Prof. Ming Gu, 861 Evans, tel: 2-3145
Office Hours: TuWTh 12:00-1:30PM
Email: mgu@math.berkeley.edu
http://www.math.berkeley.edu/~mgu/MA221

Math221: Matrix Computations Selected Solutions to Homework \#1, 2007

- Problem 1.6:

$$
\begin{aligned}
\left\|E\left(I-\frac{s s^{T}}{s^{T} s}\right)\right\|_{F}^{2} & =\operatorname{tr}\left(\left(E\left(I-\frac{s s^{T}}{s^{T} s}\right)\right)\left(E\left(I-\frac{s s^{T}}{s^{T} s}\right)\right)^{T}\right) \\
& =\operatorname{tr}\left(\left(E\left(I-\frac{s s^{T}}{s^{T} s}\right)\right) E^{T}\right) \\
& =\operatorname{tr}\left(E E^{T}\right)-\operatorname{tr}\left(\frac{E s(E s)^{T}}{s^{T} s}\right)=\|E\|_{F}^{2}-\left(\frac{\|E s\|_{2}^{2}}{s^{T} s}\right) .
\end{aligned}
$$

- Problem 1.9: We will only consider the computations with tiny $x>0$. Let ϵ be the machine precision and let $x=(k+f) \epsilon$, where k is an integer satisfying $10>k \geq 0$ and f is the fraction with $1>f \geq 0$. In all cases, we need to compute $d=1+x$. We assume that $\mathbf{f l}(d)$ is obtained via rounding to the nearest. This implies that $\mathbf{f}(d)=1+k \epsilon$ if $f<1 / 2$ and $\mathbf{f l}(d)=1+(k+1) \epsilon$ otherwise. This discontinuity in floating point computation of $1+x$ is the cause of the large errors in left plots. On the right plots, since $d=1+x$ has already been computed and is stored as $\mathbf{f}(d)$, both $\log (\mathbf{f l}(d))$ and $\mathbf{f}(d)-1$ can be computed highly accurately with respect to $\mathbf{f l}(d)$.
- overflow/underflow protection in quadroot.m: On the class website, there is a modified version of quadroot.m as well as a paper on solving for quadratic roots by George Forsythe.

