Prof. Ming Gu, 861 Evans, tel: 2-3145
Office Hours: TuWTh 12:00-1:30PM
Email: mgu@math.berkeley.edu http://www.math.berkeley.edu/~mgu/MA221

Math221: Matrix Computations Homework \#6, Due Oct. 11, 2007

- Problems 3.8, 3.12, 3.15, 3.16, 3.18.
- For any non-zero vector $x=\left(x_{1}, \cdots, x_{n}\right)^{T}$, the standard way to compute the Householder transformation is to compute $\widetilde{u}=\left(x_{1}-c, x_{2}, \cdots, x_{n}\right)^{T}$ with $c=-\boldsymbol{\operatorname { s i g n }}\left(x_{1}\right)\|x\|_{2}$ and $u=$ $\widetilde{u} /\|\widetilde{u}\|_{2}$ so that

$$
\left(I-2 u u^{T}\right) x=(c, 0, \cdots, 0)^{T} .
$$

The special sign of c ensures that \widetilde{u} and u are computed to full relative accuracy.
However, the sign choice in c is actually not necessary. Let $c=\|x\|_{2}$. Show that \widetilde{u}, and hence u, can still be computed to full relative accuracy with a computationally different but mathematically equivalent formula. Perform an error analysis to support your claim. You can assume the square root function is always accurate to full relative accuracy. Write a matlab code to demonstrate that the straightforward formula for computing \widetilde{u} can be unstable and yours is always stable. The matlab code housetest.m on the class website generates vectors that fail the straightforward formula.

- \quad Let $c^{2}+s^{2}=1$ and let $q \in \mathbf{R}^{n-1}$ be a unit vector. Find vectors $r, u, v \in \mathbf{R}^{n-1}$ so that the matrix

$$
Q=\left(\begin{array}{cc}
c & r^{T} \\
s q & I-u v^{T}
\end{array}\right) \in \mathbf{R}^{n \times n}
$$

is an orthogonal matrix.

- For any non-zero vector x, find a Q matrix of the form above such that $Q x=\left(\|x\|_{2}, 0, \cdots, 0\right)^{T}$.
- Develop a QR factorization algorithm that is based on the Q matrices, and show that it is stable. Compare the cost of your algorithm with that based on Householder transformations.
- Correctly implement your algorithm in matlab.

