Prof. Ming Gu, 861 Evans, tel: 2-3145
Email: mgu@math.berkeley.edu
http://www.math.berkeley.edu/~mgu/MA170

Math170: Mathematical Methods for Optimization Final

This is a closed book, closed notes exam. You need to justify every one of your answers. Completely correct answers given without justification will receive little credit. Do as much as you can. Partial solutions will get partial credit. Look over the whole exam to find problems that you can do quickly. You need not simplify your answers unless you are specifically asked to do so.

Problem	Maximum Score	Your Score
1	2	
2	14	
3	14	
4	14	
5	14	
6	14	
7	14	
8	100	
Total		

Your Name: \qquad
1.

Your SID:
2. Let A be a skew-symmetric matrix: $A=-A^{T}$. Consider the linear program

$$
\begin{aligned}
& \max b^{T} x \\
& \text { s.t. } \quad A x \geq b, \\
& x \geq 0
\end{aligned}
$$

Show that the dual of this linear program can be expressed in exactly the same form.
3. You are the manager of a large company where you face the decision of selecting the right projects to maximize the total returns. There are n possible projects $P_{k}, k=1, \cdots, n$. Each project P_{k} runs for 3 years and has an overall return of c_{k} dollars. The financial constraints are that in year t there are only a total of f_{t} dollars available for these projects, whereas project P_{k} requires at least $\alpha_{k, t}$ dollars (for $t=1,2,3$ and $k=1, \cdots, n$.) Formulate this problem as an integer program. Hint: Define variables x_{k} so that $x_{k}=1$ means selecting P_{k} and $x_{k}=0$ means not selecting P_{k}. Formulate your integer program in terms of these variables.
4. Let S be any non-empty set in \mathbf{R}^{n}. Let C consist of all convex combinations

$$
\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}, \quad \text { with } \quad \theta_{i} \geq 0, \quad \sum_{i} \theta_{i}=1, x_{i} \in S
$$

Show that C is convex.
5. Draw the feasible solutions x

$$
3 x_{1}+x_{2} \geq 6, \quad x_{1} \geq 0, x_{2} \geq 0
$$

Suppose the composite cost is

$$
C x=\binom{5 x_{1}+x_{2}}{x_{1}+2 x_{2}} .
$$

Find all the efficient points x.
6. - State the zero-sum, two-person game.

- State the zero-sum, two-person symmetric game.
- Show that the value of the zero-sum, two-person symmetric game is zero.

7. The transportation problem in canonical form takes the form

$$
\begin{aligned}
& \min \sum_{i, j} c_{i, j} x_{i, j}, \\
& \text { s.t. } \quad \sum_{j} x_{i, j}=s_{i}, \quad i=1, \cdots, m, \\
& \quad \sum_{i} x_{i, j}=d_{j}, \quad j=1, \cdots, n, \\
& \quad x_{i, j} \geq 0 .
\end{aligned}
$$

- Under what conditions is this problem feasible?
- Assume the problem is feasible. Show that its constraints are redundant.

8. For any vector $u=\left(u_{1}, \cdots, u_{n}\right)^{T}$, define $\|u\|_{1}=\left|u_{1}\right|+\cdots\left|u_{n}\right|$. Consider the problem

$$
\begin{aligned}
& \min _{x}\|M x-g\|_{1} \\
& \text { s.t. } \quad A x=b, \quad x \geq 0 .
\end{aligned}
$$

Rewrite this problem as a linear program.

- Consider constrainted least squares problem

$$
\begin{aligned}
& \min _{x}\|M x-g\|^{2} \\
& \text { s.t. } \quad A x=b, \quad x \geq 0 .
\end{aligned}
$$

Rewrite this problem as a quadratic program. Find necessary conditions for optimality.

