Matlab Primer

About 261,000 results (0.32 seconds)

MATLAB Primer - MathWorks

https://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf $~$
A description for this result is not available because of this site's robots.txt Learn more

MATLAB Primer, 8e - MATLAB \& Simulink - MathWorks
https://www.mathworks.com/support/books/book52873.html *
MATLAB Primer, covering the significant new features of MATLAB. This pocket book serves as a resource for students and engineers requiring a high-level ...

Matlab Primer - UCSD Mathematics
math.ucsd.edu/~driver/21d-s99/matlab-primer.html • by K Sigmon - Cited by 143 - Related articles
MATLAB Primer Second Edition. Kermit Sigmon Department of Mathematics University of Florida. Department of Mathematics $=$ University of Florida ...
${ }^{\text {[PDFI }}$ MATLAB Primer - Department of Mathematics www.math.toronto.edu/mpugh/primer.pdf *
The Third Edition of the MATLAB Primer is based on version 4.0/4.1 of MATLAB. ... serv@math.ufl.edu containing the single line send matlab/primer.tex.
${ }^{[P D F I}$ MATLAB Primer - Yale Image Processing and Analysis Group
ipagwww.med.yale.edu/~staib/beng445/primer.pdf v
by K Sigmon - 1989 - Cited by 24 - Related articles
The MATLAB Primer may be distributed as desired subject to the following con- ... MATLAB is an interactive, matrix-based system for scientific and engineering ...

See results about

MATLAB Primer (Book by Kermit Sigmon)
Originally published: 1993
Author: Kermit Sigmon

MATLAB Primer, Eighth Edition (Book by Timothy A. Davis) Originally published: December 29, 2004
Author: Timothy A. Davis

Math128A algorithms vs. General Purpose algorithms

For any vector $\mathbf{x} \in \mathbf{R}^{n}$, compute its norm

$$
\|\mathbf{x}\|_{2}=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{\frac{1}{2}}=\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{\frac{1}{2}}
$$

- INPUT: n, x_{1}, \cdots, x_{n}.
- OUTPUT: Norm.
- Step 1: Set SUM $=0$.
- Step 2: For $k=1, \cdots, n$ set $\mathbf{S U M}=\mathbf{S U M}+x_{k} * x_{k}$.
- Step 3: Set Norm $=\sqrt{\text { SUM }}$.
- Step 4: Output Norm. STOP.

Math128A algorithms vs. General Purpose algorithms

```
$ m=10;
* % = (in)';
```



```
> for k=1m
```



```
and
# Nmam = gqut(gum);
```



```
1.9621e+0. 0,0000e+00
```

Math128A algorithms vs. General Purpose algorithms

```
% mi(%)
```



```
% SIM = %i
% tor mim
```



```
0N
```



```
    In: D.0wthe+to
." |
```


Bisection Method

- Given continuous function $f(x)$ on the interval $[a, b]$ with $f(a) \cdot f(b)<0$, there must be a root in (a, b).
- To find a root: set $\left[a_{1}, b_{1}\right]=[a, b]$.
- set $p_{1}=\frac{a_{1}+b_{1}}{2}$ and compute $f\left(p_{1}\right)$.
- if $f\left(p_{1}\right)=0$, then quit with root p_{1} (MUST BE VERY LUCKy.)
- if $f\left(a_{1}\right) \cdot f\left(p_{1}\right)<0$, then set $\left[a_{2}, b_{2}\right]=\left[a_{1}, p_{1}\right]$,
- otherwise $\left(f\left(p_{1}\right) \cdot f\left(b_{1}\right)<0\right)$ set $\left[a_{2}, b_{2}\right]=\left[p_{1}, b_{1}\right]$,
- repeat with $p_{2}=\frac{a_{2}+b_{2}}{2}$.

Bisection Method

Naive Bisection Method

```
% Bisection Method
%Input: f(x) continuous on [a, b]
*Output: p in (a, b) so f(p) = 0.
fa=f(a);
fb}=f(b)
repeat
    c = (a+b)/2;
    fc=f(c);
        p = c;
        return;
    end
    if (fcc*fa<0)
        b = c;
    else
    a = c;
end
```

```
function [x, out] = bisect(FunFcnIn, Intv, params)
TOL = params.tol;
NO = params.MaxIt;
[FunFCn,msg] = fcnchk(FunFCnIn, D);
if ~isempty(msg)
        error('InvalidFuN',msg) ;
end
a llintv-a;
if (fa*fb >0)
    error('Initial Interval may not contain root'.msg):
end
if a>=b
    error(*a must be smaller than b*,msg):
end
It = 0;
out.x =[a;b];
out.f=[FunFcn(a);FunFcn(b)];
while (It <= NO)
    c=(a+b)/2;
    out.x = [out.x;c];
    out.f=[out.f;FunFCn(c)];
    fc=sign(FunFCn(C)):
    if (fC==0)
        x = c;
        out.flg=0;
        out.it = It;
        return;
    end
    if (fc * fa< < )
        b}=c
    else
        a}=c
    end
    if (abs(b-a)<=TOL)
        x=(a+b)/2;
        out.flg=0;
        out.it = It;
        return:
    end
    It = It + 1;
end
out.figg=1;
out.it = NO;
x=(a+b)/2;
```

Theorem 2.1 Suppose that $f \in C[a, b]$ and $f(a) \cdot f(b)<0$. The Bisection method generates a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ approximating a zero p of f with

$$
\left|p_{n}-p\right| \leq \frac{b-a}{2^{n}}, \quad \text { when } \quad n \geq 1
$$

Proof of Thm 2.1

Assume that $f\left(p_{n}\right) \neq 0$ for all n.

- By construction

$$
a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq \cdots \leq \cdots \leq b_{n} \leq \cdots \leq b_{2} \leq b_{1}
$$

Thus sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ monotonically converge to limits $a_{\infty} \leq b_{\infty}$, respectively.

- Since $f\left(a_{n}\right) \cdot f\left(b_{n}\right)<0$ for all n, it follows that $f\left(a_{\infty}\right) \cdot f\left(b_{\infty}\right) \leq 0$, and thus a root $p \in\left[a_{\infty}, b_{\infty}\right] \subset\left[a_{n}, b_{n}\right]$ exists.
- Since $p_{n}=\frac{a_{n}+b_{n}}{2}$, it follows that $\left|p_{n}-p\right| \leq \frac{b_{n}-a_{n}}{2}$.
- By construction

$$
b_{n}-a_{n}=\frac{b_{n-1}-a_{n-1}}{2}=\frac{b_{n-2}-a_{n-2}}{2^{2}}=\cdots=\frac{b_{1}-a_{1}}{2^{n-1}}=\frac{b-a}{2^{n-1}} .
$$

- Put together,

$$
\left|p_{n}-p\right| \leq \frac{b-a}{2^{n}}
$$

- In fact, $a_{\infty}=b_{\infty}=p$.

Example Function with Root

Fixed Point Iteration

The number p is a fixed point for a given function g if $g(p)=p$.

- Given a root-inding problem $f(p)=0$, we can define functions g with a fixed point at pin a number of wass, for example, as

$$
g(x)=x-f(x) \text { or as } \quad g(x)=x+3 f(x) \text {. }
$$

- Conversely, if the function g has a ixxed point at p, then the function defined by

$$
f(x)=x-g(x)
$$

has a zero atp.

Fixed Point Example

Fixed Point Theorem (I)

Theorem 2.3
(i) If $g \in C[a, b]$ and $g(x) \in[a, b]$ for all $x \in[a, b]$, then g has at least one fixed point in $[a, b]$.
(ii) If, in addition, $g^{\prime}(x)$ exists on (a, b) and a positive constant $k<1$ exists with

$$
\left|g^{\prime}(x)\right| \leq k, \quad \text { for all } x \in(a, b)
$$

then there is exactly one fixed point in $[a, b]$. (See Figure 2.4.)

Proof of Thm 2.3

- If $g(a)=a$ or $g(b)=b$, then g has a fixed point at an endpoint.
- Otherwise, $g(a)>a$ and $g(b)<b$. The function $h(x)=g(x)-x$ is continuous on $[a, b]$, with

$$
h(a)=g(a)-a>0 \quad \text { and } \quad h(b)=g(b)-b<0 .
$$

- This implies that there exists $p \in(a, b), h(p)=0$.
- $g(p)-p=0$, or $p=g(p)$.

If $\left|g^{\prime}(x)\right| \leq k<1$ for all x in (a, b), and p and q are two distinct fixed points in $[a, b]$. Then a number ξ exists

$$
\frac{g(p)-g(q)}{p-q}=g^{\prime}(\xi)<1
$$

So

$$
1=\frac{p-q}{p-q}=\frac{g(p)-g(q)}{p-q}=g^{\prime}(\xi)<1
$$

This contradiction implies uniqueness of fixed point.

Fixed Point Iteration

Given initial approximation p_{0}, define Fixed Point Iteration

$$
p_{n}=g\left(p_{n-1}\right), \quad n=1,2, \cdots,
$$

If iteration converges to p, then

$$
p=\lim _{n \rightarrow \infty} p_{n}=\lim _{n \rightarrow \infty} g\left(p_{n-1}\right)=g(p)
$$

Fixed Point Theorem (II)

Theorem 2.4 (Fixed-Point Theorem)

Let $g \in C[a, b]$ be such that $g(x) \in[a, b]$, for all x in $[a, b]$. Suppose, in addition, that g^{\prime} exists on (a, b) and that a constant $0<k<1$ exists with

$$
\left|g^{\prime}(x)\right| \leq k, \quad \text { for all } x \in(a, b)
$$

Then for any number p_{0} in $[a, b]$, the sequence defined by

$$
p_{n}=g\left(p_{n-1}\right), \quad n \geq 1
$$

converges to the unique fixed point p in $[a, b]$.

Fixed Point Example $x-x^{2}=0$: no convergence

$$
\begin{aligned}
g(x)= & x^{2} \in[1, \infty] \text { for } x \in[1, \infty], \\
\left|g^{\prime}(x)\right| & \text { unbounded in }[1, \infty] .
\end{aligned}
$$

$\gg n=200 ;$
$\gg \mathrm{x}=\operatorname{zeros}(\mathrm{n}, 1) ;$
$\gg x(1)=2$;
3 for k=2:n
$\mathrm{x}(\mathrm{k})=\mathrm{x}(\mathrm{k}-1) \mathrm{x}(\mathrm{k}-1) ;$
end
$\gg \operatorname{disp}([x(n)])$
Inf

Fixed Point Example $x-\sin (x)=0$: slow convergence

$$
\begin{aligned}
g(x) & =\sin (x) \in[-1,1] \quad \text { for } \quad x \in[-1,1] \\
\left|g^{\prime}(x)\right| & \leq 1 \in[-1,1]
\end{aligned}
$$

$$
\hbar x=\operatorname{sem}(\pi, 1)
$$

$$
3 x(y) .4
$$

$$
y \text { to } \operatorname{sen}
$$

$$
x(x)=\sin (x)(x) \cdot d)
$$

${ }_{0}{ }^{[1}$
\% gexilyy

Fixed Point Example $x-\sin (x)=0$: slow convergence

$$
\begin{aligned}
g(x) & =\sin (x) \in[-1,1] \quad \text { for } \quad x \in[-1,1], \\
\left|g^{\prime}(x)\right| & \leq 1 \in[-1,1] .
\end{aligned}
$$

Fixed Point Iteration, $x_{k+1}=\sin \left(x_{k}\right)$

Fixed Point Example $x-\log \left(2+2 x^{2}\right)=0$: normal convergence

$$
\begin{aligned}
g(x) & =\log \left(2+2 x^{2}\right) \in[2,3] \text { for } x \in[2,3], \\
\left|g^{\prime}(x)\right| & \leq \frac{4}{5} \in[2,3] .
\end{aligned}
$$

Fixed Point Example $x-(1-\cos (x))=0$: fast convergence

$$
\begin{aligned}
g(x) & =1-\cos (x) \in[-1,1] \quad \text { for } x \in[-1,1], \\
\left|g^{\prime}(x)\right| & \approx \text { with. }
\end{aligned}
$$

b

$$
\Rightarrow a=20
$$

$$
\Rightarrow x=2 e r o s\left(\pi_{1}\right) \mid i
$$

$$
\Rightarrow x(1)=1
$$

$$
\Rightarrow \text { for } k=2 \mathrm{~A}
$$

$$
x(x)=1-\cos (x \mid x-1) \mid i
$$

and

$$
\Rightarrow \operatorname{semilog}\left(\operatorname{das}(X), \quad{ }^{2},-'\right)
$$

wroning axis omitting non-positive data in log plot

Fixed Point Example $x-(1-\cos (x))=0$: fast convergence

$$
\begin{aligned}
g(x) & =1-\cos (x) \in[-1,1] \quad \text { for } \quad x \in[-1,1], \\
\left|g^{\prime}(x)\right| & \leq 1 \in[-1,1] .
\end{aligned}
$$

Fixed Point Iteration, $\mathrm{x}_{\mathrm{k}+1}=1-\cos \left(\mathrm{x}_{\mathrm{k}}\right)$

Fixed Point Theorem (II)

Theorem 2.4 (Fixed-Point Theorem)

Let $g \in C[a, b]$ be such that $g(x) \in[a, b]$, for all x in $[a, b]$. Suppose, in addition, that g^{\prime} exists on (a, b) and that a constant $0<k<1$ exists with

$$
\left|g^{\prime}(x)\right| \leq k, \quad \text { for all } x \in(a, b)
$$

Then for any number p_{0} in $[a, b]$, the sequence defined by

$$
p_{n}=g\left(p_{n-1}\right), \quad n \geq 1
$$

converges to the unique fixed point p in $[a, b]$.

Proof of Thm 2.4

- A unique fixed point $p \in[a, b]$ exists.

$$
\left|p_{n}-p\right|=\left|g\left(p_{n-1}\right)-g(p)\right|=\left|g^{\prime}\left(\xi_{n}\right)\left(p_{n-1}-p\right)\right| \leq k\left|p_{n-1}-p\right|
$$

$$
\left|p_{n}-p\right| \leq k\left|p_{n-1}-p\right| \leq k^{2}\left|p_{n-2}-p\right| \leq \cdots \leq k^{n}\left|p_{0}-p\right| .
$$

- Since

$$
\lim _{n \rightarrow \infty} k^{n}=0
$$

$\left\{p_{n}\right\}_{n=0}^{\infty}$ converges to p.

Newton's Method for solving $f(p)=0$

- Suppose that $f \in C^{2}[a, b]$.
- Let $p_{0} \in[a, b]$ be an approximation to p with

$$
f^{\prime}\left(p_{0}\right) \neq 0, \quad \text { and } \quad\left|p-p_{0}\right| \quad \text { "small" }
$$

- Taylor expand $f(x)$ at $x=p$:

$$
0=f(p)=f\left(p_{0}\right)+\left(p-p_{0}\right) f^{\prime}\left(p_{0}\right)+\frac{\left(p-p_{0}\right)^{2}}{2} f^{\prime \prime}(\xi(p))
$$

"Solve" for p :

$$
\begin{aligned}
p & =p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)}-\frac{\left(p-p_{0}\right)^{2}}{2 f^{\prime}\left(p_{0}\right)} f^{\prime \prime}(\xi(p)) \\
& \approx p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)} \stackrel{\text { def }}{=} p_{1} .
\end{aligned}
$$

Newton's Method: $p_{k+1}=p_{k}-\frac{f\left(p_{k}\right)}{f^{\prime}\left(p_{k}\right)}, \quad k=0,1, \cdots$

Newton's Method for solving $f(p)=0$

$$
\begin{aligned}
p & =p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)}-\frac{\left(p-p_{0}\right)^{2}}{2 f^{\prime}\left(p_{0}\right)} \\
& \approx p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)} f^{\prime \prime}(\xi(p)) \stackrel{\text { def }}{=} p_{1} .
\end{aligned}
$$

- If p_{0} "close to" p, we can expect fast convergence.
- Best hope in practice: p_{0} " not too far from" p. Newton's method may or may not converge.
- If Newton's method converges, it converges quickly.

Geometry of Newton's Method

- Taylor expand $f(x)$ at $x=p$:

$$
0=f(p)=f\left(p_{0}\right)+\left(p-p_{0}\right) f^{\prime}\left(p_{0}\right)+\frac{\left(p-p_{0}\right)^{2}}{2} f^{\prime \prime}(\xi(p))
$$

- Replace $f(x)$ by a straight line:

$$
\begin{gathered}
f\left(p_{0}\right)+\left(p-p_{0}\right) f^{\prime}\left(p_{0}\right) \approx 0 . \\
p \approx p_{0}-\frac{f\left(p_{0}\right)}{f^{\prime}\left(p_{0}\right)}
\end{gathered}
$$

is the horizontal intercept of straight line

$$
y=f\left(p_{0}\right)+\left(x-p_{0}\right) f^{\prime}\left(p_{0}\right)
$$

Newton Method


```
function [fun, dfun, x, out] = NewtonMethod(Fun, dFun, x0, params)
%
[FunFcn,msg] = fcnchk(Fun,0);
if ~isempty(msg)
    error('InvalidFUN',msg);
end
[dFunFcn,msg] = fonchk(dFun,0);
if ~isempty(msg)
        error('InvalidFUN',msg);
end
out.flg = 1;
x(1) = x0;
N = params.MaxIt;
tol = params.tol;
out.x = [];
out.f=[];
for k = 1:N
    fun(k) = FunFcn(x(k));
    dfun(k) = dFunFcn(x(k));
    out.x = [out. }x;x(k)]
    out.f = [out.f;fun(k)];
    if (abs(fun(k)) < tol)
        out.flg = 0;
        out.it = k;
        return;
    end
    if (dfun(k) == 0)
        out.it = k;
        return;
    end
    x(k+1)=x(k)-fun(k)/dfun(k);
end
```

Theorem 2.6 Let $f \in C^{2}[a, b]$. If $p \in(a, b)$ is such that $f(p)=0$ and $f^{\prime}(p) \neq 0$, then there exists a $\delta>0$ such that Newton's method generates a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ converging to p for any initial approximation $p_{0} \in[p-\delta, p+\delta]$.

Newton Method for $f(x)=e^{x}-\left(2+2 x^{2}\right)$

Computing square root with Newton's Method

- Given $a>0, p \stackrel{\text { def }}{=} \sqrt{a}$ is positive root of equation

$$
f(x) \stackrel{\text { def }}{=} x^{2}-a=0
$$

- Newton's Method

$$
p_{k+1}=p_{k}-\frac{p_{k}^{2}-a}{2 p_{k}}=\frac{1}{2}\left(p_{k}+\frac{a}{p_{k}}\right), k=0,1,2, \cdots,
$$

- Newton's Method is well defined for any $p_{0}>0$.

Newton Method for square root

Errors in Newton method, computing square root of pi

Theorem 2.6 Let $f \in C^{2}[a, b]$. If $p \in(a, b)$ is such that $f(p)=0$ and $f^{\prime}(p) \neq 0$, then there exists a $\delta>0$ such that Newton's method generates a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ converging to p for any initial approximation $p_{0} \in[p-\delta, p+\delta]$.

Proof of Theorem 2.6

- Newton's method is fixed point iteration

$$
p_{n}=g\left(p_{n-1}\right), g(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

- Since $f^{\prime}(p) \neq 0$, there exists an interval $\left[p-\delta_{1}, p+\delta_{1}\right] \subset[a, b]$ on which $f^{\prime}(x) \neq 0$. Thus, $g(x)$ is defined on $\left[p-\delta_{1}, p+\delta_{1}\right.$].

$$
g^{\prime}(x)=1-\frac{f^{\prime}(x) f^{\prime}(x)-f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}}=\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} \in C\left[p-\delta_{1}, p+\delta_{1}\right]
$$

- Since $g^{\prime}(p)=0$, there exists $0<\delta<\delta_{1}$ so that

$$
\left|g^{\prime}(x)\right| \leq \kappa \quad\left(=\frac{1}{2}\right), \quad \text { for all } \quad x \in[p-\delta, p+\delta]
$$

- If $x \in[p-\delta, p+\delta]$, then

$$
|g(x)-p|=|g(x)-g(p)|=\left|g^{\prime}(\xi)(x-p)\right| \leq \kappa|x-p| \leq|x-p|
$$

Therefore $g(x) \in[p-\delta, p+\delta]$.

- $\left\{p_{n}\right\}$ converges to p by Fixed Point Theorem.

Newton Method Divergence Example: $f(x)=x^{1 / 3}$

Secant Method: Poor man's Newton Method

Motivation

- Newton method style of fast convergence
- Avoid need for derivative calculations.

Approach

- Newton method: $p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}$.
- Replace $f^{\prime}\left(p_{n}\right)$ by its cheap approximation

$$
f^{\prime}\left(p_{n}\right)=\lim _{x \rightarrow} \frac{f\left(p_{n}\right)-f(x)}{p_{n}-x} \approx \frac{f\left(p_{n}\right)-f\left(p_{n-1}\right)}{p_{n}-p_{n-1}} .
$$

- Secant method

$$
p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)\left(p_{n}-p_{n-1}\right)}{f\left(p_{n}\right)-f\left(p_{n-1}\right)}, n=1,2, \cdots .
$$

Secant Method: Geometry

- "Approximate" $f(x)$ by a straight line

$$
f(x) \approx \frac{\left(x-p_{0}\right) f\left(p_{1}\right)-\left(x-p_{1}\right) f\left(p_{0}\right)}{p_{1}-p_{0}} .
$$

Both $f(x)$ and straight line go through points $\left(p_{0}, f\left(p_{0}\right)\right),\left(p_{1}, f\left(p_{1}\right)\right)$.

- Let approximate root p_{2} be the x-intercept of the straight line

$$
p_{2}=\frac{p_{0} f\left(p_{1}\right)-p_{1} f\left(p_{0}\right)}{f\left(p_{1}\right)-f\left(p_{0}\right)}=p_{1}-\frac{f\left(p_{1}\right)\left(p_{1}-p_{0}\right)}{f\left(p_{1}\right)-f\left(p_{0}\right)} .
$$

Secant Method: Illustration

Fixed point for $g(x)=\log \left(2+2 x^{2}\right)$

Performance: number of iterations vs. error in the solution

- Function to be considered

$$
g(x)=\log \left(2+2 x^{2}\right), \quad f(x)=x-g(x)=x-\log \left(2+2 x^{2}\right) .
$$

- Root p of f (i.e., $f(p)=0$)

$$
p=2.98930778246493 e+00 .
$$

- Bisection Method
- Fixed Point Iteration
- Newton's Method
- Secant Method

Bisection Method Order of Convergence

Fixed Point Iteration Order of Convergence

Secant Method Order of Convergence

Newton Method Order of Convergence

Order of convergence

 kanduexiswh

$$
\lim _{n \rightarrow x}\left|\frac{\mid n+1}{|n+p|}\right| p_{n}-\left.p\right|^{2}=h_{n}
$$

Linear and Quadratic Order of convergence

Recall rate of convergence: the Big O

Suppose $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ is a sequence known to converge to zero, and $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to a number α. If a positive constant K exists with

$$
\left|\alpha_{n}-\alpha\right| \leq K\left|\beta_{n}\right|, \quad \text { for large } n,
$$

then we say that $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to α with rate, or order, of convergence $O\left(\beta_{n}\right)$. (This expression is read "big oh of β_{n} ".) It is indicated by writing $\alpha_{n}=\alpha+O\left(\beta_{n}\right)$.
the $\operatorname{Big} O()=$ rate of convergence

Recall rate of convergence: the Big O

Suppose $\left\langle\left.\beta\right|_{n=1} ^{\infty}\right.$ is a sequence known to converge to zero, and $\left\langle\left.\alpha_{n}\right|_{n=1} ^{\infty}\right.$ converges to a number α. If a positive constant K exists with

$$
\left|\alpha_{n}-\alpha\right| \leq K\left|\beta_{n}\right| \text {, for lagen, }
$$

then we say that $\left\{\left.\alpha_{n}\right|_{h=1} ^{\infty}\right.$ converges to α with rate, f converggence $0\left(\beta_{n}\right)$. (This expression is read "big oh of β_{n} ") It is indicated by writing $\alpha_{n}=\alpha+O\left(\beta_{n}\right)$.

Linear and Quadratic Order of convergence

- Suppose that $\left\{p_{n}\right\}_{n=1}^{\infty}$ is linearly convergent to 0 ,

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}\right|}{\left|p_{n}\right|}=0.5, \quad \text { or roughly } \quad \frac{\left|p_{n+1}\right|}{\left|p_{n}\right|} \approx 0.5
$$

hence $p_{n} \approx(0.5)^{n}\left|p_{0}\right|$.

- Suppose that $\left\{\tilde{p}_{n}\right\}_{n=1}^{\infty}$ is quadratically convergent to 0 ,

$$
\lim _{n \rightarrow \infty} \frac{\left|\tilde{p}_{n+1}\right|}{\left|\tilde{p}_{n}\right|^{2}}=0.5, \quad \text { or roughly } \quad \frac{\left|\tilde{p}_{n+1}\right|}{\left|\tilde{p}_{n}\right|^{2}} \approx 0.5
$$

But now

Linear and Quadratic Order of convergence

Linear Convergence
Sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ n $(0.5)^{n}$
5.0000×10^{-1}
2.5000×10^{-1}
1.2500×10^{-1}
6.2500×10^{-2}
3.1250×10^{-2}
1.5625×10^{-2}
7.8125×10^{-3}

Quadratic Convergence
Sequence $\left\{\tilde{p}_{n}\right\}_{n=0}^{\infty}$
$(0.5)^{2^{n}-1}$
5.0000×10^{-1}
1.2500×10^{-1}
7.8125×10^{-3}
3.0518×10^{-5}
4.6566×10^{-10}
1.0842×10^{-19}
5.8775×10^{-39}

Linear and Quadratic Order of convergence

Linear convergence: one more accurate bit per iteration
Quadratic convergence: double \# of correct bits per iteration.

