Prof. Ming Gu, 861 Evans, tel: 2-3145
Office Hours: TuWTh 12:00-1:30PM
Email: mgu@math.berkeley.edu http://www.math.berkeley.edu/~mgu/MA221

Math221: Matrix Computations Homework \#2 Solutions

- 2.3: We need relevent vectors in equation (2.1) to have the same direction in order for (2.3) to be an equation. Hence we let

$$
A^{-1} \delta b=\alpha \delta x, \quad A^{-1} \delta A \hat{x}=-\beta \delta x
$$

where α and β are scalars to be determined. This leads to

$$
\delta b=\alpha A \delta x \quad \text { and } \quad \delta A \hat{x}=-\beta A \delta x .
$$

With the trick in the proof of Theorem 2.1, we conclude that the minimun 2-norm solution for δA from the above equation is

$$
\begin{equation*}
\delta A=-\frac{\beta A \delta x \hat{x}^{T}}{\hat{x}^{T} \hat{x}} . \tag{1}
\end{equation*}
$$

With these choices, the right hand side of inequality (2.3) becomes $(|\alpha|+|\beta|)\left\|A^{-1}\right\|_{2}\|A \delta x\|_{2}$, whereas the right hand side of (2.1) becomes $(\alpha+\beta) \delta x$. It is obvious that for (2.3) to be an equation, we must first set $\alpha \geq 0, \beta \geq 0$ and $\alpha+\beta=1$. With these conditions, the equation

$$
\begin{equation*}
(A+\delta A) \hat{x}=b+\delta b \tag{2}
\end{equation*}
$$

holds for any $\hat{x}=x+\delta x$ as long as $\hat{x} \neq 0$. Hence we can choose \hat{x} in anyway we wish, as long as $\|\delta x\|_{2}$ is sufficiently small.
With the choice of α and β, the right hand side of inequality (2.3) has become $\left\|A^{-1}\right\|_{2}\|A \delta x\|_{2}$. Let

$$
A \delta x=\gamma u, \quad \text { or } \quad \delta x=\gamma A^{-1} u
$$

where $\gamma \geq 0$ is a scalar to be determined, and u is a unit vector such that $\left\|A^{-1}\right\|_{2}=\left\|A^{-1} u\right\|_{2}$. For any δx in the above form, equation (2) is satisfied and (2.2) becomes an exact equation. In the following, we have to further specify γ, with given values of $\|\delta A\|_{2}$ and $\|\delta b\|_{2}$, which are assumed to be sufficiently small.

In fact, with our choice of δx, we have

$$
\delta b=\alpha \gamma u \quad \text { and } \quad \delta A=-\frac{\beta \gamma u \hat{x}^{T}}{\hat{x}^{T} \hat{x}}
$$

Taking norms on both equations, we have

$$
\alpha \gamma=\|\delta b\|_{2} \quad \text { and } \quad \beta \gamma=\|\delta A\|_{2}\|\hat{x}\|_{2} .
$$

Together with $\alpha+\beta=1$, we have

$$
\alpha=\frac{\|\delta b\|_{2}}{\gamma}, \quad \beta=\frac{\|\delta A\|_{2}\|\hat{x}\|_{2}}{\gamma}
$$

where

$$
\begin{equation*}
\gamma=\|\delta b\|_{2}+\|\delta A\|_{2}\|\hat{x}\|_{2}=\|\delta b\|_{2}+\|\delta A\|_{2}\left\|x+\gamma A^{-1} u\right\|_{2} \tag{3}
\end{equation*}
$$

which is a non-linear equation in γ. For the above choices to make sense, we now must show that this equation does have a solution.
One way to show that this equation has indeed a solution is to use fixed-point iteration. Define $\gamma_{0}=\|\delta b\|_{2}+\|\delta A\|_{2}\|x\|_{2}$ and

$$
\gamma_{k+1}=\|\delta b\|_{2}+\|\delta A\|_{2}\left\|x+\gamma_{k} A^{-1} u\right\|_{2}, \quad k=0,1,2, \cdots
$$

One can show that for all $k>1$,

$$
\begin{aligned}
0 \leq \gamma_{k} & \leq \frac{\|\delta b\|_{2}+\|\delta A\|_{2}\|x\|_{2}}{1-\|\delta A\|_{2}\left\|A^{-1}\right\|_{2}} \\
\left|\gamma_{k+1}-\gamma_{k}\right| & \leq\left|\gamma_{k}-\gamma_{k-1}\right|\|\delta A\|_{2}\left\|A^{-1}\right\|_{2}
\end{aligned}
$$

Hence the γ sequence must be convergent provided that $\|\delta A\|_{2}\left\|A^{-1}\right\|_{2}<1$, which is true since $\|\delta A\|_{2}$ is assumed to be sufficiently small. The limit of this sequence is the solution of the above non-linear equation.

