Prof. Ming Gu, 861 Evans, tel: 2-3145
Office Hours: TuWTh 12:00-1:30PM
Email: mgu@math.berkeley.edu http://www.math.berkeley.edu/~mgu/MA221

Math221: Matrix Computations Solutions to Homework \#6

- Problem 3.8: P and Q can never be equal. The determinent of a Householder reflection matrix is always -1 . On the other hand, since the determinent of a Givens rotation matrix is always 1 , the determinent of Q, the product of $n-1$ Givens rotations is, still 1 .
- Problems 3.12: Let

$$
A=U_{A}\left(\begin{array}{cc}
\Sigma_{A} & 0 \\
0 & 0
\end{array}\right) V_{A}^{T} \quad \text { and } \quad B=U_{B}\left(\begin{array}{cc}
\Sigma_{B} & 0 \\
0 & 0
\end{array}\right) V_{B}^{T}
$$

be the full SVDs of A and B, respectively, meaning $U_{A}, V_{A}, U_{B}, V_{B}$ are all square orthogonal matrices of the right dimensions. Here we have also partitioned the singular values so that $\Sigma_{A}>0$ and $\Sigma_{B}>0$. Define and partition

$$
\begin{aligned}
& \widehat{X}=V_{A}^{T} X U_{B}=\left(\begin{array}{ll}
\widehat{X}_{1,1} & \widehat{X}_{1,2} \\
\widehat{X}_{2,1} & \widehat{X}_{2,2}
\end{array}\right), \\
& \widehat{C}=U_{A}^{T} C V_{B}=\left(\begin{array}{ll}
\widehat{C}_{1,1} & \widehat{C}_{1,2} \\
\widehat{C}_{2,1} & \widehat{C}_{2,2}
\end{array}\right),
\end{aligned}
$$

where the partitions are done according to the dimensions of Σ_{A} and Σ_{B}. Then

$$
\begin{aligned}
\|A X B-C\|_{F} & =\left\|\left(\begin{array}{cc}
\Sigma_{A} & 0 \\
0 & 0
\end{array}\right) \widehat{X}\left(\begin{array}{cc}
\Sigma_{B} & 0 \\
0 & 0
\end{array}\right)-\widehat{C}\right\|_{F} \\
& =\left\|\left(\begin{array}{cc}
\Sigma_{A} \widehat{X}_{1,1} \Sigma_{B}-\widehat{C}_{1,1} & -\widehat{C}_{1,2} \\
-\widehat{C}_{2,1} & -\widehat{C}_{2,2}
\end{array}\right)\right\|_{2} .
\end{aligned}
$$

So to minimize $\|A X B-C\|_{F}$ is to solve $\Sigma_{A} \widehat{X}_{1,1} \Sigma_{B}-\widehat{C}_{1,1}=0$. This implies that every minimizer satisfies

$$
\widehat{X}_{1,1}=\Sigma_{A}^{-1} \widehat{C}_{1,1} \Sigma_{B}^{-1}
$$

The minimum norm one is the one with all other parts to be zero. Hence

$$
X_{0}=V_{A}\left(\begin{array}{cc}
\Sigma_{A}^{-1} \widehat{C}_{1,1} \Sigma_{B}^{-1} & 0 \\
0 & 0
\end{array}\right) U_{B}^{T}=A^{\dagger} C B^{\dagger} .
$$

- Problem 3.15: We will only do QR factorization in this solution. Let

$$
A^{T}=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R}{0}
$$

be the full QR factorization of A^{T}, and let

$$
\widehat{x}=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)^{T} x=\binom{\widehat{x}_{1}}{\widehat{x}_{2}} .
$$

With this notation, we have

$$
A x-b=R^{T} \widehat{x}_{1}-b
$$

To solve the LS problem is to solve $R^{T} \widehat{x}_{1}-b=0$. The minimum norm solution is

$$
x=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{\widehat{x}_{1}}{0} .
$$

- Problem 3.18: Let

$$
C^{T}=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{R}{0}
$$

be the QR factorization of C^{T}, and let

$$
\widehat{x}=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)^{T} x=\binom{\widehat{x}_{1}}{\widehat{x}_{2}} .
$$

The constraint now becomes $R^{T} \widehat{x}_{1}=d$ and hence $\widehat{x}_{1}=R^{-T} d$.
Define

$$
A\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)=\left(\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right) .
$$

We rewrite

$$
A x-b=\left(\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right)\binom{\widehat{x}_{1}}{\widehat{x}_{2}}-b=A_{2} \widehat{x}_{2}-\left(b-A_{1} \widehat{x}_{1}\right) .
$$

This reduces the constrained LS problem into an unconstrained probelm with coefficient ma$\operatorname{trix} A_{2}$. Now let $\widehat{Q} \widehat{R}=A_{2}$ be the QR factorization of A_{2} and solve $\widehat{x}_{2}=\widehat{R}^{-1} \widehat{Q}^{T}\left(b-A_{1} \widehat{x}_{1}\right)$. To recover x we compute

$$
x=\left(\begin{array}{ll}
Q_{1} & Q_{2}
\end{array}\right)\binom{\widehat{x}_{1}}{\widehat{x}_{2}} .
$$

- For any non-zero vector $x=\left(x_{1}, \cdots, x_{n}\right)^{T}$, the standard way to compute the Householder transformation is to compute $\widetilde{u}=\left(x_{1}-c, x_{2}, \cdots, x_{n}\right)^{T}$ with $c=-\operatorname{sign}\left(x_{1}\right)\|x\|_{2}$ and $u=$ $\widetilde{u} /\|\widetilde{u}\|_{2}$ so that

$$
\left(I-2 u u^{T}\right) x=(c, 0, \cdots, 0)^{T}
$$

The special sign of c ensures that \widetilde{u} and u are computed to full relative accuracy.
However, the sign choice in c is actually not necessary. Let $c=\|x\|_{2}$. Show that \widetilde{u}, and hence u, can still be computed to full relative accuracy with a computationally different
but mathematically equivalent formula. Perform an error analysis to support your claim. You can assume the square root function is always accurate to full relative accuracy. Write a matlab code to demonstrate that the straightforward formula for computing \widetilde{u} can be unstable and yours is always stable. The matlab code housetest.m on the class website generates vectors that fail the straightforward formula.
Solution: If x_{1} is non-positive, then the formula for computing \widetilde{u} is completely stable. In fact, both c and $x_{1}-c$ can be computed to high relative accuracy, and so can u.

When x_{1} is positive, the picture changes. The rounding errors in computing c could cause very large relative errors in the computed $x_{1}-c$. The trick to avoid this problem is to note that $c=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ so that

$$
x_{1}-c=\frac{x_{1}^{2}-c^{2}}{x_{1}+c}=-\frac{\sum_{k=2}^{n} x_{k}^{2}}{x_{1}+c} .
$$

Since x_{1} is positive, every operation in computing $x_{1}-c$ is now accurate to small relative error.

Since we can compute \widetilde{u} to component-wise full relative accuracy in both cases, we can do the same on u. By Lemma 3.1 and Theorem 3.5, the procedure here is backward stable.

- \quad Let $c^{2}+s^{2}=1$ and let $q \in \mathbf{R}^{n-1}$ be a unit vector. Find vectors $r, u, v \in \mathbf{R}^{n-1}$ so that the matrix

$$
Q=\left(\begin{array}{cc}
c & r^{T} \\
s q & I-u v^{T}
\end{array}\right) \in \mathbf{R}^{n \times n}
$$

is an orthogonal matrix.
Solution: We want

$$
\left(\begin{array}{cc}
c & r^{T} \tag{1}\\
s q & I-u v^{T}
\end{array}\right)\left(\begin{array}{cc}
c & r^{T} \\
s q & I-u v^{T}
\end{array}\right)^{T}=I
$$

In particular, we have

$$
s^{2} q q^{T}+\left(I-u v^{T}\right)\left(I-u v^{T}\right)^{T}=I
$$

which leads to

$$
\begin{equation*}
u v^{T}+v u^{T}-v^{T} v u u^{T}=s^{2} q q^{T} . \tag{2}
\end{equation*}
$$

Hence the expression on the left hand side must have rank 1 . We claim that u and v must be linearly dependent of each other. Otherwise, let $[u v]=Q R$ be the QR factorization of $[u, v]$. Then R is non-singular, and

$$
u v^{T}+v u^{T}-v^{T} v u u^{T}=Q R\left(\begin{array}{cc}
0 & 1 \\
1 & -v^{T} v
\end{array}\right) R^{T} Q^{T}
$$

is a rank-2 matrix, a contradiction.

Hence u and v are linearly dependent, and thus must be multiples of q as well. Since we are only concerned with the product $u v^{T}$, we choose $u v^{T}=\alpha q q^{T}$ for some constant α. Equation (2) leads to the equation

$$
2 \alpha-\alpha^{2}=s^{2}=1-c^{2}
$$

and $\alpha=1 \pm c$.
From equation (1), we also have

$$
c s q^{T}+r^{T}\left(I-\alpha q q^{T}\right)=0
$$

which means r must be a multiple of q. Let $r=\beta q$, we obtain

$$
c s q^{T}+\beta q^{T}\left(I-\alpha q q^{T}\right)=0
$$

which simplifies to

$$
c s q^{T}+\beta q^{T}(1-\alpha)=0
$$

Since $\alpha=1 \pm c$, this relation leads to $\beta= \pm s$, where α and β should choose the same + or - sign. For simplicify, we choose $\alpha=1+c$ and $\beta=s$.

- For any non-zero vector x, find a Q matrix of the form above such that $Q x=\left(\|x\|_{2}, 0, \cdots, 0\right)^{T}$.
- Develop a QR factorization algorithm that is based on the Q matrices, and show that it is stable. Compare the cost of your algorithm with that based on Householder transformations.
Solution: Let $Q x=\left(\|x\|_{2}, 0, \cdots, 0\right)^{T}$. This implies $x=Q^{T}\left(\|x\|_{2}, 0, \cdots, 0\right)^{T}$. Hence all we have to do is to choose c, s, and q so that the first column of Q^{T} is in the same direction as x. This is similar to the Householder reflections in elimination. The cost of multiplying Q or Q^{T} to a matrix is also similar to that of Householder reflections. With these remarks, we do QR factorization using the existing QR procedure, replacing only Householder reflections with our new orthogonal matrices.
- Correctly implement your algorithm in matlab.

