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Math221: Matrix Computations
Homework #4 Selected Solutions

e 2.7: Since A is nonsingular, all diagonal entries of D must be non-zero. Define U = D M7,
it follows from Theorem 2.4 that all leading principal submatrices of A are non-singular and
the LU factorization of A uniquely exists as A = LU, with U defined as above. On the
other hand, since A is symmetric, A = AT = M (DLT> is another LU factorization for A.

Because of uniqueness, we must have L = M.

e 2.16: We assume that a BLAS-2 level Cholesky factorization routine Chol2 exists. The
following algorithm is a BLAS-3 version of Cholesky factorization algorithm, assuming lower
triangular storage:

for j =1 ton step b

Ajijv-1jg+o-1 = dSYTR (Ajijp-1j50-1, Ajigrv-1,15-1)
Ajjro-1ji+b-1 = Chol2 (Ajjyp1jj+b-1)-
Ajtbmjjrb-1 = dgemm (Aj+b:n,j:j+b—1v Ajbn, 11, A}?j—i-b—l,l:j—l) :
Ajrom,gjro—1 = AtTsm (A jijro—15 Ajijrb—1,5+6-1)-

endfor

In this algorithm, dsyrk (X,Y") is the BLAS routine for symmetric rank k& update:
X=X-YxYT

which is only carried out on the lower triangular part of X; dgemm (X,Y,7) is the BLAS
matrix-matrix multiplication routine

X=X_-Y=*Z
and dtrsm (Y, X) is the BLAS routine for block forward substitution:

Y=Y X7,
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where X is assumed to be lower triangular and only its lower triangular part will be accessed
inside dtrsm. On output, the lower triangular part of A is the Cholesky factor L.

The correctness of this algorithm can be proved with the following 3 x 3 block Cholesky

factorization:
L L T Ay A, A
1,1 1,1 1,1 1,2 1,3
Loy Lop | Lag  Loo = | A1 Az Ass
Ly Lso L33 Ly L3y Lss As1 Az Asg

In these equations, we will identify A, with the j-th block Aj.;i4—1 :j+s—1. The function
calls to dsyrk and Chol2 correspond to the equation at the (2,2) block entry:

T T
L2,2L272 = A2,2 - L2,1L2717

and the function calls to dgemm and dtrsm correspond to the equation at the (3,2) block
entry:
L3’2L§2 — A3’2 - L3,1Lg,l‘

e Hager’s condition estimator: In exact arithmatic and for any n > 1 in the counter
example, hager’s condition estimator should always think of vector x = (1,---,1)% /n as the
optimal 1-norm vector and output ||Bz|; as its l-norm estimate, regardless the value of
scl. This changes in finite arithmatic. For very large values of scl, computations in hager’s
condition estimator are dominated by round-off errors. This could (and does) cause hager’s
condition estimator to search for better directions in the “wrong” places. Paradoxically,
this allows hager’s condition estimator to find far better 1-norm estimates for the counter
example.



