Midterm Solutions

Problem 2:
(a) Our function is $f(x)=(3 x+1)^{1 / 3}$. At $x=1, f(x)-x=4^{1 / 3}-1$. This is positive, since $1^{3}<4$. At $x=2, f(x)-2=7^{1 / 3}-2$. This is negative, since $2^{3}>7$. By the Intermediate Value Theorem, $f(x)-x$ has a root in the interval $[1,2]$. Equivalently, $f(x)$ has a fixed point in this interval.
(b) Fixed point iteration for $f(x)$ converges in an interval $[a, b]$ if there is a root in this interval and $\left|f^{\prime}(x)\right|<\lambda<1$ for all $x \in[a, b]$. From part (a), we know there is a root. We compute $f^{\prime}(x)=\frac{1}{3} 3(3 x+1)^{-2 / 3}=(3 x+1)^{-2 / 3}$. Since $3 x+1 \geq 4$ for x in $[1,2]$, we conclude that $(3 x+1)^{-2 / 3} \leq 4^{-2 / 3}<1$ for all x in the interval. This satisfies the conditions of the theorem, so the fixed point iteration $p_{k+1}=\left(3 p_{k}+1\right)^{1 / 3}$ convergers for any starting point $p_{0} \in[1,2]$.

Problem 3:
We want to find a polynomial $P(x)$ of degree at most 2 such that $P(0)=$ $P(1)=P(2)=1$. We compute the Lagrange polynomials $L_{0}=\frac{(x-1)(x-2)}{(0-1)(0-2)}$, $L_{1}=\frac{(x-0)(x-2)}{(1-0)(1-2)}, L_{2}=\frac{(x-0)(x-1)}{(2-0)(2-1)}$. Our polynomial P should be $1 L_{0}+1 L_{1}+1 L_{2}$ $=\left(x^{2}-3 x+2\right) / 2-\left(x^{2}-2 x\right)+\left(x^{2}-x\right) / 2=0 x^{2}+0 x+1$. So $P(x)=1$.

We verify $P(1)=P(2)=P(3)=1$, so this is the correct polynomial.
Problem 4:
Relative error is $\frac{\left|p-p^{*}\right|}{|p|}$, and this should be at most 10^{-4}. So $\left|p-p^{*}\right| \leq$ $10^{-4} p$, or $-10^{-4} p \leq p-p^{*} \leq 10^{-4} p$. This is true for p^{*} in the interval $\left[p-10^{-4} p, p+10^{-4} p\right]$. Since $p=\sqrt{2}$, this is $\left[\sqrt{2}-10^{-4} \sqrt{2}, \sqrt{2}+10^{-4} \sqrt{2}\right]$.

An estimate has n significant digits if the relative error is less than $5 \cdot 10^{-n}$. As we have just computed, for p in the above interval the relative error is at most $10^{-4}<5 \cdot 10^{-4}$, so any p^{*} in this interval has at least 4 significant digits.

Problem 5:
(a) $p_{k}=\lambda^{\alpha^{k}}$, with $\lambda<1$ and $\alpha>0$. Since $\lambda<1, p_{k}$ approaches zero as $k \rightarrow \infty$ if and only if $\alpha^{k} \rightarrow \infty$. This is true if and only if $\alpha>1$, which is our condition for p_{k} to approach zero.
(b) We compute the order of convergence as the largest R for which $\lim _{k \rightarrow \infty} \frac{p_{k+1}}{p_{k}^{R}}$ exists. This is $\frac{\lambda^{\alpha^{k+1}}}{\left(\lambda^{\alpha^{k}}\right)^{R}}$, which is equal to $\frac{\lambda^{\alpha\left(\alpha^{k}\right)}}{\lambda^{R\left(\alpha^{k}\right)}}=\lambda^{(\alpha-R) \alpha^{k}}$. Since $\alpha>1$ from part (a), this limit exists if and only if $R \leq \alpha$, so the order of convergence is α.

