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Math221: Matrix Computations

Solutions to Homework #6

• Problem 3.8: P and Q can never be equal. The determinent of a Householder reflection
matrix is always −1. On the other hand, since the determinent of a Givens rotation matrix
is always 1, the determinent of Q, the product of n− 1 Givens rotations is, still 1.

• Problems 3.12: Let

A = UA

(
ΣA 0
0 0

)
V T

A and B = UB

(
ΣB 0
0 0

)
V T

B

be the full SVDs of A and B, respectively, meaning UA, VA, UB, VB are all square orthogonal
matrices of the right dimensions. Here we have also partitioned the singular values so that
ΣA > 0 and ΣB > 0. Define and partition

X̂ = V T
A XUB =

(
X̂1,1 X̂1,2

X̂2,1 X̂2,2

)
,

Ĉ = UT
ACVB =

(
Ĉ1,1 Ĉ1,2

Ĉ2,1 Ĉ2,2

)
,

where the partitions are done according to the dimensions of ΣA and ΣB. Then

‖AXB − C‖F = ‖
(

ΣA 0
0 0

)
X̂
(

ΣB 0
0 0

)
− Ĉ‖F

=
∥∥∥∥(ΣAX̂1,1ΣB − Ĉ1,1 −Ĉ1,2

−Ĉ2,1 −Ĉ2,2

)∥∥∥∥
2

.

So to minimize ‖AXB − C‖F is to solve ΣAX̂1,1ΣB − Ĉ1,1 = 0. This implies that every
minimizer satisfies

X̂1,1 = Σ−1
A Ĉ1,1Σ

−1
B .

The minimum norm one is the one with all other parts to be zero. Hence

X0 = VA

(
Σ−1

A Ĉ1,1Σ
−1
B 0

0 0

)
UT

B = A†CB†.
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• Problem 3.15: We will only do QR factorization in this solution. Let

AT = (Q1 Q2 )
(
R
0

)

be the full QR factorization of AT , and let

x̂ = (Q1 Q2 )T x =
(
x̂1

x̂2

)
.

With this notation, we have
Ax− b = RT x̂1 − b.

To solve the LS problem is to solve RT x̂1 − b = 0. The minimum norm solution is

x = (Q1 Q2 )
(
x̂1

0

)
.

• Problem 3.18: Let

CT = (Q1 Q2 )
(
R
0

)
be the QR factorization of CT , and let

x̂ = (Q1 Q2 )T x =
(
x̂1

x̂2

)
.

The constraint now becomes RT x̂1 = d and hence x̂1 = R−Td.

Define
A (Q1 Q2 ) = (A1 A2 ) .

We rewrite

Ax− b = (A1 A2 )
(
x̂1

x̂2

)
− b = A2x̂2 − (b− A1x̂1) .

This reduces the constrained LS problem into an unconstrained probelm with coefficient ma-
trix A2. Now let Q̂R̂ = A2 be the QR factorization of A2 and solve x̂2 = R̂−1Q̂T (b− A1x̂1).
To recover x we compute

x = (Q1 Q2 )
(
x̂1

x̂2

)
.

• For any non-zero vector x = (x1, · · · , xn)T , the standard way to compute the Householder
transformation is to compute ũ = (x1 − c, x2, · · · , xn)T with c = −sign(x1)‖x‖2 and u =
ũ/‖ũ‖2 so that (

I − 2uuT
)
x = (c, 0, · · · , 0)T .

The special sign of c ensures that ũ and u are computed to full relative accuracy.

However, the sign choice in c is actually not necessary. Let c = ‖x‖2. Show that ũ, and
hence u, can still be computed to full relative accuracy with a computationally different
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but mathematically equivalent formula. Perform an error analysis to support your claim.
You can assume the square root function is always accurate to full relative accuracy. Write
a matlab code to demonstrate that the straightforward formula for computing ũ can be
unstable and yours is always stable. The matlab code housetest.m on the class website
generates vectors that fail the straightforward formula.

Solution: If x1 is non-positive, then the formula for computing ũ is completely stable. In
fact, both c and x1 − c can be computed to high relative accuracy, and so can u.

When x1 is positive, the picture changes. The rounding errors in computing c could cause
very large relative errors in the computed x1 − c. The trick to avoid this problem is to note

that c =
√
x2

1 + · · ·+ x2
n so that

x1 − c =
x2

1 − c2

x1 + c
= −

∑n
k=2 x

2
k

x1 + c
.

Since x1 is positive, every operation in computing x1 − c is now accurate to small relative
error.

Since we can compute ũ to component-wise full relative accuracy in both cases, we can do
the same on u. By Lemma 3.1 and Theorem 3.5, the procedure here is backward stable.

• – Let c2 + s2 = 1 and let q ∈ Rn−1 be a unit vector. Find vectors r, u, v ∈ Rn−1 so that
the matrix

Q =
(
c rT

sq I − uvT

)
∈ Rn×n

is an orthogonal matrix.

Solution: We want (
c rT

sq I − uvT

)(
c rT

sq I − uvT

)T

= I. (1)

In particular, we have

s2qqT +
(
I − uvT

) (
I − uvT

)T
= I,

which leads to
uvT + vuT − vTvuuT = s2qqT . (2)

Hence the expression on the left hand side must have rank 1. We claim that u and
v must be linearly dependent of each other. Otherwise, let [uv] = QR be the QR
factorization of [u, v]. Then R is non-singular, and

uvT + vuT − vTvuuT = QR
(

0 1
1 −vTv

)
RTQT

is a rank-2 matrix, a contradiction.
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Hence u and v are linearly dependent, and thus must be multiples of q as well. Since
we are only concerned with the product uvT , we choose uvT = αqqT for some constant
α. Equation (2) leads to the equation

2α− α2 = s2 = 1− c2,

and α = 1± c.
From equation (1), we also have

csqT + rT
(
I − αqqT

)
= 0,

which means r must be a multiple of q. Let r = βq, we obtain

csqT + βqT
(
I − αqqT

)
= 0,

which simplifies to
csqT + βqT (1− α) = 0,

Since α = 1± c, this relation leads to β = ±s, where α and β should choose the same
+ or − sign. For simplicify, we choose α = 1 + c and β = s.

– For any non-zero vector x, find aQmatrix of the form above such thatQx = (‖x‖2, 0, · · · , 0)T .

– Develop a QR factorization algorithm that is based on the Q matrices, and show that
it is stable. Compare the cost of your algorithm with that based on Householder
transformations.

Solution: Let Qx = (‖x‖2, 0, · · · , 0)T . This implies x = QT (‖x‖2, 0, · · · , 0)T . Hence
all we have to do is to choose c, s, and q so that the first column of QT is in the same
direction as x. This is similar to the Householder reflections in elimination. The cost of
multiplying Q or QT to a matrix is also similar to that of Householder reflections. With
these remarks, we do QR factorization using the existing QR procedure, replacing only
Householder reflections with our new orthogonal matrices.

– Correctly implement your algorithm in matlab.


