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Math128A algorithms vs. General Purpose algorithms

For any vector x € R”, compute its norm

1

1 n 2
|rx\|2=(xf+x§+~-+x§)2=(Zxﬁ) |
k=1

v

INPUT: n,xq, -, x,.

OUTPUT: Norm.

Step 1: Set SUM = 0.

Step 2: For k=1,--- ,nset SUM = SUM + x, * x,.
Step 3: Set Norm = v/SUM.

Step 4: Output Norm.
STOP.

v

v

v

v

v



Math128A algorithms vs. General Purpose algorithms

# 1l

sy ()

¥ g =

# for kel

B = 5um = X[X) (k)

and

¥ 101 = agrtsum);

¥ disp([nem, abs (nrm-sqrt{nt{nel)*|2tmel) f0)))
Logles] 0000000




Math128A algorithms vs. General Purpose algorithms

el

wpe Jelll L)

e

# for el

S0 = 801 < X(X)#(K):

il

2 1 # et oum);

s diap{[nem, abs(narm(x)-el00tsget [ (neL) (20 ) ))
o 0. 0000es(t



Bisection Method

» Given continuous function f(x) on the interval [a, b] with
f(a) - f(b) < 0, there must be a root in (a, b).
To find a root: set [a1, b1| = [a, b].
> set p = %bl and compute f(p1).
» if f(p1) = 0, then quit with root p; (MUST BE VERY LUCKY.)
» if f(a1) - f(p1) <O, then set [az, bo] = [a1, p1],
» otherwise (f(p1) - f(b1) < 0) set [ag, bo] = [p1, b1],
22;b2 ]

v

> repeat with pr =



Bisection Method

YV A

f(b)

fla) +

-



Naive Bisection Method

% Bisection Method

%Input: f(x) continuous on [a, b]
% f(a) = f(b) <= @

%0utput: p in (a, b) so f(p) = O.

fa = f(a);
fb = f(b);
repeat

c = (a+b)/2;

fc = flc);

if (fc ==0)
p = c;
return;

end

if (fc * fa < @)



funmnction [x, out] = bisect{(FunFcnIn, Intwv, params)

params.tol;
params.MaxIt;
[FunFcn,msg]l = fenchk{FunFcnIn, @) ;
if ~isemptyi{msg)
error{ ' InvalidFUN', msg);:

end
a Intw.as;
=] Intw.bj;
fa sign{FunFcni{all;
fb sign{FunFcni{bl)}

if (fa*fb >@)

error{'Initial Interval may not contain root',msg);
end
if a==b

error{'a must be smaller than b',msg):

end
It
out [a:b1;
out. f =[FunFcn{a):FunFcnibl}]l:
while (It <= MNO)
c = {a+b),r 2;
out.x [out.=x:;cl:
out. ¥ [out. F:FunFcnic)}]1:
fo = signiFunmnFcni{cl});
if (fe 3
x =
out.

returmn;

end

if (Te = Ta = @)
b = c;

else
a = <;

end

if (absi{b—a)==
»x = l(la+bls 2

ocut. fla
out.it
return;:

end

It = It + 1;
end
out.flg =1;
out.it = MNO;
x = {a+blr 2;



Theorem 2.1 Suppose that f € Cla,b] and f(a) - f(b) < 0. The Bisection method generates a sequence
{pn};2, approximating a zero p of f with

b —
| Pn *PlﬁTa, when n>1. -



Proof of Thm 2.1
Assume that f(p,) # 0 for all n.
» By construction

g <a< <3< << by <o < by < by
Thus sequences {a,} and {b,} monotonically converge to
limits asc < bso, respectively.

» Since f(an) - f(bn) < 0 for all n, it follows that
f(aso) - f(bso) < 0, and thus a root p € [aco, boo] C [an, bn]

exists.
» Since p, = ‘Wg—b", it follows that |p, — p| < 7""53"_
» By construction
b _bn—l_an—l_bn—Q—an_g_ _b1—31_b—a
h—dn = 5 = 22 = ... = ISR TSR
» Put together,
b—a
lpn —p| < o

> In fact, asc = b = p.



Example Function with Root

function = $e* — (2+2x%)$

L L L L L L L L L
25 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5



Bisection Method with 52 Points




Fixed Point Iteration

The number p is a fixed point for a given function g if g(p) = p.

» Given aroot-finding problem / (p) = 0, we can define functions g with a fixed point at
pina number of ways, for example, as

p)=x=flx) oras plx)=x43f[x).
o Conversely,if the function g has a fixed point at p, then the function defined by

) =x-gly

has a zero at .



Fixed Point Example




Fixed Point Theorem (1)

Theorem 2.3 (@) Ifg € Cla,b] and g(x) € [a,b] for all x € [a, b], then g has at least one fixed
point in [a, b].

(i) If, in addition, g’(x) exists on (a, b) and a positive constant £ < 1 exists with
1€ (x)| <k, forallx € (a,b),

then there is exactly one fixed point in [a, b]. (See Figure 2.4.) [ ]



Proof of Thm 2.3

» If g(a) = a or g(b) = b,then g has a fixed point at an
endpoint.

» Otherwise, g(a) > a and g(b) < b. The function
h(x) = g(x) — x is continuous on [a, b], with

h(a) =g(a)—a>0 and h(b)=g(b)—b<O.

» This implies that there exists p € (a, b), h(p) = 0.

» g(p) —p=0,0rp=g(p).
If |g'(x)| < k <1 forall xin (a,b), and p and q are two distinct
fixed points in [a, b]. Then a number £ exists

g(p):g(q) g < 1.
P—q
So
1

p—q gp)—8(q
pP—q pP—q
This contradiction implies uniqueness of fixed point,



Fixed Point Iteration

Given initial approximation pg, define Fixed Point Iteration
pn=8g(pn-1), n=1,2,---,
If iteration converges to p, then

p= lim p,= lim g(p,-1) = g(p).



Fixed Point Theorem (lI)

Theorem 2.4 (Fixed-Point Theorem)
Let g € C[a,b] be such that g(x) € [a,b], for all x in [a, b]. Suppose, in addition, that
g’ exists on (a, b) and that a constant 0 < k < 1 exists with

1§ )| <k, forallx € (a,b).
Then for any number pg in [a, b], the sequence defined by
pn=g(pn-1), nx=1,

converges to the unique fixed point p in [a, b]. [ ]



Fixed Point Example x — x> = 0: no convergence

g(x) = x*e[l,00] for xe[l,00],
lg’ (x)] unbounded in[1, oc].

== n o= 200:

> % = zercsi(n,l);

= oR(1) = i3

> for k=2:n

¥ik) = ®w{k-1)*xi{k-1);
end

*> dispi[x(n)])

Int



Fixed Point Example x — sin(x) = 0: slow convergence

sin(x) € [-1,1] for xe€[-1,1],

gx) =
| < 1e[-1,1].

g'(x)

) 1 000in:

L el )

nil) e

B el

HERIRNE

i

3o gt Loy aba[a ], b= )

it T oot ertin, L = ', o 1



Fixed Point Example x — sin(x) = 0: slow convergence

g(x) sin(x) € [-1,1] for xe€[-1,1],
g'(x)] < 1el-11]

Fixed Point Iteration, x = sin(x
k+1 ( k)

le+0

o 200000 400000 E00000 800000 le+06



Fixed Point Example x — log(2 + 2x?) = 0: normal
convergence

g(x) = log(2+2x?) €[2,3] for x€[2,3],

g0 < gel3)

FixedPoint Method with 66 Points




Fixed Point Example x — (1 — cos(x)) = 0: fast
convergence

g(x) = 1—cos(x)e[-1,1] for xe[-1,1],
g’ (x)] ~  with.

b
2 1=l

¥y = geroa(n, L)

yl) = 1

2 for k=l

(k] = 1- cog(x(k-1));

end

# senilogy(aba(x), b.-')

varning: axis: onitting non-positive data in log plot



Fixed Point Example x — (1 — cos(x)) = 0: fast
convergence

g(x) = 1-—cos(x)e[-1,1] for xe[-1,1],
')l < 1e[-11].

Fixed Point Iteration, x = 1- cos(x
k+ ( k)

1




Fixed Point Theorem (lI)

Theorem 2.4 (Fixed-Point Theorem)
Let g € C[a,b] be such that g(x) € [a,b], for all x in [a, b]. Suppose, in addition, that
g’ exists on (a, b) and that a constant 0 < k < 1 exists with

1§ )| <k, forallx € (a,b).
Then for any number pg in [a, b], the sequence defined by
pn=g(pn-1), nx=1,

converges to the unique fixed point p in [a, b]. [ ]



Proof of Thm 2.4

v

A unique fixed point p € [a, b] exists.

lpn—pl = lg(pn-1) —&(p)| = 1&'(€n)(Pn—1—P)| < k|pn—1—p|

>
pn — Pl < klpn-1— pl < K?|pn—2—p| < -+ < Kk"|po — pl.
» Since
lim k" =0,
n—oo

{pPn}>2, converges to p.



Newton's Method for solving f(p) =0

» Suppose that f € C?[a, b].
> Let py € [a, b] be an approximation to p with

f'(po) #0, and [p—po| "small".

» Taylor expand f(x) at x = p:

0= #(p) = £(po) + (p— po) /(o) + PP p(e(p).

2
"Solve” for p:
_ _ f(pO) _ (P_P0)2 "
p = po— iy — B £ (E(p)
. f(po) def
~ Po (o) = p1




Newton's Method for solving f(p) =0

B f(po)  (p—po)?
P= P Fim) 2 (o)

(Po) def

~~

~ po—

~~

> If pp "close to" p, we can expect fast convergence.

» Best hope in practice: pg "not too far from” p. Newton's
method may or may not converge.

» If Newton's method converges, it converges quickly.



Geometry of Newton's Method

» Taylor expand f(x) at x = p:

IPRY
0=#(p) = Flpo) + (p — o) (o) + PPV #(e(p).

» Replace f(x) by a straight line:
f(po) + (p — po)f'(po) = 0.

f(po)
f'(po)

is the horizontal intercept of straight line

p = po—

y = f(po) + (x — po)f'(po)



Newton Method

Slope f”(p1)

y = )

(62W40-29))

Slope /" (po)

Po P
i
I

/PZ P
I
0. (Po))



function [fun, dfun, x, out] = NewtonMethod(Fun, dFun,x@,
%

[FunFcn,msg]l = fcnchk{Fun,®);

if ~isempty(msg)

errori ,msg);
end
[dFunFcn,msg] = fenchk({dFun,®);
if ~isempty(msg)
errori ,msg);
end

out.flg = 1;

x(1) = x@;

] = params.MaxIt;
tol = params.tol;
out.x = []1;

out.f =[1;

for k = 1:N

funik) = FunFen{x{k));
dfun({k) = dFunFenix(k));
out.x = [out.x;x(k)];
out.f = [out.f;funikl];

if (abs({funi{k}) = tol)
out.flg = 8;
out.it = k;
return;

end

if (dfun(k) == @)
out.it = k;
return;

end

wlk+1l) = x(k) - fun(k)/sdfunik);

end

params)



Theorem 2.6 1Let f € C?[a,bl. If p € (a,b) is such that f(p) = 0 and f’(p) # O, then there exists a
8 > O such that Newton’s method generates a sequence {p,}32, converging to p for any

initial approximation po € [p — 8,p + 81. [ ]



Newton Method for f(x) = X — (2 + 2x?)

Newton Method with 8 Points
T T




Computing square root with Newton's Method

. f . . .
» Givena >0, p def \/a is positive root of equation
f(x) “2_a=0.

» Newton's Method

2
p,—a 1 a
Pk+1 Pk 2pk 2 (pk+pk>a y Ly &y

» Newton's Method is well defined for any pg > 0.



Newton Method for square root

Errors in Newton method, computing square root of pi

le+l T T T

let0f

le-3¢

le-4 ¢

le-S5§




Theorem 2.6 1Let f € C?[a,bl. If p € (a,b) is such that f(p) = 0 and f’(p) # O, then there exists a
8 > O such that Newton’s method generates a sequence {p,}32, converging to p for any

initial approximation po € [p — 8,p + 81. [ ]



Proof of Theorem 2.6

» Newton's method is fixed point iteration
Po = &(Pn-1),8(x) = x — 1.
» Since f'(p) # 0, there exists an interval
[p — 01, p + 61] C [a, b] on which f'(x) # 0. Thus, g(x) is

defined on [p — 01, p + 01].

: PO F10) = FO F/() _ Fx) F(x)
X) = 1— =
€0 (F(x))? (F/())?

» Since g’(p) = 0, there exists 0 < § < d; so that

€ Clp—d1, p+é1].

g (x)| <k (= %), forall xe[p—46,p+4].
» If x € [p—4,p+ 4], then
lg(x)—pl = lg(x)—g(p)| = 18"(€)(x—p)| < &lx—p| < |x—pl.

Therefore g(x) € [p— 6, p + 4]
» {pn} converges to p by Fixed Point Theorem.



3

Newton Method Divergence Example: f(x) = x!/




Secant Method: Poor man’'s Newton Method

Motivation

v

Newton method style of fast convergence

Avoid need for derivative calculations.

v

Approach

> Newton method: pp11 = pn — :/((’:,"n))-

v

Replace f'(p,) by its cheap approximation

o) — i B~ F) _ (o)~ ()
" x—= Pn — X Pn — Pn-1 ‘

Secant method

v

f(pn)(pn - pnfl)
Pn+1 = Pn — yn=12---.
o F(pn) — F(Pn-1)




Secant Method: Geometry

» " Approximate” f(x) by a straight line

(x = po)f(p1) — (x — p1)f(po)
P1— Po '

Q

f(x)

Both f(x) and straight line go through points
(Po, f(po)), (p1, f(p1))-
> Let approximate root p> be the x-intercept of the straight line

_ pof(p1) — prf(po) _ f(p1)(p1 — po)

f(p1) — f(po) P f(p1) — f(po)




Secant Method: lllustration




Fixed point

25

20

15

for g(x) = log(2 + 2x?)

SecantMethod with 11 Points




Performance: number of iterations vs. error in the solution

» Function to be considered
g(x) = log(2 +2x?), f(x) =x— g(x) = x — log(2 + 2x?).
» Root p of f (i.e., f(p) =0)
p = 2.98930778246493¢e + 00.
» Bisection Method
» Fixed Point Iteration

» Newton's Method
» Secant Method



Bisection Method Order of Convergence

Convergence Rate, Bisection Method
10 T T T

10° |

10" -

10°

10°

10|

10~

1072k

10k

1076




Fixed Point lteration Order of Convergence

Convergence Rate, Fixed Point Method
T

10

10°

1000

1078



Secant Method Order of Convergence

107"

10"

10"

107

102

Convergence Rate, Secant Method
T T T




Newton Method Order of Convergence

Convergence Rate, Newton Method
T T T

10




Order of convergence

Sppse ), sequece il comees o, i, # plorelln L psteconstn
ind et i
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Linear and Quadratic Order of convergence

) L= {ud < 1) e e s ey converget

i) L=, e uadrfcl conengen,



Recall rate of convergence: the Big O

Suppose {B,}52, is a sequence known to converge to zero, and {c,}32,; converges to a
number «. If a positive constant K exists with

lan — | < K|Byl, forlargen,

then we say that {e,}32 | converges to o with rate, or order, of convergence O(8,). (This
expression is read “big oh of B,”.) It is indicated by writing o, = & + O(B,). [ ]

the Big O() = rate of convergence



Recall rate of convergence: the Big O

Suppose {7, 15 a sequence known to converge to zero, and {7, converges o a
number o If a positive constant K exists with

oty = o <KIfy|, forlargen,

then we say that o}, converges to @ with ratte convergence ((f,). (This
expression is read “big oh of ") It s indicated by writing o, = + 0(B,). 1



Linear and Quadratic Order of convergence
» Suppose that {p,}°2 is linearly convergent to 0,

||m |pn+1| _ O 5 ‘pn"rl‘

= 0.5, or roughly

~ 0.5,

n—00 ‘pn‘

pn ~ (0.5)"|po) |
» Suppose that {5,}°°, is quadratically convergent to 0,

Pl

hence

lim |ﬁf+;| = 0.5, or roughly |ﬁf+;| ~ 0.5
n=oc | Bn| |Bnl
But now
ol #0311 % (03)05y-2f = 05) oot

¥ 05V 109)Freal ) = 05)

v (05l



Linear and Quadratic Order of convergence

Linear Convergence Quadratic Convergence
Sequence {p,}™, Sequence {p,}>

n (0.5)" (05!

1 5.0000 x 10 50000 x 10
2 25000 x 107 1.2500 x 10~
3 1.2500 x 10" 78125 x 107
4 6.2500 x 102 3.0518 x 10°
5 3.1250 x 10°2 46566 x 10°1°
6 1.5625 x 10 10842 x 10-%
1 7.8125 % 10 58775 x 10°¥




Linear and Quadratic Order of convergence

Linear convergence:  one more accurate bit per iteration
Quadratic convergence: double # of correct bits per fteration.

exponent fraction
sign (11 bit) (52 bit)

I:,HHIHH AT mRRRRARII

3 52




