T
A_UA< . O)VA and B_UB( vV
be the full SVDs of A and B, respectively, meaning Uy, V4, Ug, Vg are all square orthogonal
matrices of the right dimensions. Here we have also partitioned the singular values so that
Y4 >0 and Xp > 0. Define and partition

—
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where the partitions are done according to the dimensions of ¥4 and ¥g. Then
- Ya 0\ (Xs 0) A
laxB-cle = 1(5" o)X (5 )~ Cle
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So to minimize ||[AXB — C||r is to solve ZAE(\MZB — CA’M = 0. This implies that every
minimizer satisfies
X171 - 2210171251.

The minimum norm one is the one with all other parts to be zero. Hence

“1A vl
Xo=Vy (EA 057123 8) Ul = AtcBt.
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e Problem 3.15: We will only do QR factorization in this solution. Let
AT=(@ @) (])
be the full QR factorization of AT, and let
P=(Q @) e = (3.

With this notation, we have
Ar —b=R"%, — 0.

To solve the LS problem is to solve RTZ; — b = 0. The minimum norm solution is
x
s=(Q Q)().
e Problem 3.18: Let

ct = (@1 Q2) (§>

be the QR factorization of C7, and let

F=(Q1 Qo) a— (”’fl)

X2

The constraint now becomes R’7Z; = d and hence 2; = R~7d.

Define
A(Qr Q2)=(A1 Ay).
We rewrite R
Az —b= (A Aﬂ(%)—b:Aﬁg—(b—Alel).

This reduces the constrained LS problem into an unconstrained probelm with coefficient ma-
trix Ay. Now let QR = A, be the QR factorization of Ay and solve Zy = R7'QT (b — A17,).
To recover x we compute

r=(@ @) (D).

e For any non-zero vector = (x1,--+,x,)T, the standard way to compute the Householder
transformation is to compute u = (x; — ¢, o3, -, x,)T with ¢ = —sign(z;)[|z|s and u =
u/||wl|2 so that

(I - QUUT) r=(c0,---,0)".

The special sign of ¢ ensures that u and u are computed to full relative accuracy.

However, the sign choice in ¢ is actually not necessary. Let ¢ = ||z||. Show that @, and
hence u, can still be computed to full relative accuracy with a computationally different
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but mathematically equivalent formula. Perform an error analysis to support your claim.
You can assume the square root function is always accurate to full relative accuracy. Write
a matlab code to demonstrate that the straightforward formula for computing @ can be
unstable and yours is always stable. The matlab code housetest.m on the class website
generates vectors that fail the straightforward formula.

Solution: If x; is non-positive, then the formula for computing % is completely stable. In
fact, both ¢ and x; — ¢ can be computed to high relative accuracy, and so can u.

When x; is positive, the picture changes. The rounding errors in computing ¢ could cause
very large relative errors in the computed x; — ¢. The trick to avoid this problem is to note

that ¢ = (/2% 4+ -+ + 22 so that

2 2 n 2
D ¥ Y

Iry —Cc= = — .
Ty +c T +c

Since z; is positive, every operation in computing x; — ¢ is now accurate to small relative
error.

Since we can compute u to component-wise full relative accuracy in both cases, we can do
the same on u. By Lemma 3.1 and Theorem 3.5, the procedure here is backward stable.

o — Letc?+s2=1andlet ¢ € R"! be a unit vector. Find vectors r,u,v € R" ! so that
the matrix
Q — ( c TT ) c Rnxn
" \sqg I—wT

is an orthogonal matrix.

Solution: We want

T T T
(C " T)(C ' T) =1 (1>
sq I —uv sq I —uv

In particular, we have

s2qq” + (I — uvT) ([ — uvT)T =1,

which leads to
wv? 4+ ou? — v ouu® = sqq’. (2)

Hence the expression on the left hand side must have rank 1. We claim that v and
v must be linearly dependent of each other. Otherwise, let [uv] = QR be the QR
factorization of [u,v]. Then R is non-singular, and

w? +ovu’ — vTvuu® = QR (? _;TU) RTQT

is a rank-2 matrix, a contradiction.
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Hence u and v are linearly dependent, and thus must be multiples of ¢ as well. Since
we are only concerned with the product uv?, we choose uv? = agq® for some constant
a. Equation (2) leads to the equation

20—’ =s*=1- ¢,

and o =1+ ec.

From equation (1), we also have
csqt 4+t (I — aqu) =0,
which means r must be a multiple of ¢. Let r = 3¢, we obtain

esq” + pq" (I - agq") =0,

which simplifies to
esq” + Bq” (1— ) =0,

Since @ = 1 =+ ¢, this relation leads to 3 = +s, where a and  should choose the same
+ or — sign. For simplicify, we choose @« =14 ¢ and ( = s.

— For any non-zero vector z, find a ) matrix of the form above such that Qz = (||x|2,0, - -, 0)T.

— Develop a QR factorization algorithm that is based on the () matrices, and show that

it is stable. Compare the cost of your algorithm with that based on Householder
transformations.
Solution: Let Qz = (||z|2,0,--,0)T. This implies z = Q7 (||x|2,0,---,0)T. Hence
all we have to do is to choose ¢, s, and ¢ so that the first column of Q7 is in the same
direction as x. This is similar to the Householder reflections in elimination. The cost of
multiplying @ or Q7 to a matrix is also similar to that of Householder reflections. With
these remarks, we do QR factorization using the existing QR procedure, replacing only
Householder reflections with our new orthogonal matrices.

— Correctly implement your algorithm in matlab.



