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Math221: Matrix Computations

Selected Solutions to Homework #5

• Problem 3.3:

– The system (
I A

AT 0

) (
r
x

)
=

(
b
0

)
(1)

is equivalent to
r + Ax = b , AT r = 0,

which is equivalent to AT (Ax− b) = 0.

– We let A = U
(

Σ
0

)
V T be the SVD of A, where U ∈ Rm×m, and Σ and V ∈ Rn×n.

Then (
I A

AT 0

)
=

(
U

V

)  I 0 Σ
0 I 0
Σ 0 0

 (
U

V

)T

. (2)

Hence 1 is a singular value of the coefficient matrix with multiplicty m − n. In ad-
dition, let σk be any singular value of A. Equation (2) suggests that each σk leads
to two singular values of the coefficient matrix of (1), namely, the two singular val-

ues of the matrix
(

1 σk

σk 0

)
, which are

(√
1 + σ2

k ± 1
)
/2. The largest singular value is(√

1 + σ2
max + 1

)
/2, whereas the smallest singular value is min

(
1,

(√
1 + σ2

min − 1
)

/2
)
.

The condition number is the ratio(√
1 + σ2

max + 1
)
/2

min
(
1,

(√
1 + σ2

min − 1
)

/2
) .
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– Since (
I A

AT 0

)
=

(
I 0

AT I

) (
I A
0 −AT A

)
.

Hence

(
I A

AT 0

)−1

=
(

I A
0 −AT A

)−1 (
I 0

AT I

)−1

=

 I A
(
AT A

)−1

0 −
(
AT A

)−1

 (
I 0

−AT I

)

=

 I − A
(
AT A

)−1
AT A

(
AT A

)−1(
AT A

)−1
AT −

(
AT A

)−1

 .

The (2, 1) block is the solution operator for the least squares problem.

– As the least squares problem is equivalent to the linear system of equations (1), we can
apply the iterative refinement techniques for linear equations to (1) in order to solve
the least squares problem.

There are two key points: extra precision residual calculations and solution of (1) given
QR factorization.

∗ Extra precision residual calculations: Let
(

r
x

)
be the current solution to (1), we

first compute the new residual as(
u
v

)
=

(
b
0

)
−

(
I A

AT 0

) (
r
x

)
=

(
b− r − Ax
−AT r

)
.

For extra accuracy, we need to do the whole computation in doubled precision.

∗ Solving equation (1) with right hand side
(

u
v

)
(

I A
AT 0

)
d =

(
u
v

)
.

The key observation is that we can develop an orthogonal factorization of
(

I A
AT 0

)
given the full QR factorization of A = Q

(
R
0

)
, where Q ∈ Rm×m is orthogonal

and R ∈ Rn×n is upper triangular:

(
I A

AT 0

)
=

(
Q

In

)  0 0 In

0 Im−n 0
In 0 0


 RT 0 0

0 Im−n 0
In 0 R

 (
QT

In

)
.

On the right hand side, the first and the last matrices are orthogonal matrices,
the inverses of which are obvious; and the second matrix is a permutation. Hence
inversions with these matrices are simple. The third matrix is a 3×3 block lower tri-
angular matrix, with each of its diagonal blocks being either identity or triangular.
Hence the inversion involving this matrix is also trivial.
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As in linear systems iterative refinement, the new iteration is
(

r
x

)
− d.

For more details, see the Tech Report by Demmel, Hida, Li, and Riedy at
http://techreports.lib.berkeley.edu/accessPages/EECS-2007-77.html

• Problem 3.4: To derive the equation, we let C = LLT be the Cholesky factorization of C
(it need not be computed.) Then

‖Ax− b‖C = ‖LT (Ax− b) ‖2.

This is a regular LS problem with coefficient matrix LT A and right hand side LT b. Hence
the normal equation is (

LT A
)T (

LT Ax− LT b
)

= 0,

or
AT C (Ax− b) = 0.

This can be rewritten as (
I LT A

AT L 0

) (
r
x

)
=

(
LT b
0

)
,

or (
C−1 A
AT 0

) (
r
x

)
=

(
b
0

)
.

• Let S be a subspace spanned by a set of basis vectors v1, · · · , vk. Let A = LLT be the
Cholesky factorization of A. Now let QR = LT (v1, · · · , vk) be the QR factorization and
Q̂ = L−T Q. It follows that Q̂R = (v1, · · · , vk). This means columns of Q̂ are a basis for S
as well. But Q̂T AQ̂ = QT Q = I. Hence Q̂ is an A-orthogonal basis.


