## Self Introduction

- Name: Ming Gu
- Office: 861 Evans
- Email: mgu@berkeley.edu
- Office Hours: TuWTh 1:30-3:00PM
- Class Website: math.berkeley.edu/~mgu/MA128ASpring2017


## Text Book

- Burden and Faires, Numerical Analysis. Required.


## Matlab

```
\(\leftarrow \rightarrow\) C (i) www.mathworks.com
```

    MathWorks" Products Solutions Academia Support Community Events
    

## Cleve Moler



## and maybe Octave

ji:|/www.gnu.org/software/octave/


## Conuoctave

## Scientific Programming Language

- Powerful mathematics-oriented syntax with built-in plotting and visualization tools
- Free software, runs on GNU/Linux, macOS, BSD, and Windows
- Drop-in compatible with many Matlab scripts



## Class Work

- Up to 14 weekly home work sets; Count best 10, total 10 points.
- 5 Quizzes;

Count best 4, total 10 points.

- 2 Programming Assignments, total 20 points;
- 1 Midterm exam, 25 points;
- 1 Final exam, 35 points.
- Final worth 60 points if Midterm MISSING.

Quiz and Exam Schedule

- Quiz: Jan. 31/Feb. 1 in discussion
- Quiz: Feb. 14/Feb. 15 in discussion
- Programming Assignment 1: 11:59PM, Feb. 22
- Quiz: Mar. 7/Mar. 8 in class
- Midterm: Mar. 21 in class
- Quiz: Apr. 4/Apr. 5 in discussion
- Quiz: Apr. 18/Apr. 19 in discussion
- Programming Assignment 2: 11:59PM, Apr. 26
- Final Exam: May 12, 7:00-10:00PM (Exam Group 20)

Numerical Analysis $=$ Calculus on a computer

- First 6 Chapters of Text Book.
- Chapter 1: Calculus, Computer Math.
- Chapter 2: Solve $f(x)=0$.
- Chapter 3: Approximate given functions.
- Chapter 4: Derivatives, integrals.
- Chapter 5: Initial value ODEs.
- Chapter 6: Solve $A x=b$.

Fibonacci's Problem in 1224, with Emperor Frederick II

Solve

$$
f(x)=x^{3}+2 x^{2}+10 x-20=0
$$

Fibonacci's Solution

$$
x=1+22\left(\frac{1}{60}\right)+7\left(\frac{1}{60}\right)^{2}+42\left(\frac{1}{60}\right)^{3}+33\left(\frac{1}{60}\right)^{4}+4\left(\frac{1}{60}\right)^{5}+40\left(\frac{1}{60}\right)^{6} .
$$

Fibonacci's Problem in 1224, with Emperor Frederick II

Solve

$$
f(x)=x^{3}+2 x^{2}+10 x-20=0
$$

Fibonacci's Solution
$x=1+22\left(\frac{1}{60}\right)+7\left(\frac{1}{60}\right)^{2}+42\left(\frac{1}{60}\right)^{3}+33\left(\frac{1}{60}\right)^{4}+4\left(\frac{1}{60}\right)^{5}+40\left(\frac{1}{60}\right)^{6}$.

The computer has a better solution
$x=1+22\left(\frac{1}{60}\right)+7\left(\frac{1}{60}\right)^{2}+42\left(\frac{1}{60}\right)^{3}+33\left(\frac{1}{60}\right)^{4}+4\left(\frac{1}{60}\right)^{5}+39\left(\frac{1}{60}\right)^{6}$.

## Fibonacci's Cubic Root

```
>> format long e;
>> h = [11 2 10 -20}]
>> roots(h)
r=
    -1.684404053910685e+00 + 3.431331350197691e+00i
    -1.684404053910685e+00 - 3.431331350197691e+00i
    1.368808107821373e+00
>> Fibonacci = ((()((40/60+4)/60+33)/60+42)/60+7)/60+22)/60+1
Fibonacci =
    1.368808107853224e+00
>> r(3)-Fibonacci
ans =
    -3.185118835347112e-11
>> Better = ((()(((31/60+38)/60+4)/60+33)/60+42)/60+7)/60+22)/60+1
Better =
    1.368808107821430e+00
>> r(3)-Better
ans =
    -5.795364188543317e-14
```


## Roots of a Random Quintic Polynomial: No closed form formula

```
>> format short g
>> hrand = randn(1,6)
hrand =
    -1.3499 3.0349
0.7254
-0.063055
0.71474
-0.20497
>> rrand = roots(hrand)
rrand =
    2.4872
    -0.70735
        0.105 + 0.56831i
        0.105 - 0.56831i
        0.2584
```


## Simple Numerical Integration (I)

$$
\begin{gathered}
I_{1}=\int_{-1}^{1} \sqrt{1+x} d x=4 / 3 \sqrt{2} . \\
I_{2}=\int_{-1}^{1} \sqrt{1+x^{2}} d x=?
\end{gathered}
$$

## Simple Numerical Integration (I)

```
>> format long g
> I2 = quad(@(x) sqrt(1+x.^2), -1,1)
I2 =
    2.29558701441275
> I1 = quad(@(x) sqrt(1+x), -1,1 )
I1 =
    1.88561089016424
>> I1 - (4/3)*sqrt(2)
ans =
    -7.19299988971578e-06
```


## Simple Numerical Integration (II)

```
>> I1tol = quad(@(x) sqrt(1+x), -1, 1,1e-12 )
I1tol =
    1.88561808316058
>> I1tol - (4/3)*sqrt(2)
ans =
    -3.5500491435414e-12
```


## Simple Numerical Integration (III)

```
> [I1,font1] = quad(e(x) sqrt(1+x), -1, 1, 1e-4);disp([I1-(4/3)*sqrt(2),fcnt1])
    -4.5143e-04 2.1000e+01
> [I1,fcnt1]= quad(e(x) sqrt(1+x), -1, 1, 1e-8); disp([I1-(4/3)*sqrt(2),fcnt1])
    -4.0728e-08 1.1300e+02
> [I1, fcnt1] = quad(@(x) sqrt(1+x), -1, 1, 1e-12); disp([I1-(4/3)*sqrt(2),fcnt1])
    -3.5500e-12 6.9700e+02
r>[I1,fcnt1] = quad(a(x) sqrt(1+x), -1, 1, 1e-16);disp([I1-(4/3)*sqrt(2),fcnt1])
> [I1,fcnt1] = quad(@(x) sqrt(1+x), -1, 1, 1e-20);disp([I1-(4/3)*sqrt(2),fcnt1])
Warning: Maximum function count exceeded; singularity likely.
> In quad at 106
    -5.6018e-06 1.0017e+04
```


## Trajectory with ODE

Problem to solve: find function $y(t)$ so that

$$
y^{\prime}(t)=f(y(t), t), \quad y\left(t_{0}\right)=y_{0}
$$

$y(t)$ could be trajectory of a flying bullet.

## Shooting Method for ODEs



Def: Limit


## Def: Continuity



## Def: Differentiability



$$
f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} .
$$

## Extreme Value Theorem



- Maximum $f(c)$ and minimum $f(d)$ attainable in $[a, b]$ if $f(x)$ continuous.
- Basis of much of data analysis, artificial intelligence.


## Mean Value Theorem



- If $f(x)$ continuous, then $c$ exists in $[a, b]$ so

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

- Basis of much of theoretical analysis.


## Intermediate Value Theorem



- If $f(x)$ continuous, then $c$ exists in $[a, b]$ so $f(c)=k$ for any $k$ between $f(a)$ and $f(b)$.
- Basis of methods for solving $\left.f_{x}\right)=0$.


## Riemann Sum



$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(x_{k}\right)
$$

## Machine Precision

- Computer numbers (floating point numbers) are a finite subset of rational numbers.
- There is a smallest positive computer number $\epsilon$ so that

$$
1+\epsilon>1
$$

## Machine Precision

```
>> eps
ans =
    2.220446049250313e-16
>> = 1 + eps; disp([eps, (x-1)/eps])
    2.220446049250313e-16 1.000000000000000e+00
>> delta = 0.75*eps
delta =
    1.665334536937735e-16
>> = 1 + delta; disp([delta, (x - 1)/delta])
    1.665334536937735e-16 1.333333333333333e+00
>> Delta = 0.5*eps
Delta =
    1. 110223024625157e-16
>> x=1+Delta;disp([Delta, (x - 1)/Delta])
    1.110223024625157e-16

\section*{Overflow}
```

>> x=2^1023
x=2^1023
x =
8.9885e+307
>>x = 2* x
x = 2* x
x =
Inf
>>y= 2^(-1023)
y = 2^(-1023)
y=
1. 1125e-308
>>y=y/((2^51)
y=y/(2^51)
y=
4.9407e-324
>>y=y=y/2
y=

```

\section*{IEEE 754 Double Precision Format}


\section*{Apple Memory Chip}


\section*{Round-off Errors and Computer Arithmetic}
- Binary Machine Numbers: any double precision non-zero floating point number has form
\[
x=(-1)^{s} 2^{c-1023}(1+f)
\]
using 64 bits
- \(s=\) sign bit: 0 for \(x>0\) and 1 for \(x<0\).
- \(c=\) characteristic, with 11 bits:
\[
c=c_{1} \cdot 2^{10}+c_{2} \cdot 2^{9}+c_{3} \cdot 2^{8}+c_{4} \cdot 2^{7}+c_{5} \cdot 2^{6}+c_{6} \cdot 2^{5}+c_{7} \cdot 2^{4}+c_{8} \cdot 2^{3}+c_{9} \cdot 2^{2}+c_{10} \cdot 2^{1}+c_{11} \cdot 2^{0},
\]
with each \(c_{j}=0\) or 1 .
- \(f=\) mantissa with 52 bits
\[
f=f_{1} \cdot\left(\frac{1}{2}\right)+\cdots+f_{52} \cdot\left(\frac{1}{2}\right)^{52}=\sum_{j=1}^{52} f_{j} \cdot\left(\frac{1}{2}\right)^{j}
\]
and each \(f_{j}=0\) or 1 .

\section*{Round-off Errors and Computer Arithmetic}
- Binary Machine Numbers: Example binary string

0100000000111011100100010000000000000000000000000000000000000000
- \(s=0, c=(10000000011)_{2}=1024+2+1=1027\), and
\[
f=1 \cdot\left(\frac{1}{2}\right)^{1}+1 \cdot\left(\frac{1}{2}\right)^{3}+1 \cdot\left(\frac{1}{2}\right)^{4}+1 \cdot\left(\frac{1}{2}\right)^{5}+1 \cdot\left(\frac{1}{2}\right)^{8}+1 \cdot\left(\frac{1}{2}\right)^{12} .
\]
\[
(-1)^{1)^{2} c^{-1033}}(1+f)=(-1)^{0} \cdot 2^{1027-103}\left(1+\left(\frac{1}{2}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{256}+\frac{1}{4096}\right)\right)
\]
\[
=27.56640625 .
\]

\section*{Round-off Errors and Computer Arithmetic}
- Binary Machine Numbers: any double precision non-zero floating point number has form
\[
x=(-1)^{s} 2^{c-1023}(1+f)
\]
using 64 bits
- \(s=\) sign bit: 0 for \(x>0\) and 1 for \(x<0\).
- \(c=\) characteristic, with 11 bits:
\[
c=c_{1} \cdot 2^{10}+c_{2} \cdot 2^{9}+c_{3} \cdot 2^{8}+c_{4} \cdot 2^{7}+c_{5} \cdot 2^{6}+c_{6} \cdot 2^{5}+c_{7} \cdot 2^{4}+c_{8} \cdot 2^{3}+c_{9} \cdot 2^{2}+c_{10} \cdot 2^{1}+c_{11} \cdot 2^{0},
\]
with each \(c_{j}=0\) or 1 .
- \(f=\) mantissa with 52 bits
\[
f=f_{1} \cdot\left(\frac{1}{2}\right)+\cdots+f_{52} \cdot\left(\frac{1}{2}\right)^{52}=\sum_{j=1}^{52} f_{j} \cdot\left(\frac{1}{2}\right)^{j}
\]
and each \(f_{j}=0\) or 1 .

\section*{Round-off Errors and Computer Arithmetic}
- k-digit Decimal Machine Numbers:
\[
x= \pm 0 . d_{1} d_{2} \cdots d_{k} \times 10^{n}, \quad \text { where } \quad 1 \leq d_{1} \leq 9, \quad 0 \leq d_{i} \leq k, i \geq 2
\]
- Any positive real number
\[
\begin{aligned}
y & =0 . d_{1} d_{2} \cdots d_{k} d_{k+1} d_{k+2} \cdots \times 10^{n} \\
& \approx 0 . d_{1} d_{2} \cdots d_{k} \times 10^{n} \stackrel{\text { def }}{=} f(y) \quad \text { (chopping) } \\
& \approx 0 . \delta_{1} \delta_{2} \cdots \delta_{k} \times 10^{n} \stackrel{\text { def }}{=} f(y) \quad \text { (rounding) }
\end{aligned}
\]
where
\[
\text { rounding }=\text { chopping on } y+5 \times 10^{n-(k+1)}
\]
- If \(d_{k+1}<5\) : rounding \(=\) chopping.
- If \(d_{k+1} \geq 5\) : cut off \(d_{k+1}\) and below, then add 1 to \(d_{k}\).

\section*{Round-off Errors and Computer Arithmetic}
- 5-digit Decimal Machine Numbers for \(\pi\) :
\[
\begin{aligned}
\pi & =0.314159265 \cdots \times 10^{1} \\
& \approx 0.31415 \times 10^{1}=3.1415 \quad \text { (chopping) } \\
& \approx(0.31415+0.00001) \times 10^{1}=3.1416 \quad \text { (rounding) }
\end{aligned}
\]

\section*{Absolute error vs. relative error}

Suppose that \(p^{*}\) is an approximation to \(p \neq 0\).
- absolute error \(=\left|p-p^{*}\right|\),
- relative error \(=\frac{\left|p-p^{*}\right|}{|p|}\).

Example
- absolute errors:
\[
|\pi-3.1415| \approx 9 \times 10^{-5}, \quad|\pi-3.1416| \approx 7 \times 10^{-6}
\]
- relative errors:
\[
\frac{|\pi-3.1415|}{\pi} \approx 3 \times 10^{-5}, \quad \frac{|\pi-3.1416|}{\pi} \approx 2 \times 10^{-6}
\]

\section*{Relative error for chopping}

Suppose that \(y=0 . d_{1} d_{2} \cdots d_{k} d_{k+1} d_{k+2} \cdots \times 10^{n}\), with \(d_{1} \geq 1\).
\[
\begin{aligned}
\left|\frac{y-f l(y)}{y}\right| & =\left|\frac{0 . d_{1} d_{2} \ldots d_{k} d_{k+1} \ldots \times 10^{n}-0 . d_{1} d_{2} \ldots d_{k} \times 10^{n}}{0 . d_{1} d_{2} \ldots \times 10^{n}}\right| \\
& =\left|\frac{0 . d_{k+1} d_{k+2} \ldots \times 10^{n-k}}{0 . d_{1} d_{2} \ldots \times 10^{n}}\right|=\left|\frac{0 . d_{k+1} d_{k+2} \ldots}{0 . d_{1} d_{2} \ldots}\right| \times 10^{-k} .
\end{aligned}
\]

But \(0 . d_{1} d_{2} \cdots d_{k} d_{k+1} d_{k+2} \cdots \geq 0.1\),
\[
\left|\frac{y-f l(y)}{y}\right| \leq \frac{1}{0.1} \times 10^{-k}=10^{-k+1}
\]

\section*{Relative error for rounding}

Suppose that \(y=0 . d_{1} d_{2} \cdots d_{k} d_{k+1} d_{k+2} \cdots \times 10^{n}\), with \(d_{1} \geq 1\).
\[
\left|\frac{y-f(y)}{y}\right| \leq 0.5 \times 10^{-k+1} .
\]

Proof: Exercise in text.

Machine addition, subtraction, multiplication, and division
\[
\begin{aligned}
& x \theta)=f(f(x)+f(v), x \theta y=f(f(f) x) f(v)), \\
& x \theta)=f(f(f)-f(v), x \theta)=f(f(f)=f(v))
\end{aligned}
\]

\section*{Cancellation of significant digits}

Suppose that \(x\) and \(y\) do not differ much:
\[
\begin{aligned}
x & =0 . d_{1} \cdots d_{p} \alpha_{p+1} \cdots \times 10^{n} \\
& =0 . d_{1} \cdots d_{p} \alpha_{p+1} \cdots \alpha_{k} \times 10^{n}+\epsilon_{x}=f(x)+\epsilon_{x}, \\
y & =0 . d_{1} \cdots d_{p} \beta_{p+1} \cdots \times 10^{n} \\
& =0 . d_{1} \cdots d_{p} \beta_{p+1} \cdots \beta_{k} \times 10^{n}+\epsilon_{y}=f(y)+\epsilon_{y},
\end{aligned}
\]
with \(\epsilon_{x}, \epsilon_{y} \approx 10^{n-k}\).

The floating-point form of \(x-y\) is
\[
f l(f l(x)-f l(y))=0 . \sigma_{p+1} \sigma_{p+2} \ldots \sigma_{k} \times 10^{n-p}
\]
where
\[
\text { 0. } \sigma_{p+1} \sigma_{p+2} \ldots \sigma_{k}=0 . \alpha_{p+1} \alpha_{p+2} \ldots \alpha_{k}-0 . \beta_{p+1} \beta_{p+2} \ldots \beta_{k} .
\]

Roughly, relative error is
\(\left|\frac{\text { error in computing } x-y}{x-y}\right| \approx\left|\frac{\left|\epsilon_{x}\right|+\left|\epsilon_{y}\right|}{f /(f /(x)-f /(y))}\right| \approx \frac{10^{n-k}}{10^{n-p}}=10^{-(k-p)}\).

\section*{Quadratic formula for \(a x^{2}+b x+c=0\)}
\[
x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
\]

One of \(x_{1}, x_{2}\) faces cancellation of significant digits if
\[
|4 a c| \ll b^{2} .
\]

\section*{Solving \(a x^{2}+b x+c=0\) the better way}
- Compute \(\delta=\sqrt{b^{2}-4 * a * c}\)
- If \(b>0\) then
\[
x_{1}=\frac{-b-\delta}{2 a}
\]
if \(b \leq 0\) then
\[
x_{1}=\frac{-b+\delta}{2 a}
\]
- Vieta's formula
\[
x_{2}=\frac{c}{a x_{1}} .
\]

Roots to Quadratic to Roots (I)
function \(x x=\) quadroot(x)
\(a=1\);
\(b=-(x(1)+x(2)) ;\)
\(\mathrm{c}=\mathrm{x}(1) * \mathrm{x}(2)\);
del \(=\) sqrt \((b * b-4 * a * c)\);
\(x \times(1)=(-b+d e l) /(2 * a)\);
\(x \times(2)=(-b-d e l) /(2 * a) ;\)
xx =xx(:);

\section*{Roots to Quadratic to Roots (II)}
```

>> format long e
format long e
>> x = randn(2,1)
x = randn(2,1)
x =

```
1. \(630235289164729 \mathrm{e}+00\)
\(4.888937703117894 e-01\)
>> \(\mathbf{x x}=\) quadroot \((x)\)
\(x x=\) quadroot \((x)\)
\(x \times=\)
1. \(630235289164729 \mathrm{e}+00\)
\(4.888937703117894 e-01\)
\(\gg x=\) [randn*1e5; randn*1e-12]
\(x=[\) rand \(n * 1 e 5 ;\) randn*1e-12]
\(x=\)
\(1.034693009917860 \mathrm{e}+05\)
7. \(268851333832379 \mathrm{e}-13\)
>> \(\mathbf{x x}=\) quadroot \((x)\)
\(x x=\) quadroot \((x)\)
\(x \times=\)
\(1.034693009917860 \mathrm{e}+05\)

\section*{Roots to Quadratic to Roots (III)}
```

>> a = randn*1e-5;b=1;c= - randn*1e-12;
a = randn*1e-5;b=1; c = - randn*1e-12;
>> roots([a b c])
roots([la b c])
ans =
3.295534380226372e+05
2.938714670966580e-13
>> del = sqrt(b*b-4*a*c)
del = sqrt(b*b-4*a*c)
del =
1
>>x(1)=(-b+del)/(2*a);x(2)=(-b-del)/(2*a)
x(1) = (-b+del)/(2*a); x(2) = (-b-del)/(2*a)
x =
3.295534380226372e+05
>> x(2)=(-b-del)/(2*a); x(1)=(c/a)/x(2)
x(2) = (-b-del)/(2*a); x(1)=(c/a)/x(2)
x =
2. $938714670966580 \mathrm{e}-13$
3. $295534380226372 e+05$

```

\section*{Horner's Method for Fibonacci's Problem in 1224, with his} Emperor

Solve
\[
f(x)=x^{3}+2 x^{2}+10 x-20=0
\]

Fibonacci's Solution
\(x=1+22\left(\frac{1}{60}\right)+7\left(\frac{1}{60}\right)^{2}+42\left(\frac{1}{60}\right)^{3}+33\left(\frac{1}{60}\right)^{4}+4\left(\frac{1}{60}\right)^{5}+40\left(\frac{1}{60}\right)^{6}\).

With Horner's nested sum method, let \(\tau=\left(\frac{1}{60}\right)\) :
\[
x=1+\tau \cdot(22+\tau \cdot(7+\tau \cdot(42+\tau \cdot(33+\tau \cdot(4+40 \tau)))))
\]

\section*{Fibonacci's Problem 1224, what timing}


\section*{Pseudocode for Horner's Method}
```

function SUM = horner(x,a)
%
% horner's method
%
n = length(a);
SUM = a(n)*ones(size(x));
for i=n-1:-1:1
SUM = a(i) + x .* SUM;
end
return

```

\section*{Numerical stability: a second order recursion}

For any constants \(c_{1}\) and \(c_{2}\),
\[
p_{n}=c_{1}\left(\frac{1}{3}\right)^{n}+c_{2} 3^{n}
\]
is a solution to the recursive equation
\[
p_{n}=\frac{10}{3} p_{n-1}-p_{n-2}, \quad \text { for } n=2,3, \ldots
\]
\[
\begin{gathered}
\lim _{n \rightarrow \infty}\left|p_{n}\right|=\left\{\begin{array}{cc}
\infty & \text { if } \quad c_{2} \neq 0 \\
0 & \text { otherwise }
\end{array}\right. \\
\binom{c_{1}}{c_{2}}=\frac{1}{8}\binom{9 p_{0}-3 p_{1}}{3 p_{1}-p_{0}}, \quad \text { given } p_{0}, p_{1}
\end{gathered}
\]
- condition \(c_{2}=3 p_{1}-p_{0}=0\) hard to satisfy exactly in finite precision computations.

Numerical values go crazy for \(p_{0}=1, p_{1}=1 / 3\).

With five-digit rounding arithmetic,
\begin{tabular}{lccc}
\(n\) & Computed \(\hat{p}_{n}\) & Correct \(p_{n}\) & Relative Error \\
\hline 0 & \(0.10000 \times 10^{1}\) & \(0.10000 \times 10^{1}\) & \\
1 & \(0.33333 \times 10^{0}\) & \(0.33333 \times 10^{0}\) & \\
2 & \(0.11110 \times 10^{0}\) & \(0.11111 \times 10^{0}\) & \(9 \times 10^{-5}\) \\
3 & \(0.37000 \times 10^{-1}\) & \(0.37037 \times 10^{-1}\) & \(1 \times 10^{-3}\) \\
4 & \(0.12230 \times 10^{-1}\) & \(0.12346 \times 10^{-1}\) & \(9 \times 10^{-3}\) \\
5 & \(0.37660 \times 10^{-2}\) & \(0.41152 \times 10^{-2}\) & \(8 \times 10^{-2}\) \\
6 & \(0.32300 \times 10^{-3}\) & \(0.13717 \times 10^{-2}\) & \(8 \times 10^{-1}\) \\
7 & \(-0.26893 \times 10^{-2}\) & \(0.45725 \times 10^{-3}\) & \(7 \times 10^{0}\) \\
8 & \(-0.92872 \times 10^{-2}\) & \(0.15242 \times 10^{-3}\) & \(6 \times 10^{1}\) \\
\hline
\end{tabular}

\section*{Rate of convergence: the Big O}

Suppose \(\left\{\beta_{n}\right\}_{n=1}^{\infty}\) is a sequence known to converge to zero, and \(\left\{\alpha_{n}\right\}_{n=1}^{\infty}\) converges to a number \(\alpha\). If a positive constant \(K\) exists with
\[
\left|\alpha_{n}-\alpha\right| \leq K\left|\beta_{n}\right|, \quad \text { for large } n,
\]
then we say that \(\left\{\alpha_{n}\right\}_{n=1}^{\infty}\) converges to \(\alpha\) with rate, or order, of convergence \(O\left(\beta_{n}\right)\). (This expression is read "big oh of \(\beta_{n}\) ".) It is indicated by writing \(\alpha_{n}=\alpha+O\left(\beta_{n}\right)\).```

