## Math170: Mathematical Methods for Optimization Term Project II

In this project we solve the 1 -norm regression problem:

$$
\begin{equation*}
\min _{x}\|A x-b\|_{1} . \tag{1}
\end{equation*}
$$

In this problem, the matrix $A \in \mathbf{R}^{n \times m}$ and vector $b \in \mathbf{R}^{n}$ are given, with $n>m$. Our job is to find the optimal solution vector $x \in \mathbf{R}^{m}$ that minimizes the 1-norm $\|A x-b\|_{1}$. For any given vector $y=\left(y_{1}, \cdots, y_{n}\right)^{T}$, its 1 -norm is defined as

$$
\|y\|_{1}=\sum_{j=1}^{n}\left|y_{j}\right| .
$$

The problem (1) can be recast as a linear program as

$$
\begin{array}{ll}
\min _{x, u} & e^{T} u \\
\text { s.t. } & -u \leq A x-b \leq u,
\end{array}
$$

where $e=(1, \cdots, 1)^{T} \in \mathbf{R}^{n}$. This linear program, in turn, has a dual

$$
\begin{array}{ll}
\max _{u} & -b^{T} y \\
\text { s.t. } & A^{T} y=0, \\
& |y| \leq e .
\end{array}
$$

While problem (1) is equivalent to a linear program, it is typically much more efficient to solve it with a specialized simplex-type method. Below we discuss such a method, under the Non-degeneracy assumptions:

- The matrix $A(B,:)$ is invertible for every index set $B \subset\{1, \cdots, n\}$ with exactly $m$ indexes.
- There does not exist an index set $B$ with more than $m$ indexes such that $A(B,:) x=b(B)$.

Under these assumptions, there exists a unique index set $B_{\text {opt }} \subset\{1, \cdots, n\}$ with $m$ indexes such that $x_{\mathbf{o p t}}=A\left(B_{\mathbf{o p t}},:\right)^{-1} b\left(B_{\mathbf{o p t}}\right)$ solves the problem (1).

To describe an algorithm for solving problem (1), we start with any given index set $B \subset$ $\{1, \cdots, n\}$ with $m$ indexes. Let $B^{c}=\{1, \cdots, n\} \backslash B$ be the complement set of $B$. Choosing $x=A(B,:)^{-1} b(B)$, we reach objective value $\left\|A\left(B^{c},:\right) x-b\left(B^{c}\right)\right\|_{1}$ in problem (1). Below we exlpain how to update $B$ in a fashion similar to the simplex method to reach a lower objective value in problem (1). Just like simplex method, we then repeat this procedure until we eventually reach the optimal index set $B_{\text {opt }}$ and therefore the optimal solution $x_{\text {opt }}$.

Define

$$
x=A(B,:)^{-1} b(B) \quad \text { and } \quad h=A x-b .
$$

It follows that $h\left(B^{c}\right)=A\left(B^{c},:\right) x-b\left(B^{c}\right)$. By the non-degeneracy assumptions none of the components in $h\left(B^{c}\right)$ is exactly zero. Now define $y \in \mathbf{R}^{n}$ as

$$
\begin{aligned}
y\left(B^{c}\right) & =\operatorname{sgn}\left(h\left(B^{c}\right)\right) \\
y(B) & =-A(B,:)^{-T} A\left(B^{c},:\right)^{T} y\left(B^{c}\right)
\end{aligned}
$$

where sgn is the sign function, so $y\left(B^{c}\right)$ contains the signs of the $h\left(B^{c}\right)$ components. The components of $\left|y\left(B^{c}\right)\right|$ are all 1 .

If all components of $|y(B)|$ are less than or equal to 1 , then $y$ is a feasible solution to the dual problem, and by the equilibrium conditions $x$ and $y$ are optimal solutions to problem (1) and the dual, respectively.

If, on the other hand, some components of $|y(B)|$ are greater than 1 , then $y$ is not dual feasible, and now we proceed to reduce the objective value in problem (1) as follows.

Choose an index $s \in B$ such that $\left|y_{s}\right|>1$. Define

$$
\begin{aligned}
t\left(B^{c}\right) & =-\left(\operatorname{sgn}\left(y_{s}\right)\right)\left(y\left(B^{c}\right)\right) \cdot *\left(A\left(B^{c},:\right) A(B,:)^{-1} e_{j}\right), \\
r & =\underset{j}{\operatorname{argmin}}\left\{\frac{\left|h_{j}\right|}{t_{j}}, \quad \mid j \in B^{c} \quad \text { and } \quad t_{j}>0,\right\}
\end{aligned}
$$

where $e_{j}$ is the vector which is 0 everywhere except the $j$-th entry, which is 1 ; and where $j$ is chosen so that $s$ is the $j$-th entry in $B$. In other words, $A(B,:)^{-1} e_{s}$ is the $s$-th column of $A(B,:)^{-1}$. Then the new index set is

$$
\widehat{B}=B \backslash\{s\} \cup\{r\} .
$$

The new solution $\widehat{x}=A(\widehat{B},:)^{-1} b(\widehat{B})$ will lead to a reduced objective value in problem (1).
Our job in this project is to develop the above idea into a simplex-type algorithm for solving problem (1) under the non-degeneracy assumptions, based on the revised simplex tableau on $M=A(B,:)$ and $y(B)$. Note that the Phase I calculations for this problem consists of picking up any initial index set $B$ with $m$ indexes and computing $M^{-1}=A(B,:)^{-1}$ and $A(B,:)^{-1} b(B)$.

Your program should read $A$ and $b$ from an input file called infile.txt. The first line of infile.txt looks like
n m
followed by $n \times m$ lines that look like
i $j$ aij
and the last $n$ lines of infile.txt look like
i bi
Your program should also report its results on an output file called outfile.txt:

- Failure: Your code had failed without producing any meaningful result. Report in which phase does the code fail and whether this is due to degeneracy or unknown problem.
- Success: Your code has come to a successful stop. Report the optimal primal and dual solutions and the optimal objective value.

Email your code to the instructor by 23:59PM, Dec. 3, 2015.

