Prof. Ming Gu, 861 Evans, tel: 2-3145
Office Hours: TuWTh 12:00-1:30PM
Email: mgu@math.berkeley.edu
http://www.math.berkeley.edu/~mgu/MA221

Math221: Matrix Computations Homework \#3 Solutions

- 2.13 (3): Define $y_{0}=c$ and

$$
y_{k+1}=y_{k}-A^{-1}\left(B y_{k}-c\right), \quad k=0,1,2, \cdots .
$$

Then

$$
y_{k+1}-B^{-1} c=\left(I-A^{-1} B\right)\left(y_{k}-B^{-1} c\right) .
$$

Hence

$$
\left\|y_{k+1}-B^{-1} c\right\| \leq\left\|A^{-1}\right\|\|A-B\|\left\|y_{k}-B^{-1} c\right\| .
$$

For $\|A-B\|$ sufficiently small, $\left\|A^{-1}\right\|\|A-B\|<1$ and hence the limit of the sequence $\left\{y_{k}\right\}$ is $B^{-1} c$.

- 2.18: We will assume that all the leading principal submatrices of A are non-singular. If this is not the case, a simple continuity argument would make up for the gap left by this assumption.
Assume that we have performed k steps of Gaussian elimination, so that

$$
A=\left(\begin{array}{ll}
L_{11} & \\
L_{21} & I
\end{array}\right)\left(\begin{array}{cc}
U_{11} & U_{12} \\
& \hat{S}
\end{array}\right)
$$

where \hat{S} is the matrix that overwrites A_{22}.
On the other hand, direct block elimination also gives

$$
A=\left(\begin{array}{cc}
I & \\
A_{2,1} A_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A_{11} & A_{12} \\
& S
\end{array}\right) .
$$

Replacing A_{11} by its LU factorization $A_{11}=L_{11} U_{11}$, and by the uniqueness of the LU factorization, we can rewrite the above equation as

$$
A=\left(\begin{array}{ll}
L_{11} & \\
L_{21} & I
\end{array}\right)\left(\begin{array}{cc}
U_{11} & U_{12} \\
& \hat{S}
\end{array}\right)
$$

Hence $\hat{S}=S$.

- Problems 2.20:
- (a): Compute GEPP $A=P L U$. Solving $A^{k} x=b$ then involves k permutations as well as k forward and backward substitutions. Total cost: $2 / 3 n^{3}+k n^{2}+O\left(n^{2}\right)$.
- (b): Compute GEPP $A=P L U$, and solve for $A^{-1} b$.
- (c): Compute GEPP $A=P L U$. Solving $A X=B$ then involves m permutations as well as m forward and backward substitutions. Total cost: $2 / 3 n^{3}+m n^{2}+O\left(n^{2}\right)$.

