Prof. Ming Gu, 861 Evans, tel: 2-3145
Office Hours: MWF 1:30-3:00PM
Email: mgu@math.berkeley.edu http://www.math.berkeley.edu/~mgu/MA128ASpring2017

Math128A: Numerical Analysis
 Programming Assignment \#1 Due Feb. 22, 2017

Consider the quartic equation

$$
\begin{equation*}
x^{4}+a x^{3}+b x^{2}+c x-1=0, \tag{1}
\end{equation*}
$$

where a, b, and c are real input coefficients. Develop a matlab program to find all roots of equation (1) using the methods discussed in class. Your program can not use the matlab built-in functions fzero, roots, eig, and eigs.

You should turn in a .m file quarticxxx.m which contains a matlab function of the form
function [rts] = quarticxxx(C)
where xxx is your student id, $C=(a, b, c)$ is the input vector of coefficients, and rts is the vector of roots;

Your program will be stress-tested against typical and pathological quartic equations:

1. (40 points) equations with random C;
2. (30 points) equations with very large C; or
3. (30 points) equations with double roots or nearly double roots; or

You will receive partial credit for each correct root (accurate to within a relative error of at most 10^{-5}, as compared to the roots function in matlab) receive additional credit.

Your program will receive 0 points if the strings fzero, roots or eig (all lower case) show up anywhere in your .m file.

Email your .m file to your GSI by 11:59PM, Feb. 22, 2017.

